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Huu-Phuc Nguyen, Jérôme De Miras∗, Ali Charara and Stéphane Bonnet
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ABSTRACT

This paper deals with a numerical approach to
control aggressive maneuvers of a multi-rotor
aerial vehicle. The proposed controller uses an
approximate tabulated one-step time discretiza-
tion of the state-space model to find out the out-
puts of controller. It objective is to minimize
the distance between the plant output and a lin-
ear well chosen closed loop system used as ref-
erence, leading the system to adopt its dynami-
cal behavior. The prediction horizon is only one
step time that ensures the execution time is com-
pletely bounded. The results from simulation for
quadrotor show the performance and robustness
of the proposed controller.

1 INTRODUCTION
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Figure 1: Quadrotor model

A quadrotor is a flying vehicle with four rotors. Figure 1
presents a scheme of the system in a 3D space. The rotor i
rotates at speed ωi and generates a lift force Fi and a drag
torque. The quadrotor is an under-actuated system with four
inputs and six degrees of freedom. The control problem for
the quadrotor is usually divided into two stages: the attitude
tracking control and the stabilization of the position. Usu-
ally, the position controller generates a desired attitude for
the attitude controller. To provide solutions, a lot of control
techniques were used: classic PID controllers, adaptive con-
trollers, predictive controllers, controllers based on the Lya-
punov criterion, etc.

Looking at the challenge of control of the quadrotor in
the case of aggressive maneuvers in the literature, the follow-
ing works contain many interesting points for studying and
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comparing. An open loop control was proposed in [1] us-
ing reachable sets where the complex aerobatic flights were
decomposed into sequences of discrete maneuvers. A trajec-
tory generation for multiple-flips has been proposed in the
work of [2] using a simple learning approach. A survey of
the methods for attitude control of a rigid body can be found
in [3]. The minimal time problem has been considered in the
work of [4]. In [5], a quadrotor with flip back behavior was
used; the trajectory generation was solved in order to apply
a state feedback controller based on a Lyapunov function. A
full quaternion based attitude control for quadrotor was intro-
duced in [6]. The authors in [7] designed a controller for flip
control on Lie group SE(3). A learning control used in [8]
allows the quadrotor doing aggressive maneuvers. The work
in [9] have applied an optimal control LQR.

In this context, this paper proposes an attitude control for
a quadrotor using a numerical approach. This controller uses
a tabulated numerical model to represent the dynamics of the
system as a prediction map over one sample time step. Based
on this prediction map, the inputs of the system will be cal-
culated upon the admissible input space as a solution of the
minimization problem of the difference between the desired
output and the predicted output. The rest of the paper will
be organized as follows: firstly, the next section deals with
the quadrotor dynamics model, then the scheme of the pro-
posed control will be introduced as its application for attitude
control of the quadrotor. Finally some results from MAT-
LAB/SIMULINK will be presented.

2 QUADROTOR MODEL

2.1 Mathematical model

In the following, vectors and matrices are denoted in bold
font. The quadrotor depicted on the Figure 1 is operated by
changing the speeds of its four rotors. Using the equation of
Newton-Euler, the system is given by the following equations
in the body frame Gxbybzb:





ẋ = v
v̇ = fR(q)e3 −mge3

q̇ = 1
2Ξ(q)Ω

JΩ̇ = (JΩ)× Ω + Γ

(1)

with q = [q0, q1, q2, q3]T a unit quaternion and

Ξ(q) =



−q1, q0,−q3, q2

−q2, q3, q0,−q1

−q3,−q2, q1, q0



T
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The variables and the parameters of the quadrotor are de-
scribed in the following table:

G Center of mass
x = [x, y, z]T Position of quadrotor
v = [Vx, Vy, Vz]

T Velocity of the quadrotor
m Mass of the quadrotor
J Inertia of the quadrotor
ωi i-rotor’s speed
ωmax Maximum speed of the rotors
Ω Angular velocity
g Gravity
R(q) Rotation matrix
e3 = [0, 0, 1]T Unit vector
kt Thrust coefficient
kc Drag torque coefficient
L Half-distance between F1F2

Table 1: Notations

The thrust force and the moments applied on the main body
are calculated with the speeds of the rotors as follows:



f
Γx
Γy
Γz


 =




kt kt kt kt
ktL ktL −ktL −ktL
−ktL ktL ktL −ktL
−kc kc −kc kc







ω2
1

ω2
2

ω2
3

ω2
4




(2)
The skew-matrix operation of a vector x = [x1, x2, x3]T rep-
resents an easy way to compute the cross product of two vec-
tors, x× y = [x]×y.

