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Abstract We present a novel 3D reconstruction system

that can generate a stable triangle mesh using data from

multiple RGB-D sensors in real time for dynamic scenes.

The first part of the system uses moving least squares

(MLS) point set surfaces to smooth and filter point clouds

acquired from RGB-D sensors. The second part of the

system generates triangle meshes from point clouds. The

whole pipeline is executed on the GPU and is tailored to

scale linearly with the size of the input data. Our contri-

butions include changes to the MLS method for improving

meshing, a fast triangle mesh generation method and GPU

implementations of all parts of the pipeline.

Keywords 3D reconstruction �Meshing � Mesh zippering �
RGB-D cameras � GPU

1 Introduction

3D surface reconstruction and meshing methods have been

researched for decades in the computer vision and com-

puter graphics fields. Its applications are numerous and

have practical uses in fields such as archeology [42], cin-

ematography [45] and robotics [31]. A majority of the

works produced so far have focused on static scenes.

However, many interesting applications, such as telepres-

ence [13, 37, 44], require 3D reconstruction in a dynamic

environment, i.e. in a scene where geometric and colori-

metric properties are not constant over time.

For most 3D reconstruction systems, the process can be

divided conceptually into three stages:

1. Data acquisition Traditionally, acquiring a real-time

3D structure of an environment using stereo or multi-

view stereo algorithms has been a challenging and

computationally expensive stage. The advent of con-

sumer RGB-D sensors has enabled the 3D reconstruc-

tion process to become truly real-time, but RGB-D

devices still have their own drawbacks. The generated

depth maps tend to be noisy, and the scene coverage is

restricted due to the sensor’s limited focal length,

making the following process stages more difficult to

achieve. Many reconstruction systems start with a

preprocessing stage to reduce some noise inherent to

RGB-D sensors.

2. Surface reconstruction The surface reconstruction

consolidates available 3D information to a single

consistent surface.

3. Geometry extraction After a surface has been defined,

it should be converted to a geometric representation

that is useful for a particular application. Some

commonly used formats are point clouds, triangle

meshes and depth maps.

Our work involves both surface reconstruction and triangle

mesh generation. We enhance a moving least squares

(MLS)-based surface reconstruction method to fit our

needs. We generate triangle meshes in the geometry
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extraction stage, since they are the most commonly used

representation in computer graphics and are view

independent.

1.1 Related works

We constrain the related literature section to 3D recon-

struction methods that can work with range image data

from RGB-D sensors and provide explicit surface geometry

outputs, such as triangle meshes. As such, view-dependent

methods are not discussed.

1.1.1 Visibility methods

Visual hull methods, as introduced in Laurentini [34],

reconstruct models using an intersection of object silhou-

ettes from multiple viewpoints. Polyhedral geometry

[20, 39] has become a popular representation of hull

structure. To speed up the process, Li et al. [36], Duck-

worth and Roberts [17] developed GPU-accelerated

reconstruction methods. The general drawback with those

approaches is that they need to extract objects from an

image background using silhouettes. In a cluttered and

open scene, this is difficult to do. We also may wish to

include backgrounds in reconstructions, but this is gener-

ally not supported.

Curless and Levoy [15] use a visual hull concept toge-

ther with range images and define a space carving method.

Thanks to the range images, background segmentation

becomes a simple task. However, space carving is designed

to operate on top of volumetric methods, which means that

issues with volumetric methods also apply here. Using

multiple depth sensors or multiple scans of scenes can

introduce range image misalignments. Zach et al. [52]

counters these misalignments by merging scans with a

regularization procedure, albeit with even higher memory

consumption. When a scene is covered with scans at dif-

ferent scales, fine resolution surface details can be lost.

Fuhrmann and Goesele [21] developed a hierarchical vol-

ume approach to retain the maximum amount of details.

However, the method is designed to combine a very high

number of viewpoints for off-line processing; as such, it is

unsuited to real-time use.

1.1.2 Volumetric methods

Volumetric reconstruction methods represent 3D data as

grids of voxels. Each volume element can contain space

occupancy data [12, 14] or samples of continuous functions

[15]. After commodity RGB-D sensors became available,

the work of Izadi et al. [28] spawned a whole family of 3D

reconstruction algorithms based on truncated signed dis-

tance function volumes. The strength of these methods is

their ability to integrate noisy input data in real time to

produce high-quality scene models. However, a major

drawback is their high memory consumption. Whelan et al.

