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Peter Binev, Albert Cohen, Olga Mula, James Nichols *
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Abstract

We consider the problem of optimal recovery of an unknown function v in a Hilbert space V'
from measurements of the form ¢;(u), j = 1,...,m, where the ¢; are known linear functionals
on V. We are motivated by the setting where u is a solution to a PDE with some unknown pa-
rameters, therefore lying on a certain manifold contained in V. Following the approach adopted
in [9, 3], the prior on the unknown function can be described in terms of its approximability by
finite-dimensional reduced model spaces (V,),,>1 where dim(V;,) = n. Examples of such spaces
include classical approximation spaces, e.g. finite elements or trigonometric polynomials, as well
as reduced basis spaces which are designed to match the solution manifold more closely. The
error bounds for optimal recovery under such priors are of the form wu(V,,, W,,)e,, where ¢,
is the accuracy of the reduced model V,, and u(V;,, W,,) is the inverse of an inf-sup constant
that describe the angle between V,, and the space W,, spanned by the Riesz representers of
(01, ...,4m). This paper addresses the problem of properly selecting the measurement func-
tionals, in order to control at best the stability constant wu(V,,, W), for a given reduced model
space V. Assuming that the ¢; can be picked from a given dictionary D we introduce and
analyze greedy algorithms that perform a sub-optimal selection in reasonable computational
time. We study the particular case of dictionaries that consist either of point value evaluations
or local averages, as idealized models for sensors in physical systems. Our theoretical analysis
and greedy algorithms may therefore be used in order to optimize the position of such sensors.

1 Introduction

1.1 State estimation from data in parametric PDEs

One typical recovery problem in a Hilbert space V is the following: we observe m measurements
of an unknown element v € V and would like to recover u up to some accuracy. Specifically, we

observe
Zi = E,(u), ’i:l,...,m, (1.1)

where the ¢; are independent continuous linear functionals over V. In this paper we consider a
Hilbert space V' and denote by || - || its norm and by (-,-) its inner-product. The knowledge of
z = (2i)i=1,...,m is equivalent to that of the orthogonal projection w = Py, u, where

Wy, = span{wi, ...,wn} (1.2)
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and w; € V are the Riesz representers of the linear functionals ¢;, that is
li(v) = (wi,v), veW (1.3)

Obviously, there are infinitely many v € V' such that Py, v = w and the only way to recover u up
to a guaranteed accuracy is to combine the measurements with some a-priori information on w.
One particularly relevant scenario is when u is a solution to some parameter-dependent PDE
of the general form
P(u,a) =0, (1.4)

where P is a differential operator, a is a parameter that describes some physical property and lives
in a given set A. We assume that there exists a unique solution u = u(a) for each a € A, but do
not know the particular solution of interest. For example, one could consider the diffusion equation

—div(aVu) = f, (1.5)

on a given domain D with fixed right-side f and homogeneous Dirichlet boundary condition. Then
with A a set of symmetric matrix valued functions such that

rl <a(x) <RI, x€ D,acA, (1.6)

for some 0 < r < R < 0o, the solution u(a) is well defined in V = H}(D).
Therefore, in such a scenario, our prior on u is that it belongs to the set

M :={u(a) : a€ A} (1.7)

which is sometimes called the solution manifold.

1.2 Reduced model based estimation

The above prior is generally not easily exploitable due to the fact that M does not have a simple
geometry. For example it is not a convex set, which prevents classical convex optimization tech-
niques when trying to recover u in such a set. On the other hand, the particular PDE structure
often allows one to derive interesting approximation properties of the solution manifold M by lin-
ear spaces V,, of moderate dimension n. Such spaces can for example be obtained through a scalar

parametrization of a(y) of a where y = (y1,...,yq), using polynomial approximations of the form
un(y) = > vy, v =[], (1.8)

where A, is a conveniently chosen set of multi-indices such that #(A,) = n. See in particular [4, 5]
where convergence estimates of the form

sup [lu(y) — un(y)|| < Cn?, (1.9)
yelU

are established for some s > 0 even when d = co. Thus, all solutions M are approximated in the
space V,, := span{v, : v € A,}. Another typical instance is provided by reduced bases. In such
approximations, one directly builds a family of n-dimensional spaces V,, := span{vy,...,v,} with
v; € M, in such a way that all solutions in M are uniformly well approximated in V,,. In particular



the approximation rate compares favorably with that achieved by the best n-dimensional spaces,
that is, the Kolmogorov n-width of M, see [2, 6].

The common feature of these reduced models is that they yield a hierarchy of spaces (V,)n>1
with dim(V;,) = n such that the solution manifold is uniformly well approximated in such spaces,
in the sense that

sup dist(u, V},) < ep, (1.10)
ueM

where ¢, is some known tolerance. Therefore, one natural option is to replace M by the simpler
prior class described by the cylinder

K={veV : dist(v,V,) <en}. (1.11)

for some given n. This point of view is adopted in [9] and further analyzed in [3] where the optimal
recovery solution u*(w) from the data w is characterized. This solution is defined as the center of
the ellipsoid

Ky={veK : Pyv=uw}, (1.12)

and equivalently given by
u*(w) := argmin{||v — Py, v| : Pw,,v=w}. (1.13)

It can be computed from the data w by solving a finite set of linear equations. The worst case
performance for this reconstruction is given by

max [[u = o (Puw)l| = (Vo W), (1.14)
ue

where for any pair of closed subspaces (X,Y) of V, we have set u(X,Y) := 8(X,Y) ™!, with 3(X,Y)

the inf-sup constant

B(X Y) := inf sup (x,y) _ ||Pyl‘||
’ zeX yey |zl [yl zex |z

e [0,1]. (1.15)

Note that finiteness in u(V,, W;,), equivalent to B(V,,,W,,) > 0, requires that m > n. It is
also shown in [3] that B(V,,, W,,) can be computed as the smallest singular value of the n x m
cross-Grammian matrix with entries (¢;,1;) between any pair of orthonormal bases (¢;)i=1,... » and
(1) j=1,....m of Vi, and Wp,, respectively.

