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INTRODUCTION

The large amplitude non-linear vibratory behavior of a stratified circular plate with a piezoelectric patch is addressed in this study. The goal is to build an efficient model of a resonating MEMS (Micro Electro Mechanical System) bio-sensor whose purpose is to detect in real-time the presence of a given molecule (the so called target molecule) in a liquid medium.

The bio-sensor under study is constituted of a matrix of micromachined stratified circular membranes [START_REF] Ayela | Micromachined piezoelectric membranes with high nominal quality factors in newtonian liquid media: a lamb's model validation at the microscale[END_REF] (see Fig. 1). Each membrane can be individually actuated on its fundamental vibration mode by a piezoelectric thin patch. A biorecognition molecule, capable of immobilizing the target molecule, is glued on the top face of the membrane. When the membrane is in contact with a liquid medium that contains the target molecule, the latter is trapped, thus adding mass and lowering the fundamental resonance frequency. Detecting and measuring this frequency shift lead to estimate the concentration of the target molecule in the aqueous solution. At present, whereas the manufacturing of the biosensor is well overcomed, its fine dynamical behavior still needs to be modeled and simulated [START_REF] Ayela | Micromachined piezoelectric membranes with high nominal quality factors in newtonian liquid media: a lamb's model validation at the microscale[END_REF] in order to design such a biosensor.

Two main issues have to be modeled. First, the manufacturing processes of the membranes create prestresses, the intensity and sign of which differ from one layer to another. A consequence is that the shape of the membrane at rest is not plane and that buckling has to be taken into account (see Fig. 2, left). Secondly, non-linear large amplitude vibrations have been experimentally observed in normal use of the sensor, in the form of Duffing-like resonance curves (see Fig. 2, right). Similar phenomena are also encountered in beam piezoelectric MEMS resonators [START_REF] Li | Buckling and free oscillations of composite microresonators[END_REF].

The membrane is modeled as a stratified circular plate, clamped at its boundary, with one piezoelectric layer and the other composed of linear-elastic-homogeneous-isotropic materials. Von-Kármán-like equations with a kirchhoff-love kinematics across all layers [START_REF] Reddy | Mechanics of laminated composite plates[END_REF], are used. Those PDEs are expanded onto the normal mode basis of the plate without prestress. A set of second order differential equations, coupled by linear, quadratic and cubic terms, is obtained. The static solutions lead to predict the geometry of the buckled equilibrium position. Then, the modes of the membrane (frequencies and shapes) in post-buckling vibrations can be obtained. Finally, the dynamic non-linear behaviour of the system, in the vicinity of the fundamental mode of the prestressed membrane, is obtained with the framework of non-linear normal modes [START_REF] Thomas | Non-linear vibrations of free-edge thin spherical shells: modal interaction rules and 1:1:2 internal resonance[END_REF][START_REF] Touzé | Non-linear normal modes for damped geometrically non-linear systems: application to reduced-order modeling of harmonically forced structures[END_REF]. In this article, only the general problem formulation is exposed. More results will be proposed at the colloquium. A circular stratified plate with a circular piezoelectric (PZT) film at centre is considered (Fig. 1). The silicon (Si), silicon oxyde (SiO 2 ) and electrode (Ti/Pt) layers are constituted of isotropic homogeneous materials. The electrodes, plugged to an external voltage generator, create in the PZT layer an electric field in the transverse-z direction. This enables both to polarize the PZT layer (in the z direction) and to deform it in the radial-e r direction to drive the system in vibration. The PZT layer material is homogeneous and transversely-isotropic in the longitudinal plane of the plate. The classical laminated plate theory [START_REF] Reddy | Mechanics of laminated composite plates[END_REF] is used, with von-Kármán-like non-linear strain-displacement relationships. The electric field, directed in the transverse-z direction, is assumed uniform through the thickness of the plate. An axisymmetric geometry is considered and a polar (r, θ, z) coordinate system is used. The plate is composed of two parts: a centre circular region, for r ∈ [0, R 1 ] and an annular outer region for r ∈ [R 1 , R 2 ] (Fig. 1). The plate is clamped at its circular edge, for r = R 2 .