[x]× =




0 −x3 x2

x3 0 −x1

−x2 x1 0




The inverse operation is denoted as vee-operation such as if
[x]× = X then X∨ = x. Considering only the attitude of the
quadrotor and the vertical dynamic, the equation above can
be written as (3).





v̇z = fR(9)−mg
Ṙ = R[Ω]×

JΩ̇ = (JΩ)× Ω + Γ

(3)

where R(9) is the last item of the rotation matrix R and Γ =
[Γx,Γy,Γz]

T . The system becomes a full actuated system
with four inputs and four degrees of freedom.

2.2 Full quadrotor model
There are many toolkits and drag-drop environments to

model the dynamics a vehicle using the multibody dynam-
ics theory, for example SimMechanics from Mathworks,
MapleSim from MapleSoft. In this paper, we used a quadro-
tor Parrot-AR2 model built with MapleSim depicted on Fig-
ure 2. This model contains a main rigid body, four arms with
four brushless motors integrating four propellers to generate

the aerodynamics forces. This model also includes some vir-
tual sensors to obtain the quadrotor’s state: the position, the
velocity, the orientation and the angular velocity. This model
is exported to SIMULINK’s environment.

Figure 2: Quadrotor model in MapleSim

The parameters of the quadrotor are given in Table 2.

Parameters Value Unit
m 0.506 kg
Ix 2.38× 10−3 kg.m2

Iy 3.85× 10−3 kg.m2

Iz 5.9× 10−3 kg.m2

L 0.15 m
kt 2.3× 10−5

kc 2× 10−6

ωmax 350 rad.s−1

Table 2: Quadrotor parameters

3 PROPOSED CONTROL SCHEME

3.1 Online control algorithm

The time-invariant model of of the system has the follow-
ing form: {

ẋ (t) = f (x (t) ,u (t))
y (t) = h (x (t))

(4)

where x ∈ S ⊂ Rn is the system state vector, u ∈ U ⊂ Rd
its input control vector, and y ∈ Y ⊂ Rm its output vector.
The discretized form of the system is needed in order to con-
struct a discrete-time control law. Generally, it is difficult to
obtain an exact analytic expression for the discretization of
the system. However, the numerical integration of f gives its
approximate value for a given state and input vector as the
form: {

xk+1 = px (xk,uk)
yk+1 = py(xk,uk)

(5)
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using a sampling time ∆t such as tk = k · ∆t. Doing the
prediction evaluations (px, py) at each needed time by us-
ing a numerical integration of (4) would be computationally
expensive which is problematic in a real-time implementa-
tion. A better approach is to build off-line this prediction in
a map using a regular rectangular grid G constructed on the
joint state and input spaces S × U . For each point of G, the
equation of the system is solved over one sample time step
using a simulation tool such as Simulink or using an ordi-
nary differential equation solver such as Runge-Kutta. The
solution vectors are then stored in a table (the map). The val-
ues of px, py at unknown points can be interpolated from
that table by using interpolation technique. The barycentric
linear interpolation as described in [10] has been chosen for
instance. The linear interpolation leads to errors proportional
to the square of the grid size but it presents a low computing
effort needed to get the interpolated values.

The aim of the controller is to make the error ŷ = y− yc
between the plant output y and a given set point yc to be
driven to zero. Defining the state ˙̂xg of a homogeneous stable
linear system:

˙̂xg (t) = A · x̂g (t) , x̂g ∈ Rn,A ∈Mn×n. (6)

and x̂g = xg−xc with xg an internal state reference, the out-
put yg of the corresponding system will converge to the given
set point yc. The Hurwitz matrix A is selected according to
the known dynamics of the system to control. A discrete rep-
resentation of the internal reference xgk+1 at step k+ 1 can be
computed from (6) at step k as:

xgk+1 = eA·∆t (xk − xc) + xc. (7)

Consider now that one of the objective of the control is to
reduce as mush as possible the distance between xg and x
at each step time, as in a sliding mode, and xg converges
naturally to xc then we can say that y will converge to yc.