1.3 Optimal measurement selection

For a given reduced model space V,, with accuracy &,, one natural objective is therefore that
w(Vy, Wy,) is maintained of moderate size, with a number of measurements m > n as small possible.
Note that taking W,,, = V,, would automatically give the minimal value p(V,,, Wy,) = 1 with m = n.
However, in a typical data acquisition scenario, the measurements that comprise the basis of W,
are chosen from within a limited class. This is the case for example when placing m pointwise
sensors at various locations within the physical domain D.

We model this restriction by asking that the ¢; are picked within a dictionary D of V', that is
a set of linear functionals normalized according to

Il =1, €D,



which is complete in the sense that ¢(v) = 0 for all £ € D implies that v = 0. With an abuse of
notation, we identify D with the subset of V' that consists of all Riesz representers w of the above
linear functionals ¢. With such an identification, D is set of functions normalized according to

|lwl|=1, weD,

such that the finite linear combinations of elements of D are dense in V. Our task is therefore to
pick {w1,...,wn} € D in such a way that

BV, Win) > 8% > 0, (1.16)

for some prescribed 0 < 8* < 1, with m larger than n but as small as possible. In particular, we
may introduce

m* =m*(8*,D,V,), (1.17)

the minimal value of m such that there exists {w1,...,wn} € D satisfying (1.16).
We start §2 with a discussion of the typical range of m* compared to n. We first show the
following two “extreme” results:

e For any V,, and D, there exists * > 0 such that m* = n, that is, the inf-sup condition
(1.16) holds with the minimal possible number of measurements. However this 5* could be
arbitrarily close to 0.

e For any prescribed 5* > 0 and any model space V,,, there are instances of dictionaries D such
that m* is arbitrarily large.

We then discuss particular cases of relevant dictionaries for the particular space V = HO1 (D), with
inner product and norms

(u,v) = /Vu(a:) -Vo(z)dz and ||ul := ||Vullrz, (1.18)
D

motivated by the aforementioned example of parametric elliptic PDEs. These dictionaries model
local sensors, either as point evaluations (which is only when D is univariate) or as local averages.
In such a case, we provide upper estimates of m* in the case of spaces V,, that satisfy some inverse
estimates, such as finite element or trigonometric polynomial spaces. The optimal value m* is
proved to be of the same order as n when the sensors are uniformly spaced.

This a-priori analysis is not possible for more general spaces V,, such as reduced basis spaces,
which are preferred to finite element spaces due to their advantageous approximation properties.
For such general spaces, we need a strategy to select the measurements. In practice, V is of finite
but very large dimension and D is of finite but very large cardinality

M :=#(D) > 1. (1.19)

For this reason, the exhaustive search of the set {wi,...,wn,} C D maximizing B(V,, W,,) for a
given m > 1 is out of reach. One natural alternative is to rely on greedy algorithms where the w;
are picked incrementally.



Our starting point to the design of such algorithms is the observation that (1.16) is equivalent

to having

om =0V, Wp):= sup |v—Pw v|<oc*, o :=+11-(82<1. (1.20)

vEVn,||v||=1

Therefore, our objective is to construct a space W,,, spanned by m elements from D that captures
all unit norm vectors of V,, with the prescribed accuracy ¢* < 1. This leads us to study and analyze
algorithms which may be thought as generalization to the well-studied orthogonal matching pursuit
algorithm (OMP), equivalent to the algorithms we study here when applied to the case n = 1 with
a unit norm vector ¢; that generates V;. Two algorithms are proposed and analyzed in §3 and §4,
respectively. In particular, we show that they always converge, ensuring that (1.16) holds for m
sufficiently large, and we also give conditions on D that allow us to a-priori estimate the minimal
value of m where this happens.

We close our paper in §5 with numerical experiments that illustrate the ability of our greedy
algorithms to pick good points. In particular, we return to the case of dictionaries of point eval-
uations or local averages, and show that the selection performed by the greedy algorithms is near
optimal in the sense that it achieves (1.16) after a number of iteration of the same order as that es-
tablished for m™* in the results of §2 when V,, is a trigonometric polynomial space. We also illustrate
the interest of the greedy selection of the measurement for the reduced basis spaces.

2 A-priori analysis of measurement selection strategies

2.1 Two extreme results

The following result shows that one can always achieve a positive inf-sup constant 5(V,,, W,,) using
a minimal number of measurement m = n, however there are no guarantees on the lower limit of
the inf-sup constant, other that it is greater than zero.

Theorem 2.1 Given a space V, of dimension n and any complete dictionary D, there exists a
selection {w1,...,wp} from D such that B(V,, W) > 0.

Proof: We define the w; inductively, together with certain functions ¢; that constitute a basis of
V. We first pick any element ¢; € V,, of unit norm. Since the dictionary is complete, there exists
w1 € D such that

(¢1,w1) # 0. (2.1)
Assuming that {¢1,...,¢x_1} and {w1,...,wr_1} have been constructed for k < n, we pick ¢ € V,,
of unit norm and orthogonal to Wy_; := span{wy,...,wk_1}. Then, we select wy € D such that

<q§k,wk> 7& 0. (2.2)
With such a selection procedure, we find that the cross-Grammian matrix ((ws, ¢;))i j=1,....n is lower-
triangular with non-zero diagonal entries. These both show that {w1,...,w,} and {¢1,..., ¢} are
bases, and that there is no non-trivial element of V,, that is orthogonal to W,,, which means that
B(Vyp, Wy) > 0. O

On the negative side, the following result shows that for a general space V;, and dictionary D,
there is no hope to control the value of 3(V,,, W,,) by below, even for arbitrarily large m (here we
assume that V' is infinite dimensional).