[50] and Chen et al. [10] propose out-of-core approaches

where reconstruction volume is moved around in space to

lower system memory requirements. However, these

methods cannot capture dynamic scenes. Newcombe et al.

[40], Dou et al. [16] and Innmann et al. [27] support

changes to the scene by deforming the reconstructed vol-

ume. These methods expect accurate object tracking, which

can fail under complex or fast movement.

Variational volumetric methods, such as those of

Kazhdan et al. [30] and Zach [51], reconstruct surfaces by

solving an optimization task under specified constraints.

Recently, the method of Kazhdan and Hoppe [29] has

become a popular choice with Collet et al. [13] further

developing it for use in real-time 3D reconstruction, albeit

utilizing an incredible amount of computational power.

Indeed, the global nature of the optimization comes with a

great computational cost, making it infeasible in most sit-

uations with consumer-grade hardware.

1.1.3 Point-based methods

MLS methods have a long history in data science as a tool

for smoothing noisy data. Alexa et al. [2] used this concept

in computer visualization to define point set surfaces (PSS).

These surfaces are implicitly defined and allow points to be

refined by reprojecting to them. Since then, a wide variety

of methods based on PSS have appeared—see Cheng et al.

[11] for a partial summary. In the classical formulation,

Levin [35] and Alexa et al. [3] approximate local surfaces

around a point as a low-degree polynomial. Alexa and

Adamson [1] simplify the approach by formulating a

signed distance field of the scene from oriented normals.

To increase result stability, Guennebaud and Gross [22]

formulate higher-order surface approximation while

Fleishman et al. [19] and Wang et al. [49] add detail-pre-

serving MLS methods. Kuster et al. [33] introduce tem-

porally stable MLS for use in dynamic scenes.

Most works to date utilize splatting [53] for visualizing

MLS point clouds. While fast, this approach cannot handle

texturing without blurring, so it is not as well supported in

computer graphics as traditional triangle meshes are. It has

been considered difficult to generate meshes on top of MLS

processed point clouds. Regarding MLS, Berger et al. [7]

note that ‘‘it is nontrivial to explicitly construct a contin-

uous representation, for instance an implicit function or a

triangle mesh’’. Scheidegger et al. [46] and Schreiner et al.

[47] propose advancing front methods to generate triangles

on the basis of MLS point clouds. These methods can

achieve good results, but they come with high computa-

tional costs and are hard to parallelize. Plüss et al. [44]
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directly generate triangle meshes on top of refined points.

However, the result generates multiple disjointed meshes

and does not deal with mesh stability.

1.1.4 Triangulation methods

Point clouds can be meshed directly using Delaunay tri-

angulation and its variations [9]. These approaches are

subject to noise and uneven distances between points.

Amenta and Bern [5] and Amenta et al. [6] propose robust

variants with the drawback of being slow to compute.

Maimone and Fuchs [37] create triangle meshes for

multiple cameras separately by connecting neighboring

range image pixels to form triangles. The meshes are not

merged, but first rendered. Then, the images are merged.

Alexiadis et al. [4] take the idea further and merge triangle

meshes before rendering. While those methods can achieve

high frame rates, the output quality could be improved.

1.2 Proposed system

Direct triangle mesh generation [24, 25, 32, 43] from point

clouds has been popular in 3D reconstruction systems

[4, 37]. Its strengths are its exceedingly fast operation and

simplicity. However, it can be problematic to use when the

input point cloud is not smooth or when there is more than

one range image to merge. This paper tackles both prob-

lems by providing point cloud smoothing and direct mesh

generation processes that can work together on a GPU.

MLS methods constitute an efficient way to smooth

point clouds. Their memory requirements are dependent on

the number of input points and not on a reconstruction

volume. Additionally, the process is fully parallelizable,

making it an excellent target for GPU acceleration [23, 33].

The issue here is that direct meshing methods expect

point clouds to have a regular grid-like structure when

points are projected to camera. Unfortunately, the tradi-

tional MLS smoothing process loses that structure.