To construct the algorithm, a vector v =
[
xT ,yT

]T
is

used. The state vector x and the output vector y are then
extracted from v:

x = Px · v,y = Py · v

At step k + 1 this vector is

vk+1 =
[
px(xk,uk)T , py(xk,uk)T

]T
= p(xk,uk). (8)

The objective of the controller is to find at each time-step k
a control vector uk that will make the next-step plant output
yk+1 be as close of ygk+1 as possible:

uk = arg min
u∈U

∥∥ygk+1 −Py · p (xk,u)
∥∥

2
. (9)

Due to the interpolation error, the modeling error in (4)
and the unknown disturbance, there exists a prediction error

between the predicted plant state and the outputs at step k
obtained from data at step k−1 and their estimations obtained
from the measurements at step k. The error signal for the
output predictions is handled similarly and the error vector
for the combined vector vk is defined by:

εk = p (xk−1,uk−1)− vk.

The use of the prediction map to calculate the input value
needs compensate this error. The error dynamics is supposed
slow relative to the controller. But in the case of noisy condi-
tions, the error signal contains high frequency. Compensating
for high frequency errors can indeed lead to oscillations and
controller instability. To overcome this phenomena, a low-
pass filter is used to remove the high frequency. The error
signal for the state prediction used at step k can be written as:

εk = εk−1 + αεk (10)

with α a damping coefficient in (0, 1], forming a numerical
low-pass filter.

The complete algorithm for closed-loop system from [11]
is shown in Figure 3.

Trajectory

Search U PlantPrediction M

Observer/Sensors

Adaptation

yc yg

y

v̂

+

−

v− u

Figure 3: The closed - loop system

At step k + 1 the output yk is measured. Then the
block ”Observer/Sensors” is used to estimate state and
output vector and returns v̂k an estimation of vk. Af-
ter that the error εk and the prediction v−k of v is calcu-
lated by the block ”Adaptation” using (10) and the block
”Prediction M” using (8) respectively, allowing computa-
tion of the internal reference xgk+2 following Eq.(7) by the
block ”Trajectory”. Finally, the input vector is calculated
using the block ”Search U” that contains the algorithm to
find the approximate solution of (9). In a perfect world, the
control input uk is supposed to be readily computed and im-
mediately applied to the plant from the measurements at step
k without any delay of the state estimation. In a real time sys-
tem, some methods were proposed to compensate for a delay
between the output control and the measurement, for example
[12].

3.2 Optimization algorithm
As mentioned before, the expression for p is unknown

then the minimization problem (9) has to be solved using a

International Micro Air Vehicle Conference and Flight Competition (IMAV) 2017 25



derivative free optimization solver. In this subsection an itera-
tive algorithm will be used to approximate the solution of (9).
This algorithms starts by using the input interval U = [u,u]
that is used to build the prediction map.

Ui∈1,...,d =

{
uj |uj = ui + j

ui − ui
Ni

, j ∈ 0, . . . , Ni

}

The input space is divided using triangularization technique
that is based on the simplex and the affine-envelope of a set
of vector. These simplexes are also used at the interpolation
step to calculate the barycentric coordinates of a point that is
not belong to the rectangular grid G. In this algorithm, the
simplexes and the affine-envelope are defined as:

conv (X ) =

{
k∑

i=1

ωi · xi|xi ∈ X , ωi ∈ R+,
k∑

i=1

ωi = 1

}

aff (X ) =

{
k∑

i=1

ωi · xi|xi ∈ X , ωi ∈ R,
k∑

i=1

ωi = 1

}

The algorithm based upon the work presented in [11], [13]
is illustrated on Figure 4. The idea of this algorithm is to
find out a simplex σf in the inputs space containing the so-
lution of the problem (9) that minimizes the distance of the
corresponding simplex Γf in the output space to the reference
point yg . Firstly, one input simplex σ0 is chosen permitting
to calculate its output simplex Γ0. A quasi-gradient is then
built based on the projection of yg onto Γ0. The simplex σ0

is reflected about its edge satisfying the output simplex moves
toward the reference point yg while keeping its beside the in-
put space. This procedure is repeated until the final simplex
σf is found out. Finally, the control input is calculated as an
orthogonal projection of this point onto the solution simplex
σf . To compensate the error of the prediction map εk, the
output simplex Γ is calculated by Γ = Py.p(σ,u)− εk.

Input space

Output space

σ0

Γ0 Γf

σf

Figure 4: Optimal algorithm visualization

3.3 Implementation of the algorithm for the quadrotor
For the implementation of the algorithm, the prediction

map should be built from the equation dynamics of the sys-
tem. The reference equation is (3). The difficulty is that
the orientation represented by the unit quaternion contains
a constraint. The norm of the quaternion is equal to one
q2
1 + q2

2 + q2
3 + q2

4 = 1, so that, it is not possible to use di-
rectly q as four independent elements. In the other hand, the
use of the three Euler angles contains a singularity. Avoiding
these problems, a new variable will be introduced in order to
represent the orientation dynamics. Define now the rotation
error between two steps as

∆Rk+1 =
1

2

(
RT
k+1Rk −RT

kRk+1

)
(11)

Note that the rotation error matrix ∆Rk+1 can be verified
being a skew-matrix. So that, this matrix is represented by
using three independent variables ek+1

R = ∆R∨k+1. Then
from (3), the sub-dynamics of the quadrotor can be written in
a discrete time domain as (12).