Theorem 2.2 Given any space Vy, of dimension n > 0, any € > 0 and any m > 0, there exists a
dictionary D such that for any selection {w1,...,wn} from D, one has B(Vy,, Wy,) < e.

Proof: It suffices to prove the result for n = 1 since enriching the space V,, has the effect of
lowering the inf-sup constant. We thus take V) = R¢ for some ¢ € V' of unit norm, and we take
for D an orthonormal basis of V. By appropriate rotation, we can always choose this basis so that
[{¢p,w)| < e for all w € D. O

2.2 Pointwise evaluations

In this section, we consider the particular dictionary that consists of all point evaluation functionals
S, for € D where D is some domain of R%. This means that the Hilbert space V should be a
reproducing kernel Hilbert space (RKHS) of functions defined on D, that is a Hilbert space that
continuously embeds in C(D). Examples of such spaces are the Sobolev spaces H*(D) for s > d /2,
possibly with additional boundary conditions.

As a simple example, motivated by parametric second order elliptic PDEs, for a bounded
univariate interval I we consider V' = HE(I) which is continuously embedded in C(I). Without
loss of generality we take I =|0, 1[. For every = €]0, 1[, the Riesz representer of d, is given by the
solution of w” = §, with zero boundary condition. Normalising this solution w it with respect to
the V-norm (1.18), we obtain

t(l—x) <
B 7\/@, fort <z
wolt) = ) N e (2:3)
Va(l—z)’

For any set of m distinct points 0 < z; < --- < z,,, < 1, the associated measurement space
W, = span{wy,,...,ws,, } coincides with the space of piecewise affine polynomials with nodes at
Z1,...,Tm that vanish at the boundary. Denoting z¢ := 0 and z,,4+1 := 1, we have

W = {w € C%([0,1)), Wl [zppi1] € P1, 0 <k <m, and w(0) = w(1) = 0}. (2.4)

As an example for the space V;,, let us consider the span of the Fourier basis (here orthonormalized
inV),

2
O = \[k sin(knz), 1<k<n. (2.5)
T
With such choices, we can establish a lower bound (1.16) on S(V,, Wy,) with a number of

measurements m* that scales linearly with n, when using equally spaced measurements, as shown
by the following result.

Theorem 2.3 For any 0 < 8" < 1, and any n > 0, taking point evaluations at x; = #H for
i=1,...,m, we have B(V,, Wy,) > B* as soon as m > % — 1, where 0* = \/1 — (*)2. Therefore,
m* (B85, D,V,) < [3 - 1} < (2.6)
o o
Proof: We introduce the interpolation operator Zy,, : V — W,,, so that the projection error in
the V norm is bounded by

1
lo = Pw,oll < llv = Zw,, vl < —hfjo"] 22, (2.7)

6



with h := maxo<g<m |Tr+1 —2k|. The constant % in the second inequality is optimal for the interpo-
lation error and can be derived from the Poincaré inequality ||g'[| 2 LTk | g

!
(Y
for ¢’. On the other hand, one has the inverse estimate

[k, 2k t1]) =

V"l 20,17y < 7nllv[| 2(0,1), 0 € Va, (2.8)

and therefore
lv — Pw, vl < hnlv|, veEV,. (2.9)

When using equally spaced measurements, we have h = (m + 1)~! and therefore
lo = P, ol < ——— o] (2.10)
v — v —||v|] .
W= 1
To satisty sup,cy, jjoj=1 [V — Pw,,v[| < 0%, we need

n
>——1 2.11
mz 2 (2.11)

equispaced points. O

Bearing in mind that 5(V,,, W,,) = 0 for m < n, it is fair to say that the estimate (2.11) gives
a relatively sharp estimation of the minimal m which is required.

2.3 Local averages

We return to the situation where D is a general domain in R?. Since real world pointwise sensors
have a non-zero point spread, it is natural to model them by linear functionals that are local
averages rather than point evaluations, that is

lyr(u) = /u(y)%(y — x)dy, (2.12)

D

where

pr(y) == T—%(%), (2.13)
for some fixed radial function ¢ compactly supported in the unit ball B = {|z| < 1} of R? and
such that [ =1, and 7 > 0 representing the point spread. Here, we assume in addition that ¢
belongs to HS(B). Taking the measurement point x at a distance at least 7 from the boundary of
D, we are ensured that the support of ¢ (- — x) is fully contained in D.

Note that in several space dimension d > 1, the point evaluation functionals are not continuous
on H&(D), however the above local averages are. We may therefore use these functionals in the
case where V = H&(D), in arbitrary multivariate dimension. The corresponding Riesz representers
wzr € V are the solutions to

_Aw:r,T =9x7y, Yz, = SDT(' - 33)’ (214)

with homogeneous Dirichlet boundary conditions.



For simplicity we work in dimension d < 3. We consider measurement points 1, ..., x,, that
are uniformly spaced, in the sense that they are at the vertices of a quasi-uniform mesh 7}, for the
domain D with meshsize h > 0. Therefore

m ~ h~4, (2.15)

We are interested in the approximation properties of the corresponding space W,,,. We cannot hope
for an estimate similar to (2.7) since these approximation properties should also depend on 7 > 0
This is reflected by the following direct estimate.