Therefore, we need to change part of the MLS method to

make the output conform to meshing requirements.

Direct meshing of the input range images results in

separate meshes for each range image. To reduce rendering

costs and obtain a watertight surface, the meshes should be

merged. Mesh zippering [38, 48] is a well-known method

of doing that. However, this method is not particularly

GPU-friendly. As such, we develop our own approach

inspired by mesh zippering.

Figure 1 outlines the major parts of our system. Point

normals are calculated separately for each RGB-D device

range image (Sect. 3). We use an MLS-based method to

jointly reduce the noise of all input point clouds and to

reconcile data from different RGB-D cameras (Sect. 4). It

also provides temporal stability. Next, meshing the point

clouds is performed by multiple steps: (Sect. 5) generating

a triangular mesh for each camera separately (Sect. 5.1),

removing duplicate mesh areas (Sect. 5.2), merging

meshes (Sect. 5.3) and finally outputting a single refined

mesh (Sect. 5.4). The result is sent to rendering or to fur-

ther processing as per the targeted application. This whole

procedure is also summarized in Algorithm 1.

In summary, our contributions in this work are

changing the MLS projection process to make it suit-

able for meshing and providing a new method of

merging multiple triangle meshes. The whole system is

designed with parallelization in mind and runs on com-

modity GPUs.

Fig. 1 System overview and data flow. The dashed gray box marks

the proposed method

J Real-Time Image Proc

123



2 System setup

Using our system makes sense in cases where there are at

least two RGB-D devices (see Fig. 2). All cameras gen-

erate a noisy and incomplete depth map of their

surroundings.

Our 3D reconstruction method expects camera intrinsic

and extrinsic calibration parameters to be known at all

times. The cameras are allowed to move in scene as long as

their position is known in a global coordinate system. In

cases where calibration is inaccurate, an iterative closest

point method [8] was deemed sufficient to align point

clouds to the required precision.

We consider the scene to be fully dynamic, i.e. all

objects can move freely. As output, we require a single

triangle mesh that is temporally stable.

3 Normal estimation

Our pipeline starts with initial surface normals estima-

tion at every input point location, much like previous

work does [41, 43]. This is a prerequisite for the MLS

process. Normals are calculated separately for each

depth map. In a nutshell, we look at a gradient of points

in a local neighborhood to get a normal estimate. More

precisely, we calculate gradients for every range image

coordinate ðx; yÞ.
gxðx; yÞ ¼ pðxþ 1; yÞ � pðx� 1; yÞ ð1Þ

and

gyðx; yÞ ¼ pðx; yþ 1Þ � pðx; y� 1Þ; ð2Þ

where pðx; yÞ is the range image pixel’s 3D point location

in a global coordinate system, gx is the horizontal gradient,

and gy is the vertical gradient.

In practice, some gradient calculations may include

points with invalid data from an RGB-D sensor (i.e. a hole

in the depth map). In that case, the gradients gx and gy are

marked as invalid. Another issue is that the points used in

gradient calculation might be part of different surfaces. We

detect such situations by checking whether the distance

between points is more than a constant value d. In these

cases, both the gx and gy gradients are marked as invalid for

the particular coordinate.

Next, the unnormalized normal in global coordinates is

calculated as a cross-product,

uðx; yÞ ¼
X

i;j

gxði; jÞ �
X

i;j

gyði; jÞ ; ð3Þ

where the sums are taken over a local neighborhood of

points around ðx; yÞ. Any gradients marked invalid should

be excluded from the sums. Finally, we normalize uðx; yÞ
so that

nðx; yÞ ¼ uðx; yÞ
jjuðx; yÞjj ; ð4Þ

which is the surface normal result.

The neighborhood area in the sum of Eq. 3 is typically

very small, e.g., 3� 3. This area is insufficient for com-

puting high-quality normals. However, in a later surface

reconstruction phase of our pipeline, we use weighted

averaging of the normals. This is done over a much larger

support area, e.g., 9� 9, which results in good normals.