GOVERNING EQUATIONS

We consider here only axisymmetric deformations of the plate. The strains in a point of coordinates (r, θ, z) write ε = {ε r ε θ } t = ǫ + zκ, with ǫ = {ǫ r ǫ θ } t , κ = {κ r κ θ } t and

ǫ r = u r,r + 1/2w 2 ,r , ǫ θ = u r /r, κ r = -w ,rr , κ θ = -w ,r /r. (1) 
In the above equations, u r and w are respectively radial and transverse displacements and • ,r is the first derivative of • with respect to r. The constitutive relation for the linear piezoelectric material writes:

σ = Q (ǫ + zκ) -σ 0P 1, with σ 0P = σ 0 + e 31 h p V (t), (2) 
where σ = {σ r σ θ } t are the stresses, Q is the plate stiffness operator and 1 = {1 1} t . σ 0 represents the manufacturing prestresses, V (t) is the voltage applied between the two Ti/Pt electrodes, e 31 is the piezoelectric constant and h p is the PZT layer thickness. By integrating Eq. ( 2) over the thickness, the following constitutive relations are obtained, with respect to the membrane forces N = {N r N θ } t , the moments M = {M r M θ } t and the stiffness matrices A (extensional), B (bending-extensional) and D (bending) [START_REF] Reddy | Mechanics of laminated composite plates[END_REF]:

N = Aǫ + Bκ -N 0P 1, M = Bǫ + Dκ -M 0P 1, (3) 
where N 0P and M 0P are tensions and moments created by both the prestresses and the piezoelectric converse effect, stemming from the σ 0P term in Eq. [START_REF] Chia | Nonlinear analysis of plates[END_REF]. By inverting Eq. ( 3), one obtains [START_REF] Chia | Nonlinear analysis of plates[END_REF]: 4) in the equilibrium equations of the plate and using dimensionless variables leads to obtaining the following equations of motions, in term of transverse displacement w and Airy stress function F :

ǫ = A * N + B * κ + A + N 0P 1, M = -B * t N + D * κ -M0P 1, (4) 
L D (w) + εL B (F ) + ∆M 0P + ε∆(B + N 0P ) + m ẅ = εL(w, F ) + p, (5) 
L A (F ) -L B (w) + ∆(A + N 0P ) = -1/2L(w, w). (6) 
L A , L B and L D are differential operators that include the discontinuity of matrices A, B and D in r = R 1 . At any point out of this discontinuity, the operators write

L A (•) = A * 11 ∆∆•, L B (•) = B * 12 ∆∆• and L D (•) = D *
11 ∆∆• with ∆ the laplacian operator. L(•, •) is the classical bilinear operator found in von Kármán-like equations of motion [START_REF] Touzé | Asymmetric non-linear forced vibrations of free-edge circular plates, part 1: theory[END_REF]. m is the mass per unit surface of the plate, ẅ is the second derivative of w with respect to time and p is an external pressure. F is related to N by N r = F ,r /r and N θ = F ,rr .

The clamped boundary conditions impose that w and F be finite in r = 0 and that at the edge, in r = R 2 : w = 0, w ,r = 0, ǫ θ = 0 and ǫ r -(rǫ θ ) ,r = 0.

MODAL EXPANSION

The transverse unknown displacement w is expanded onto the eigenmodes (Φ s , ω s ) of the shortcircuited plate with zero prestresses (V (t) ≡ 0, σ 0 = 0). Those modes are solutions of the linear part of equations [START_REF] Thomas | Non-linear vibrations of free-edge thin spherical shells: modal interaction rules and 1:1:2 internal resonance[END_REF][START_REF] Touzé | Non-linear normal modes for damped geometrically non-linear systems: application to reduced-order modeling of harmonically forced structures[END_REF], with M 0P = N 0P = 0. With:

w(r, t) = +∞ s=1 Φ s (r) q s (t), (7) 
by expanding F onto ad-hoc functions and using the orthogonality properties of the (Φ s , ω s ), one can show that equations [START_REF] Thomas | Non-linear vibrations of free-edge thin spherical shells: modal interaction rules and 1:1:2 internal resonance[END_REF][START_REF] Touzé | Non-linear normal modes for damped geometrically non-linear systems: application to reduced-order modeling of harmonically forced structures[END_REF] are equivalent to the following set, verified by unknown modal coordinates q s (t), ∀s ∈ N * :