Lemma 2.4 One has the estimate for the projection error in the V-norm
h2
lo = Pw,oll < (7 + =) ollge, v e HX D)V, (2.16)
T
where C is independent of (h,T).

Proof: We shall establish the following estimate in H~1(D)

min_fw—3" ciga sy < 0(7 + 7) w2, we LA(D). (2.17)
T

Cly...,cm ER™ :
i=1

Then, (2.16) immediately follows by application of (2.17) to w = Awv.

In order to prove (2.17), we first introduce the nodal P; finite element basis ; associated to
the mesh points z;. So, under some reasonable geometric assumptions on D (piecewise smoothness
of its boundary), we have the interpolation error estimate

lo =Y v(@)ylle < CR?|ollgz, v € HX(D). (2.18)
1=1

Here we have used the fact that d < 3 in order to be able to apply point evaluation of the elements
of H%(D). We introduce the dual space

G~*(D) := H*(DY, (2.19)
which differs from H~2(D), and obtain by a duality argument that
m
||w — ZciémiHGa < Chq||wlp2, ¢ = /wz/;i, w € L2 (2.20)
i=1 n
In order to derive (2.17), we note that g, » = 0z, * -, from which it follows that for any w € L?(D),

m
Hw - Z CiGx;,

=1

m

1 < llw—wxorllg + lor* (W= cide) |- (2.21)
i=1

Here, the convolution of w is meant in the sense

(w % o)) = / w(y)pr(z — y)dy = / B(y)or (@ — y)dy, (2.22)

D Rd



where w is the extension of w by 0 outside of D.
For the first term on the right side of (2.21), we write

Jw —w* prllg-1 = maxy =1 [(w—w* @)Y
D
= max|y|=1 [ w(t — ¢ *pr)
D
< lwll g2 max =1 || — ¥ * @z 2

We now remark that the extension 1 — 1 by 0 outside of D is continuous from V to H L(RY).
Thus, for ¢ € V, we may write

I = * orllr2py < 4 — 4 = erll2ray < CTWHHl(Rd) < Crllyl, (2.23)

up to a change in the constant C'in the last inequality, and where the second inequality is a standard
estimate for regularization by convolution. It follows that

lw = w* @rllg-1 < C7llwl| 2. (2.24)
For the second term on the right side of (2.21), we write
o7 * (w— D210 cile)|g-1 = maxy =1 [(or xw — 370 cipr(- — x4))9
D

= Maxjy|=1 (g w(epr x ) = 322, ciler * ¢)(33i)>

< max|y| =1 [|w — 37 cide,llg-2ller * Yl e
< Ch?||w|| 2 maxy =1 o7 * ¥ g2,

where we have used (2.20). Using again the extension ¥ of ¥ by 0 outside of D, we write

lor * ¥ll2p) = lor * Pllaz@ey < el @al9lla @y < CT7 19l grgey < I, (2.25)

where the first inequality is straightforward by Fourier transform, and the second inequality follows
from the definition of ¢, by scaling. It follows that

T - 0, ‘ <C— . 2.26
o % (w > et -, < O Il (2:26)
By summation of (2.24) and (2.26), we reach (2.17). O

Remark 2.5 The estimate (2.16) deteriorates for too small or too large . The choice T ~ h gives
the optimal approzimation order O(h).

We may use the above approximation result to estimate the number of local average measure-
ments needed to control the inf-sup constant §(V,,, Wy,), provided that V,, satisfies some inverse
estimate. As an example, consider the case where D = [0,1]¢ and the space V}, is the span of the
Fourier basis

o =sin(rk - x), k= (k1,...,kq), 1<k <K, (2.27)



so that n = dim(V,,) = K% Combining the direct estimate (2.16), with an inverse estimate, we
obtain

h2
o — Py v < c<7 + —)né [vll, v € V. (2.28)
T
Using m = J? equally spaced measurements at points on the tensorized grid
1
——(j1,---,7 1<4;, < J 2.29
J—|—1(]1, a]d)v >0, ( )
we find that h ~ m~'/¢ and therefore
—2/d

v — Pw, v|| < c(r + )néuvu, v e V. (2.30)

This shows that 5(V,,, Wy,) > * can be achieved provided that

m—2/d

c(r+ = )n

=

<o, (2.31)

where o* = /1 — (8*)2.

In this analysis, the number m of required measurement deteriorates for large or small values
of 7, due to the deterioration of the approximation estimate already noted in Remark 2.5. This
fact will be confirmed in the numerical experiments given in §5.2. In the case where 7 is of the
optimal order of 7 ~ h ~ m~'/4  the above condition becomes C’(n/m)é < ¢*, which shows that
B(Vyp, Wi) > 5% can be achieved with a number of measurement m* that scales linearly with n,
similar to univariate pointwise evaluation described by Theorem 2.3.

3 A collective OMP algorithm

3.1 Description of the algorithm

Note that
om = (I = Pw,) v, leevi, vy

that is, oy, is the spectral norm of I — Py, restricted to V.

When n = 1, there is only one unit vector ¢; € Vi up to a sign change. A commonly used
strategy for approximating ¢; by a small combination of elements from D is to apply a greedy
algorithm, the most prominent one being the orthogonal matching pursuit (OMP): we iteratively
select

W = argmax ‘<w) ¢l - PWk,1¢1>’7 (31)
weD
where Wy_1 := span{wi,...,wx_1} and Wy := {0}. In practice, one often relaxes the above

maximization, by taking wy such that
|<Wk, le - PW]{,1¢1>| Z KI{}}S’Z})( |<wa ¢1 - PWk,1¢1>|) (32)

for some fixed 0 < k < 1, for example k = % This is known as the weak OMP algorithm, but we
refer to it as OMP, as well. It has been studied in [1, 7], see also [10] for a complete survey on
greedy approximation.