[vk+1
z , ek+1

R ,Ωk+1]T = F (fk,Γk, v
k
z , e

k
R,Ωk,Rk(9))

(12)
Recall that the rotation matrix with the angular velocity Ωk
and the sampling time Ts is calculated by

Rk+1 = Rk exp (TsΩk) (13)

Thanks to the Rodrigues’ rotation formula, ∆Rk+1 has the
approximation form:

∆Rk+1 ≈ −Ts[Ωk]× (14)

That gives the rotation error approximated by

ek+1
R ≈ −TsΩk (15)

Combination of (15), (12) and (3) allows a method to build an
approximation map of the attitude dynamics of the quadrotor.
Once the prediction map is built, the control algorithm above
will be used for the stabilization of the attitude of the quadro-
tor.

4 SIMULATION RESULTS
In this section, we will introduce some simulation results

from MATLAB/SIMULINK. The quadrotor model used in
these simulations has been exported from MAPLESIM. The
sampling time Ts = 0.01swas chosen for the prediction map.
A 100 Hz frequency for the control of a quadrotor is rather a
low value. The internal reference linear state-space system
for each axis eR, Ω and vz has an equivalent canonical first-
order transfer function W (s) = τs

τs.s+1 with a time constant
of τs = 30−1 s, τs = 50−1 s and τs = 2−1 s respectively.
In the first simulation, the attitude trajectory is constructed
from three RPY angles (roll, pitch, yaw) ydi = 0.5 sin(t− i)
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Figure 5: RPY angles and its reference

Figure 6: Attitude tracking

with i = 1, 2, 3 for roll-pitch-yaw angle respectively. The re-
sponse angles from the quadrotor and its reference are shown
in Figure 5.

This figure shows that the quadrotor tracked well the
desired attitude. On the illustration shown in Figure 6, the
trajectory generated by the vector e3 = [0, 0, 1]T converges
to its reference.
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Figure 7: Roll angle and its reference

The second test is performed by doing a single flip about
the x-axis. The pitch and yaw angle are driven to zeros while
the roll angle was tracking a rotating trajectory. In this test,
the desired vertical velocity vz is controlled so as to keep the

position of the quadrotor at 2.5 m. Figure8 shows that the
vertical unit vector zb rotates well one perfect round about
x-axis. This significant is also justified in Figure 7.

Figure 8: Rotation about x-axis

Figure 9 shows the vertical position z, its reference and
the vertical velocity. The position z (dash-dotted curve) tends
to its reference 2.5 m. The descent while flipping explains
why the user usually accelerate the quadrotor before and dur-
ing doing flips.
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Figure 9: z-position, velocity and its reference

Figure 10 shows the rotors’ nominal speed ωi/ωmax. In
hover flight, the rotors’ speed are kept at a constant value.
To do a single flip, Figure 10 shows the left rotors’ speed
ω1 and ω2 are increased while the right rotors’ speed ω3 and
ω4 are decreased in order to generate a torque that twists the
quadrotor about x-axis. After the loop is perfectly done, the
controller has gotten the smallest speed for the rotors to sta-
bilize faster the roll angle. Finally, the vertical position is
compensated.

Figure 11 shows the nominal inputs T = f/(kt ∗ ω2
max),

G1 = Γx/(kt ∗ L ∗ ω2
max), G2 = Γy/(kt ∗ L ∗ ω2

max) et
G3 = Γz/(kc ∗ω2

max). The nominal thrust T also shows that
the acceleration was increased to accelerate the quadrotor in
order to perform the looping while the roll torque G1 rotates
the system about x-axis.

5 CONCLUSION

This paper presents a numerical tabulated approach to the
attitude control problem. The numerical behavior of the sys-
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Figure 10: Rotors’ nominal speed
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Figure 11: Looping: input

tem is a hybrid model that uses the incremental error between
two time steps, avoiding the singularity and ambiguity of the
attitude representation. This control could be combined with
a position control in order to track complex position trajec-
tory. The validation of the proposed controller on a embedded
system requires a good observer for the attitude. Moreover,
the prediction map could be improved online using learning-
based method.
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