qs (t) + 2ξ s ω s qs (t) + ω 2 s q s (t) = k s 0 + k s P V (t) + +∞ q=1 α s 0q + α s P q V (t) q q (t) + +∞ p=1 +∞ q=1 β s pq q p (t) q q (t) + +∞ p=1 +∞ q=1 +∞ r=1 Γ s pqr q p (t) q q (t) q r (t) + Q s (t). (8) 
A modal damping term has been added in the above equations (ξ s is the damping factor of the s-th. mode). All coefficients appearing in the above equations (k s 0 , k s P , α s 0q , α s P q , β s pq , Γ s pqr and Q s ) are functions of the (Φ s , ω s ), with known analytical expressions, not reported here for a sake of brevity.

The initial partial differential equations [START_REF] Thomas | Non-linear vibrations of free-edge thin spherical shells: modal interaction rules and 1:1:2 internal resonance[END_REF][START_REF] Touzé | Non-linear normal modes for damped geometrically non-linear systems: application to reduced-order modeling of harmonically forced structures[END_REF] have been replaced by the equivalent discretized problem (8) of coupled non-linear ordinary differential equations. The coupling terms stem from different sources. Geometrical non-linearities create the cubic terms (Γ s pqr ), in the same manner as for a homogeneous plate [START_REF] Touzé | Asymmetric non-linear forced vibrations of free-edge circular plates, part 1: theory[END_REF]. The layered structure of the plate, if it is non-symmetrical in the transverse-z direction, adds quadratic non-linearities (β s pqr ). The voltage applied to the piezoelectric layer can be written as V (t) = V + Ṽ (t), with a constant part V , that creates the polarization, superimposed to an oscillating part Ṽ (t). Both V and the prestresses (N 0P , M 0P ) add a constant forcing (k s 0 , k s P V ) as well as linear terms (α s 0q , α s P q V ). The constant terms are responsible of the non-plane static position of the plate. The linear terms modifies the static position, can create buckling and shifts the natural frequencies ω s of the plate. The dynamic piezoelectric driving stemming from voltage Ṽ (t) creates a direct forcing (k s P Ṽ (t)) as well as a parametric excitation (α s P q Ṽ (t)) of the plate. Q s stems from the external pressure p. 

RESOLUTION

A solution to the problem defined by equations (7,8) is obtained by writing:

w(r, t) = ŵ(r) + w(r, t) = +∞ s=1 Φ s (r) [q s + qs (t)] , (9) 
where ŵ(r) is the static position of the plate and w(r, t) is related to its oscillations with respect to its position at rest ŵ(r). By substituting Eq. ( 9) in ( 8) with w = 0, a set of algebraic non-linear equations is obtained, whose solution (the qs ) gives the non-planar static behaviour of the membrane depicted on Fig. 2(left). Then, with w = 0, a set of equations similar to (8), that includes qs and qs , is obtained. After a proper diagonalisation of its linear part and by retaining enough modes Φ s in the calculation, the natural frequencies of the plate as a function of the prestresses are obtained. Finally, the resolution of the full non-linear set, in the particular case of a resonating piezoelectric excitation in the vicinity of the fundamental frequency of the plate, will be conducted with the formalism of the non-linear normal modes [START_REF] Touzé | Non-linear normal modes for damped geometrically non-linear systems: application to reduced-order modeling of harmonically forced structures[END_REF], in order to obtain the curves of 2(right). Modes (Φ s , ω s ) of the short-circuited plate with no prestresses, with the geometrical and material discontinuity in r = R 1 , have been calculated in a semi-analytical manner (with Bessel functions), by connecting two continuous annular plates in r = R 1 . The computations of all coefficients appearing in Eqs. (8) is under progress, as well as the estimation of ŵ and w. Those results will be presented at the colloquium, along with convergences studies that shows the accuracy of the solution with respect to the number of modes (Φ s , ω s ) retained in Eq. (9).
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 1 Figure 1. A 2 × 2 resonant membranes matrix biosensor. Cross section of a layered membrane.
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 2 Figure 2. Static non-planar geometry of a membrane and dynamic non-linear behaviour. Experimental results.