10



For a general value of n, one natural strategy is to define our greedy algorithm as follows: we
iterately select

wp = argmax max |(w,v — Py,_,v)| = argmax || Py, (w — Pw,_,w)]|. (3.3)
weD VeV, |v[=1 weD

Note that in the case n = 1, we obtain the original OMP algorithm applied to ¢;.

As to the implementation of this algorithm, we take (¢1,...,¢,) to be any orthonormal basis
of V,,. Then
HPVn(w - Pkalw)||2 = Z ’<w - Pkalwv ¢Z>‘2 = Z ‘<¢Z - Pkal(z)iawHQ
i=1 i=1

Therefore, at every step k, we have
n
Wi = argmaxz |{d; — PWk_l@-,w)]Q,
w€eD i—1

which amounts to a stepwise optimization of a similar nature as in the standard OMP. Note that,
while the basis (¢1,...,¢y) is used for the implementation, the actual definition of the greedy
selection algorithm is independent of the choice of this basis in view of (3.3). It only involves V,,
and the dictionary D. Similar to OMP, we may weaken the algorithm by taking wy such that

> Ui — Pw_,dirwi)” > K2 gléi%iz [{bi — Pow,_, 0 w) |,
i=1 i=1

for some fixed 0 < xk < 1.
For such a basis, we introduce the residual quantity

n
rm =Y |6 = Pw,, il
=1

This quantity allows us to control the validity of (1.16) since we have

n
Om = sup |lv—Py,v|]|= sup H ZQ‘(@ — Pw, i) ’ <rl/?
vEVn,[lv]|=1 Yiied=1"0
and therefore (1.16) holds provided that r,, < 02 =1 —~2.
Remark 3.1 The quantity r},{Z is the Hilbert-Schmidt norm of the operator I — Py, restricted
1/2

to V. The inequality o, < T~ simply expresses the fact that the Hilbert-Schmidt norm controls
the spectral norm. On the other hand, in dimension n, the Hilbert-Schmidt norm can be up to
n'/2 times the spectral norm. This lack of sharpness is one principle limitation in our convergence

analysis which uses the fact that we can estimate the decay of v, but not directly that of o, .

11



3.2 Convergence analysis

By analogy to the analysis of OMP provided in [7], we introduce for any ¥ = (¢1,...,¢,) € V"
the quantity

L 1/2
H\Ilel(D) = él;}lf;{ Z(Z‘Cwﬂ’2> : ¢7, = ch,iwa 7 = 1"._’n},
" weD i=1 weD
or equivalently, denoting ¢, := {cu i},
19l oy i=inf { 3 llewlls = ¥ =3 ),
w€eD w€eD

This quantity is a norm on the subspace of V" on which it is finite.
Given that ® = (¢1,...,¢y) is any orthonormal basis of V;,, we write

J(Vn) = [|@]|o1(p).-

This quantity is indeed independent on the orthonormal basis ®: if o = (<Z~>1, e (j;n) is another
orthonormal basis, we have ® = U® where U is unitary. Therefore any representation ® =
> wep Cww induces the representation

@:5 Cow, €y =Uc,,

weD
with the equality
Dol =" llewlla,
weD weD

so that [|®][¢1p) = | @[l (p)-
One important observation is that if ® = (¢1,...,¢,) is an orthonormal basis of V,, and if
® =3 cpCww, one has

n n
n=3 lloill <3 lewil = D llewll < Y n'2leul2.
i=1

i=1 weD w€eD w€eD

Therefore, we always have
J(Vy,) > nl/2.

Using the quantity J(V},), we can generalize the result of [7] on the OMP algorithm in the following
way.

Theorem 3.2 Assuming that J(V,,) < oo, the collective OMP algorithm satisfies

J(Va)?
K2

T < (m + 1)_1, m > 0. (3.4)
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Proof: For m = 0, we have
ro=_llgill* = n < J (Vo)™
i=1

We then write

n n
'm = Tm—-1 — Z H(PWm - PWmfl)(ﬁin < Tm-1— Z ’<¢z - PWm,1¢iywm>‘2-
i=1 =1

On the other hand, if & =)

wep Cww, We have

n n
"'m—1= Z ’<¢z - PWm,1¢i>¢z Z Z |Cw Z| ‘ PWm71¢i7w>"
=1 €D =1

which by Cauchy-Schwarz inequality implies

rm1<§jucwu2(§jr P 100@) < (S 6= Py soowmP) S Nl

weD i=1 weD
and therefore
- 2 S KT

; (&i — P,y @i wm)|” = J(Vy,)?

This implies that
2
Tm < Tm—1 (1 - Wﬁn—l)y

from which (3.4) follows by the same elementary induction argument as used in [7]. O

Remark 3.3 Note that the right side of (3.4), is always larger than n(m+1)~1, which is consistent
with the fact that 5(V,, Wy,) =0 if m < n.

One natural strategy for selecting the measurement space W, is therefore to apply the above
described greedy algorithm, until the first value m = m(n) is met such that 5(V,, Wy,) > ~.
According to (3.4), this value satisfies

m(n) <

For a general dictionary D and space V,, we have no control on the quantity J(V;,) which could
even be infinite, and therefore the above result does not guarantee that the above selection strategy
eventually meets the target bound 3(V,,W,,) > ~. In order to treat this case, we establish a
perturbation result similar to that obtained in [1] for the standard OMP algorithm.