Figure 3 shows a comparison of principal component

analysis (PCA)-based normal estimation [26] and our

selected gradient method. A similar estimation radius was

Fig. 2 Example of a system setup with two RGB-D cameras. The

shaded pyramids with red edges show the camera’s field of view and

range

Fig. 3 Comparison of normal calculation methods on real data. Red

and blue lines denote normals of points from different RGB-D

cameras. Note that the gradient method gives similar results compared

to PCA, but with much faster computation
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selected for both methods. While there are differences in

the initial normals, the final result after MLS smoothing is

practically identical. It thus makes sense to use the faster

gradient-based normal estimation.

4 Moving least squares surface reconstruction

MLS methods are designed to smooth point clouds to

reduce noise that may have been introduced by RGB-D

sensors. They require a point cloud with normals as input

and produce a new point cloud with refined points and

normals.

We choose to follow a group of MLS methods that

approximates surfaces around a point x in space as an

implicit function f : R3 ! R representing the algebraic

distance from a 3D point to the surface. This method is an

iterative process consisting of two main components: an

estimation of the implicit function f (and its gradient if

necessary) and an optimization method to project points to

the implicit surface defined by f . We first use a well-

established method to estimate an implicit surface from the

point cloud and then project the same points to this surface

with our own projection approach.

4.1 Surface estimation

Following Alexa et al. [3], we compute the average point

location a and normal n at point x as

aðxÞ ¼
P

i w
�
jjx� xijj

�
xiP

i w
�
jjx� xijj

� ð5Þ

and

nðxÞ ¼
P

i w
�
jjx� xijj

�
niP

i w
�
jjx� xijj

� ; ð6Þ

where wðrÞ is a spatial weighting function and ni are the

normals calculated in Sect. 3. As in Guennebaud and Gross

[22], we use a fast Gaussian function approximation for the

weight function, defined as

wðrÞ ¼ 1� r

h

� �2
� �4

; ð7Þ

where h is a constant smoothing factor. Finally, the implicit

surface function is obtained as

f ðxÞ ¼ nðxÞTðx� aðxÞÞ: ð8Þ

The sums in Eqs. 5–6 are taken over all points in

vicinity of x. Due to the cutoff range of the weighting

function wðrÞ, considering points in the radius of h around

x is sufficient. Traditionally, points xi and normals ni are

stored in spatial data structures such as k-d tree or octree.

While fast, the spatial lookups still constitute the biggest

impact on MLS performance. Kuster et al. [33] propose

storing points and normals data as two-dimensional arrays

similar to range images. In that case, a lookup operation

would consist of projecting search points to every camera

and retrieving an s� s block of points around projected

coordinates, where s is known as window size. This allows

for very fast lookups and is cache friendly.

To achieve temporal stability, we follow Kuster et al.

[33] who propose extending x to a 4-dimensional vector

that contains not only spatial coordinates but also a time

value. Every frame received from a camera has a times-

tamp that is assigned to the fourth coordinate of all points

in the frame. Hence, it is now possible to measure the

spatial and temporal distance of any two points. This

allows us to use multiple consecutive depth frames in a

single MLS calculation. The weighting function wðrÞ
guarantees that points from newer frames have more

impact on reconstruction, while older frames have less. In

our system, the number of frames used is a fixed parameter

fnum and is selected experimentally. Also note that the time

value should be scaled to achieve desired temporal

smoothing.

4.2 Projecting to surface

Alexa and Adamson [1] present multiple ways of project-

ing points to the implicit surface. One core concept of this

work is that the implicit function f ðxÞ can be understood as

a distance from an approximate surface tangent frame

defined by point aðxÞ and normal nðxÞ. This means that we

can project a point x to this tangent frame along the normal

vector n using

x0 ¼ x� fn: ð9Þ

We call this the simple projection. Since the tangent frame

is only approximate, the procedure needs to be repeated.

On each iteration, the surface tangent frame estimation

becomes more accurate as a consequence of the spatial

weighting function wðrÞ. Another option is to propagate

points along the f ðxÞ gradient. This is called orthogonal

projection.