(3.5)

Theorem 3.4 Let ® = (¢1,...,¢yn) be an orthonormal basis of Vy, and ¥ = (¢1,...,¢%,) € V™ be
arbitrary. Then the application of the collective OMP algorithm on the space V,, gives

107 o _
m§4—?}%m+nl+m—@ﬁ m> 1. (3.6)

where [|® — ¥ == [|® — WL = 320y 6i — vill®.
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Proof: We introduce
b =T — [|® — W[,

so that, by the same argument as in the proof of Theorem 3.2, we have

tin < tin—1 — Z ‘<¢z - PWm71¢i7wm>|2- (37)
i=1
Next, we write
rmo1 = (& = Pw,,_y6i,00) + Y (b — P, b b1 — i)
i=1 i=1

By the same argument as in the proof of Theorem 3.2, the first term is bounded by

S 6s — P 100 < w7 (31400 P b)) 1o
=1

=1

By Cauchy-Schwarz and Young inequalities, the second term is bounded by

" 1
D (61 = Py iy 61— i) < 12 [ @ = WI| < 5 (s + @ = WP,

=1

It follows that

s 1/2
-1 < 267 (3 (61 = P,y divwom)) W00 ),
=1
which combined with (3.7) gives

2

K
tm <t _1<1—7t _1),
N 7

We may apply the same induction argument as for r,, in the proof of Theorem 3.2 to conclude that

BRI

K2

(m+1)"1 (3.8)

4| w2
which is the announced result. This argument requires that for the first step we have tg < —g@

. 4w . S .
However, if tg > ’f;(D), then the above recursion shows that t; < 0 which implies the result for

all values of m > 1 by monotonicity of m + t,,. O

As an immediate consequence of the above result, we obtain that the collective OMP converges
for any space V,,, even when J(V},) is not finite.

Corollary 3.5 For any n dimenstonal space V,,, the application of the collective OMP algorithm
on the space V,, gives that limy, oo rm = 0.

14



Proof: By completeness of D, for any §, there exists a finite subset F C D and vector coefficients
¢, such that
12— | < (6/2)'% V=) cuw.

weF
One obviously has || ¥y (py < oo, and therefore one has
”\Ij”?l(p) 5

for m > m(9) sufficiently large. It follows that r,, < ¢ for m > m(d). O
The above corollary shows that if v > 0, one has 3(V,,, W,,,) > « for m large enough.

Remark 3.6 One alternative strategy to select the measurements could be to apply the OMP al-

gorithm separately on each basis element ¢;. This leads for each j € {1,...,n} to the selection of
Wijs -y Wm;j €D and to a space
W i=span{wi; : k=1,...,mj, j=1,...m}, mi+---+mj=m.

The following argument shows that, even when optimizing the choice of the number of iterations
m; used for each basis element, this strategy leads to convergence bounds that are not as good as
those achieved by the collective OMP algorithm. Since the residual satisfies

Tm—ZH@ PWm¢JH2<Z“ (mj +1) 1H¢J||£1

we optimize by choosing mj = |m||;llpp)(>5=y ||¢j||el(p))_1J. This leads to the convergence
bound

n
rm < 572m Y ol p)
j=1

This bound is not as good as (3.4), since we have

Slissllom =it { 3 lleul D cw =0} < 1@ = J(Va). (3.9)
j=1

weD weD

Remark 3.7 In the case n = 1, a well-known variant to the OMP algorithm, also discussed in [1],
1s the so-called relaxed greedy algorithm. This variant avoids the computation of the projection
onto Wy.: the approzimation of ¢1 is updated by

A1 = o Ap—101 + Br(d1 — Ap—101, W)Wk, (3.10)

where wy, is selected by mazximizing |(¢p1 — Ak_1¢1,w)| over w € D and (o, ) are appropriate
weights. This strategy is generalized in [8] to the collective setting (with oy, = 1 — (k+ 1)~ and By
minimizing the norm of the residual), and is proved to achieve similar convergence properties as
the collective OMP algorithm.
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4 A worst case OMP algorithm

4.1 Description of the algorithm

In this algorithm, we first take
Vg 1= argmax{”v — Py, vl s veVy, ||lv||= 1}, (4.1)

the vector in the unit ball of V,, that is less well captured by Wj_; and then define wy, by applying
one step of OMP to this vector, that is

|(vk, — Pw,_, Vg, wie)| > /ﬂnax{\(vk — Py, ,up,w)| : we ’D}, (4.2)

for some fixed 0 < k < 1.

In our numerical experiments, this algorithm performs better than the collective OMP algo-
rithm, however its analysis is more delicate. In particular we do not obtain convergence bounds
that are as good.

Remark 4.1 A wvariant to this algorithm was priorily suggested in [9] in the particular case where
the dictionary consists of the wy . in (2.14) associated to the local average functionals in (2.12)
with @ a Gaussian of fived width (see algorithm 2, called SGreedy, therein). In this variant, the
selection is done by searching for the point xj, where vy — Py, _ vg| takes its mazimum, and taking
Wi = Wy, - There is no evidence provided that this selection process has convergence properties
similar to those that we prove next for the selection by (4.2).

4.2 Convergence analysis

The first result gives a convergence rate of r,, under the assumption that J(V,,) < oo, similar to
Theorem 3.2, however with a multiplicative constant that is inflated by n?.

Theorem 4.2 Assuming that J(V,,) < 0o, the worst case OMP algorithm satisfies

n2J(V,)?

T < S —(m+ 17 m>o0. (4.3)

K

Proof: As in the proof of Theorem 3.2, we use the inequality

n

Tm < Tm—1 — Z ‘<¢z - PWm—1¢iawm>|27

=1

and try to bound Y., [(¢; — Pw,, ,¢i,wm)|? from below. For this purpose, we write

n
Tm—1 = Z 5 — PWm—1¢j”2 < nfloy — PWm—lvaz = (v — Pw,,_,Um; Um) (4.4)
j=1
We have v,,, = >, a;¢; for a vector a = (a1, ..., a,) such that |jallz = 1. Thus, if & =3 5 cow

we may write

Uy = Z dyw, dy = {cy,a)s.
w€eD
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and therefore
Tm—1 <N Z |dw! [(vm — Pw,,_1 Vm, w))|

w€eD
< n|<'Um - PWmfl'Umame Z ’dw|
weD
< nf{vm — Pw,,_, Vm, wm)| Z l[cwll2-
w€eD

Next we find by Cauchy-Schwartz that

n

n 1/2
[(Om = Pov s vmswm)] = | Y 45005 = P, dswmd] < (32 165 = Pwdgrwom) )

Jj=1 J=1

We have thus obtained the lower bound

2

n 2
2 K Tm—1
;|<¢1_PWm1¢lawm>| Z n2J(Vn PR

from which we conclude in a similar way as in Theorem 3.2. O

For the general case, we establish a perturbation result similar to Theorem 3.4, with again a
multiplicative constant that depends on the dimension of V,.

Theorem 4.3 Let & = (¢1,...,¢n) be an orthonormal basis of Vi, and ¥ = (¢1,...,1¢,) € V™ be
arbitrary. Then the application of the worst case OMP algorithm on the space V,, gives

n?[| |7
&(m+1)*1+n2||®—\11\\2, m > 1. (4.5)

T'm >
K2

where [|® — U == [|® — W||L. = 350, 6 — vill®.

Proof: We introduce
tm = rm — n2|® — T2,

for which we have

tm <tm—1— Z ‘<¢z - PWm—1¢i7wm>‘2~ (46)
=1

We next write, as in the proof of Theorem 4.2,

n n n
vm = a;b; = Y ajy+ Y aj(d; — i),
i=1 i=1 i=1
for a vector a = (a1,...,an) such that ||alls = 1. If U = %"/ c,w, using (4.4), we now reach

n
Tm-1 < n[{Vm — P,y Um, W) | Z l[cwll2 + nZaijm = P, Um, & — ¥j5)].
weD j=1
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By Cauchy-Schwartz and Young inequality, the second term is bounded by %rm_l + %n2||<1> — 0|2
By subtracting, we thus obtain

tm—l S 2n’<vm - PWmil'Um,me Z HCWH2'
weD

Proceeding in a similar way as in the proof of Theorem 4.2, we obtain the lower bound

S (61 = Pivy s drncom )2 > o imt
— sz Wm_1 wwm - 4n2J(Vn)2)

and we conclude in the same way as in the proof of Theorem 3.4. O

By the exact same argument as in the proof of Corollary 3.5 we find that that the worst case
OMP converges for any space V,,, even when J(V},) is not finite.

Corollary 4.4 For any n dimensional space V,,, the application of the worst case OMP algorithm
on the space Vy, gives that limy, o 7 = 0.

4.3 Application to point evaluation

Let us now estimate m(n) if we choose the points with the greedy algorithms that we have intro-
duced. This boils down to estimate for J(V;,). In this simple case,

J(Vy) = H(I)H@(D):inf{ / llezllode @ @ = / cxwzdx}

z€0,1] x€[0,1]

and we can derive ¢, for every z € [0, 1] by differentiating twice the components of ® since

" (z) = / ey () dy = — / ¢,0, () da = —cs.

y€[0,1] y€[0,1]

Thus, using the basis functions ¢j, defined by (2.5), we have

n 1/2 n 1/2
J(Vy) = / (Z\¢Z(m)2]> do = / (szsin(km)ﬁ) de ~ 0¥/,
k=1

zef0,1] = zelo,]] V=1

Estimate (3.5) for the convergence of the collective OMP approach yields

n3

m(n) 2 .

while for the worst case OMP, estimate (4.3) gives

n®

m(n) 2 ——.
( ) ~Y K/20'2

As already anticipated, these bounds deviate from the optimal estimation (2.11) due to the use of
the Hilbert-Schmidt norm in the analysis. The numerical results in the next section reveal that

greedy algorithms actually behave much better in this case.
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5 Numerical tests

All numerical tests were performed in Python using the standard NumPy and SciPy packages.

5.1 Pointwise evaluation

In this test we consider the setting as outlined in §2.2. That is, we have V = H}(I), where the
interval I =]0, 1], the approximation space is the Fourier basis, V,, = span{¢y : k € 1,...,n} where
or(t) = g sin(knt), and we pick the measurement functionals that define the space W, from a
dictionary of pointwise evaluations in |0, 1[. The dictionary D is thus composed of elements w,, the
normalized Riesz representers of function evaluation at the point x, given explicitly in (2.3).

The selection of the evaluation points performed both using the collective OMP and worst-case
OMP algorithms. The inner product between w, and ¢ can be computed using an explicit formula,
hence there is no discretization or approximation in this aspect of our implementation. In both
algorithms we require a search of the dictionary D to find the element that maximizes either (3.2)
or (4.2). Evidently we require D to be of finite size to perform this search, so we use

D={w,:axel/M,... (M-1)/M}

where we take M to be some large number. In practice we found that M = 10* offered similar
results to any larger number, so we kept this value.