Instead of following normal vectors or an f ðxÞ gradient
to the surface, we constrain the iterative optimization to a

line between the initial point location and the camera’s

viewpoint. Given a point x to be projected to a surface and

camera viewpoint v, the projection will follow vector d

defined as

d ¼ v� x

jjv� xjj : ð10Þ

Our novel viewpoint projection operator projects a point

to the tangent frame in direction d instead of n as in Eq. 9.
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With the use of some trigonometry, the projection operator

becomes

x0 ¼ x� fd

nTd
: ð11Þ

This operator works similarly to simple projection when

d is close to n in value. However, this optimization cannot

easily converge when n and d are close to a right angle.

Conceptually, the closest surface is in a direction where we

do not allow the point to move. Dividing by nTd may

propel the point extremely far, well beyond the local area

captured by the implicit function f . We thus limit each

projection step to distance h (also used in the spatial

weighting function 7). This results in a search through

space to find the closest acceptable surface.

If a point does not converge to a surface after a fixed

number of iterations imax, we consider the projection to

have failed and the point is discarded. This is a desired

behavior and indicates that a particular point is not

required. The pseudocode for the projection method is

listed in Algorithm 2.

Figure 4 shows the visualization of different projection

methods. Figure 5 shows them in action (except for

orthogonal projection, which is computationally more

expensive). Our method results in a more regular grid of

points on a surface than the normals-based simple

projection. This process is crucial in making the final mesh

temporally stable. Moreover, the stability of the distances

between points is a key condition to compute the mesh

connectivity in the next section.

5 Mesh generation

The purpose of mesh generation is to take refined points

produced by MLS and turn them into a single consistent

mesh of triangles. The approach is to first generate initial

triangle meshes for every RGB-D camera separately and

then join those meshes to get a final result.

Our proposed method is inspired by a mesh zippering

method pioneered by Turk and Levoy [48]. This method

was further developed by Marras et al. [38] to enhance

output quality and remove some edge-case meshing errors.

Both zippering methods accept initial triangle meshes as

input and produce a single consistent mesh as output.

Conceptually, they work in three phases:

1. Erosion remove triangles from meshes so that over-

lapped mesh areas are minimized.

2. Clipping in areas where two meshes meet and slightly

overlap, clip triangles of one mesh against triangles of

another mesh so that overlapping is completely

eliminated.

3. Cleaning retriangulate areas where different meshes

connect to increase mesh quality.

Prior zippering work did not consider the parallelization of

these processes. As such, we need to modify the approach

to be suitable for GPU execution.

The mesh erosion process of zippering utilizes a global

list of triangles. The main operation in this phase is

deleting triangles. If parallelized, the triangle list would

need to be locked during deletions to avoid data corruption.

Fig. 4 Visualization of different surface projection methods. a

Orthogonal projection, b simple projection, c viewpoint projection

(ours)

Fig. 5 Comparison of simple projection (left) and our viewpoint

projection (right) for the same depth map patch. The latter shows

excellent temporal stability
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For this reason, we need to introduce a new data structure

where triangles are not deleted, only updated to reflect a

new state. This allows for completely lockless processing

on GPUs. A similar issue arises with mesh clipping, as it

would require locking access to multiple triangles to carry

out clipping. To counter this, we replace mesh clipping

with a process we call mesh merging. It updates only one

triangle at a time and thus does not requiring locking. The

last step of our mesh generation process is to turn our

custom data structures back into a traditional triangle list

for rendering or other processing. We call this final mesh

generation. This step also assumes the use of mesh cleaning

as seen in previous works. Our mesh generation consists of

following steps:

1. Initial mesh generation creates a separate triangle

mesh for every RGB-D camera depth map.

2. Erosion detects areas where two or more meshes

overlap (but do not delete triangles like in zippering).

3. Merging locates points where meshes are joined.

4. Final mesh generation extracts a single merged mesh.

The next sections discuss each of these points in detail.

5.1 Initial mesh generation

The first step of our meshing process is to generate a tri-

angle mesh for each depth map separately. In practice, we

join neighboring pixels in the depth map to form the tri-

angle mesh. The idea was proposed in Hilton et al. [24] and

has widespread uses. We follow Holz and Behnke [25] to

generate triangles adaptively.

Triangles can be formed inside a cell which is made out

of four neighboring depth map points (henceforth called

vertices). A cell at depth map coordinates ðx; yÞ consists of
vertices v00 at ðx; yÞ, v10 at ðxþ 1; yÞ, v01 at ðx; yþ 1Þ and
v11 at ðxþ 1; yþ 1Þ. Edges are formed between vertices as

follows: eu between v00 and v10, er between v10 and v11, eb
between v01 and v11, el between v00 and v01, ez between v10
and v01, and ex between v00 and v11. An edge is valid only if

both its vertices are valid and their distance is below a

constant value d. The maximum edge length restriction acts

as a simple mesh segmentation method, e.g., to ensure that

two objects at different depths are not connected by a

mesh.

Connected loops made out of edges form triangle faces.

A cell can have six different triangle formulations as

illustrated in Fig. 6. For example, the type 1 form is made

out of edges eu; ez; el. However, ambiguity can arise when

all possible cell edges are valid. In this situation, we select

either type 3 or type 6 depending on whether edge ex or ez
is shorter. Since the triangles for a single cell can be stored

in just one byte, this representation is highly compact.

5.2 Erosion

The initially generated meshes often cover the same

surface area twice or more due to the overlap of RGB-D

camera views. Mesh erosion detects redundant triangles

in those areas; more specifically, erosion labels all initial

meshes to visible and shadow mesh parts. This labeling

is based on the principle that overlapping areas should

only contain one mesh that is marked visible. The

remaining meshes are categorized as shadow meshes. In

the previous mesh zippering methods, redundant trian-

gles were simply deleted or clipped. In our method, we

keep those triangles in shadow meshes for later use in

the mesh merging step.

To segment a mesh into visible and shaded parts, we

start from the basic building block of a mesh: a vertex. All

vertices are categorized as visible or as a shadow by pro-

jecting them onto other meshes. Next, if an initial mesh

edge consists of at least one shadow vertex, the edge is

considered a shadow edge. Finally, if a triangle face has a

shadow edge, it is a shadow triangle.

Note that if we were to project each vertex onto every

other mesh, we would end up only with shadow meshes

and no visible meshes at overlap areas. Therefore, one

mesh should remain visible. For this purpose, we project

vertices only to meshes with lower indices. For example, a

vertex in mesh i will only be projected to mesh j if i[ j.

Fig. 6 Forming triangles adaptively between vertices. Each number

indicates the triangle formation type. Type 0, which represents an

empty cell, is not shown
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Algorithm 3 sums up the erosion algorithm. The Pro-

jectVertexToMeshSurface ðv; jÞ function projects a vertex v
to mesh j surface. This is possible because initial meshes

are stored as 2D arrays in camera image coordinates. As

such, the function simply projects the vertex to a corre-

sponding camera image plane. IsPointInsideTriangleðp; jÞ
checks whether coordinate p falls inside any triangle of

mesh j. Figure 7 shows an example of labeling a mesh into

visible and shaded parts. There are visible gaps between

the two meshes, but this issue will be rectified in the next

meshing stages.

5.3 Mesh merging

The task of mesh merging is to find transitions from one

mesh to another. For simplicity, consider that meshes A and

B were to merge. If mesh A has a shadow mesh that extends

over mesh B, we have transition from A to B. Such a sit-

uation can be seen on the left side of Fig. 8, where A would

be the red mesh and B the blue mesh. In terms of notation,

visible vertices are marked with V and shadow vertices are

marked with S, e.g., vAS denotes the A mesh’s shadow

vertex.

We begin merging by going through all shadow vertices

vAS . If we find a vertex that is joined by an edge to a visible

vertex vAV , then this edge covers a transition area between

two meshes. Such edges are depicted as dashed lines on the

left side of Fig. 8.

Having located the correct shadow vertices vAS , our next

task is to merge them with the vBV vertices so that the two

meshes are connected. The end result of this is illustrated

on the right side of Fig. 8. A more primitive approach of

locating the nearest vBV to vAS would not work well, since the

closest vertices vBV are not necessarily on the mesh

boundary. Instead, we trace an edge from vAV to vAS until we

hit the first B mesh triangle. The closest triangle vertex, vBV
to vAV , will be selected as a match. Since meshes are stored

as two-dimensional arrays, we can use a simple drawing

algorithm, such as a digital differential analyzer, to trace

from vAV to vAS .

After the mesh merging procedure, we found edges

connecting the two meshes. However, triangles have yet to

be generated. This is addressed in the next and final mesh

generation section.

5.4 Final mesh generation

The last part of our meshing method collects all data from

previous stages and outputs a single properly connected

mesh. Handling triangles made out of visible vertices is

simple, since they can simply be copied to output. How-

ever, transitions from one mesh to another require an extra

processing step.

For simplicity’s sake, we will once again examine two

meshes, A and B, using notation introduced in Sect. 5.3. All

the triangles in transition areas consist of one or two sha-

dow vertices vAS , with the rest being visible vertices vAV .

Triangles with just one shadow vertex can be copied to the

final mesh without modifications. Triangles with two sha-

dow vertices, however, are a special case. The problem lies

in connecting the two consecutive vAS vertices with an edge.

This situation is illustrated on the left side of Fig. 9.

Specifically, the red mesh A’s top shadow edge does not

coincide with mesh B’s edges. Therefore, we create a

polygon that traces through B’s mesh vertices vBV . To reit-

erate, the vertices of the polygon will be starting point vAV ,

the first shadow vertex vAS , mesh B’s vertices vBV , the second

shadow vertex vAS and the starting point vAV . This polygon is

broken up into triangles, as illustrated on the right side of

Fig. 9. Note that the polygon is not necessarily convex, but

in practice, nonconvex polygons tend to be rare and may be

ignored for performance gains if the application permits

small meshing errors.Fig. 7 Illustration of mesh erosion. Initially, two meshes (one red and

one blue) overlap. After erosion, the red mesh in the overlap area

becomes a shadow mesh, denoted by dashed lines

Fig. 8 Illustration of mesh merging. Shadow mesh points are

projected to other mesh (left) and then traced to the closest triangles

for merging (right)
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This concludes the stages of mesh generation. The

results can be used in rendering or for any other

application.

6 Implementation and results

Our system has been implemented on a platform with

GPUs running OpenGL 4.5. All experiments were carried

out on a consumer PC with an Intel Core i7-5930 K 3.5

GHz processor, 64 GB of RAM and an Nvidia GeForce

GTX 780 graphics card. We used OpenGL compute sha-

ders for executing code. As all of our point cloud and mesh

data are organized as two-dimensional arrays, we utilized

OpenGL textures for storage.

Table 1 gives an overview of the time spent on different

system processes. The measurements were taken with

OpenGL query timers to get precise GPU time info. The

experiment used two RGB-D cameras, both producing 640

� 480 resolution depth maps, resulting in up to 614k points

per frame. We ran the test with parameters given in

Table 2.

An overwhelming majority of processing time is spent on

surface reconstruction. This is due to fetching a large

number of points and normals from GPU memory. Never-

theless, as the data are retrieved in s� s square blocks from

textures, the GPU cache is well utilized. We also

implemented surface reconstruction on the CPU for com-

parison reasons. The execution has been parallelized across

6 processor cores using OpenMP. The average runtime was

1.6 s per frame on the test dataset. This means that using a

GPU gives us roughly 10� the performance benefit over a

CPU.

Our mesh generation method boasts better performance

than competing mesh zippering-based methods [38, 48].

We generate two initial meshes in Sect. 5.1 for the test

dataset and compare the process in Sects. 5.2–5.4 with two

previous methods. The Turk and Levoy [48] implementa-

tion takes 48 s, while the Marras et al. [38] implementation

takes over 9 minutes of execution time. These methods

were originally designed for off-line use on static scenes

and thus focused on mesh quality rather than execution

speed. These implementations are single-threaded CPU

processes and cannot be easily parallelized due to algo-

rithmic constraints outlined in Sect. 5.

Another major reason for the timing differences in

zippering [38, 48] is the speed of point lookups. Previous

methods are more general and can accept arbitrary meshes

as input; they use tree structures such as k-d tree for

indexing mesh vertices. Our method arranges meshes

similarly to RGB-D camera depth maps. This allows for

spatial point lookups by projecting a point to the camera

image plane. This is much faster than traversing a tree.

Figure 10 shows a comparison of meshes using different

MLS projection methods. The simple viewpoint projection

method produces very noisy meshes, and no grid-like

regularity is observed. Our viewpoint projection method,

however, can organize points to a grid-like structure,

making the result much higher quality.

Figure 11 shows comparisons with previous mesh zip-

pering research. Due to differences in the erosion process,

the merger areas of meshes may end up in radically dif-

ferent places depending on method used. Therefore, we

applied our erosion method to force mesh mergers to

appear in the same places for comparison. Turk and Levoy

[48] produce meshes with similar quality to ours. Marras

et al. [38] reference implementation tends to produce a

high number of triangles in merger areas regardless of

configuration parameters. An issue with this method is that

its intended use is to fill holes in a mesh using another

Fig. 9 Illustration of final mesh generation

Table 1 System performance

Process Avg. time (ms) Max. time (ms)

Normal estimation 4 6

Surface reconstruction 157 159

Mesh generation 2 2

Initial mesh 0.33 0.34

Erosion 0.41 0.42

Merging 0.18 0.19

Final mesh 0.77 0.79

Total 163 167

Table 2 System parameters and recommended values

Parameter Explanation

h ¼ 3 cm MLS spatial smoothing factor

s ¼ 9 MLS window size

imax ¼ 3 MLS maximum number of iterations

fnum ¼ 4 MLS number of camera frames used

d ¼ 3 cm Maximum allowed triangle edge length
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mesh. Our scene is open which does not satisfy this

requirement.

Figure 12 shows our method compared to two popular

3D reconstruction methods: volumetric TSDF-based

reconstruction [28] and Poisson reconstruction [29]. TSDF

method was not designed for dynamic scenes; for this

reason, we reconstruct the scene separately on each frame.

This results in a mesh that is not completely stable in time.

The Poisson method, however, can fill in missing areas of

the scene. This might be a good feature if the holes in the

model are small, but would cause problems in our case.

Large filled-in areas would be inaccurate and tend to

flicker.

While there are plenty of RGB-D camera datasets

available [18], almost none of them use multiple sensors

simultaneously in a dynamic scene. Thus, we used both a

dataset created by Kuster et al. [33] and our own recorded

data. Figure 12 shows them in use. Scene A, courtesy of

Kuster et al. [33], uses Asus Xtion cameras based on

structured light technology. Scene B, created by us, uses

Microsoft Kinect 2 cameras based on time-of-flight tech-

nology. While the type of noise and distortion differs

Fig. 10 A mesh merging example. Our viewpoint projection method (lower row) can produce much higher-quality meshes than simple

projection (upper row). The columns from left to right show the merging process stages for two meshes (red and blue)

Fig. 11 A comparison of mesh zippering methods at various

randomly chosen locations in a real scene. Turk and Levoy [48]

show comparable meshing quality to our method, but is CPU-based

method and has limited speed. Marras et al. [38] implementation

produces excessive amounts of triangles in merger regions
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between devices, the results show that our system is gen-

eral enough to achieve high-quality meshes in both cases.

7 Conclusion

In this paper, we proposed a real-time 3D reconstruction

method that can turn data from RGB-D cameras into

consistent triangle meshes. The system has two core ele-

ments: an MLS-based method to smooth depth camera data

and a mesh zippering-inspired mesh generation and

merging method for GPUs.

Based on the results, our viewpoint projection method

for MLS greatly assists in generating high-quality meshes.

We also show that our proposed multiple mesh merging

system can generate consistent meshes and is much faster

than state-of-the-art methods. The implemented system is

completely GPU-based and designed to scale linearly with

input data, making it a promising solution for future large-

scale real-time 3D reconstruction methods.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

Fig. 12 A comparison with popular 3D reconstruction methods using

marching cubes triangularization: a truncated surface distance func-

tion (TSDF)-based volumetric reconstruction [28] and Poisson

reconstruction [30]. a Our method produces higher-quality meshes

with better stability than marching cubes based triangularization.

b Poisson reconstruction tends to oversmooth when using fast

processing settings (reconstruction depth \8) and incorrectly gener-

ate surfaces in occluded areas. Scene A is courtesy of Kuster et al.

[33], whereas scene B is ours
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