We compare the inf-sup constant 5(V,,, W,,,) for the evaluation points picked by these two OMP
algorithms with those obtained when these points are picked at random with uniform law on ]0, 1.
In all cases, the selected points are nested as we increase m > n, that is, W, C Wj,11, so that 3
is monotone increasing. We also compare with the value of 3(V,,, W,,) obtained for equally spaced
points, which in view of Theorem 2.3 are expected to be a near optimal choice, but are not nested.

B(Vp, Wp,) against m for n = 20 B(Vp, Wp,) against m for n = 40

0.8

E g
= =
S S
«Q Q.
04 0.4
02 —— Uniformly spaced Wi, (optimal) 02 ‘ —— Uniformly spaced Wi, (optimal)
—— Worst-case OMP W, —— Worst-case OMP Wi,
—— Collective OMP Wi, —— Collective OMP Wi,
Random Wp, Random Wp,
0.0 0.0
0 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
m m

Figure 5.1: Comparisons of collective OMP, worst-case OMP, uniformly spaced and equally spaced
point selection, using a Fourier basis V,,, with n = 20 or n = 40, and increasing values of m > n.

Results in Fig 5.1 show the behavior of 8(V,,, W,,) as m increases for two representative values
of n. They reveal that the worst-case OMP algorithm produces a slightly better behaved inf-sup
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m(n) for B* = 0.5 with n-incrementally constructed W,,, against n

300

250

200

b -~
150 > B

100

, n-incremental W,, Worst-case OMP
, n-incremental Wp,, Collective OMP
, Worst-case OMP

—— m(n), Collective OMP

50

25 50 75 100 125 150 175

Figure 5.2: Minimum m = m(n) required for 3(V,, Wy,) > * = 0.5 against a variety of n, using
collective OMP and worst-case OMP, and intertwining the growth of V;, and W,,, (dashed).

constant than the collective OMP algorithm, not far from the near optimal value obtained with
evenly spaced evaluations. In contrast, the random selection is clearly suboptimal.

Fig 5.2 displays the minimum value m = m(n) required to make B(V,,, W;z,) > * := 0.5 for
a variety of n. It shows a clear linear trend, with the rate of increase almost equal to 1 for the
worst-case OMP algorithm. This shows that the estimates on m(n) obtained in §4.3 from our
theoretical results are in this case too pessimistic.

We note that the obtained curves (solid lines) are not monotone increasing, due to the fact
that the selected points for different values of n have no nestedness properties. An alternative
strategy that leads to a nested sequence consist in intertwining the greedy algorithm with the
growth of V,,: assuming that we have selected m(n) points such that S(Vy, Wiy,,)) > 8%, we apply
the greedy algorithm for V;,;1 to enrich Wi, (,,) until we reach the first value /m(n + 1) such that
B(Vit1, Wei(n +1)) > (*. We may again use either the collective or worst-case OMP algorithm. In
this fashion we construct a sequence of Wy,1y C ... C Wy, C ... that pair with each V;, and
always ensure an inf-sup constant larger than $*. This strategy bears similarity to the generalized
empirical interpolation method [11] where, at each step, one adds a new function to V,, and a new
linear functional to W,,. In that case, we always have m = n, but no theoretical guarantee that
B(Vy, Wy,) remains bounded away from zero.

The resulting curves are also plotted on Fig 5.2 (dashed lines). We see that we do not pay a
significant penalty, as m(n) is not significantly worse for this incremental method that when W,
is built from nothing for each V,,. We again find that the worst-case algorithm is slightly superior
to the collective algorithm.

5.2 Local averages

In this test we perform the collective and worst-case OMP algorithms on dictionaries of local-
averages. Here we build our measurement spaces W,,, against a Fourier space V,,, working on the
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unit interval I =]0,1[ as in §5.1.
The dictionary D is the collection of Riesz representers w; r of M local averages of width 7,
with x equispaced between 7/2 and 1 — 7/2, that is

_rl-r 7 (M-2(1-7) T, iy
2 M—-1 2777 M—1 2’ 2J

D= {wx,T LT (5.1)
Again, the value M = 10* appeared to produce satisfactory results that produced similar results
to any larger M.

Figure 5.3 illustrates the behaviour both greedy algorithm for the particular value 7 = 1072 and
shows that it is slightly better than what had been previously obtained with point values (which
correspond to 7 = 0).

The dependence on 7, which appears in the theoretical analysis in §2.3 is reflected in Figure 5.4:
increasing 7 first allows both OMP algorithms to obtain better 8 values, until a certain value where
[ deteriorates as 7 gets larger. In this particular case, we actually notice that if 7 is a multiple of
2/n, then we have (wg 7, ¢,) = 0 for any = appearing in (5.1) and hence B(V,,, Wy,) = 0.

B(V,, W) against m for n =20 and € = 1072 B(V,, W) against m for n = 40 and € = 102

0.8

BV, W)

04

—— Worst-case OMP W, local avg £ = 1.0e — 02 —+ Worst-case OMP W, local avg £ = 1.0e — 02
02 —— Collective OMP W, local avg £ = 1.0e = 02 02 : —— Collective OMP W, local avg £ = 1.0e = 02
-+ Worst-case OMP Wy, delta / point eval ; ---1. Worst-case OMP Wi, delta / point eval
----- Collective OMP Wy, delta / point eval : <=+ Collective OMP W, delta / point eval
Random Wm, delta / point eval H Random Wm, delta / point eval
0.0 . 0.0 .
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
m m

Figure 5.3: Comparisons of collective OMP, worst-case OMP for a dictionary of local average
functions, as well as randomly selected local average locations, using a Fourier basis V,,, with
n = 20 or n = 40, and increasing values of m > n.

5.3 Reduced bases

In our last test we consider the elliptic problem proposed in §1.1, on the unit square D =]0,1[?
with Dirichelet boundary conditions, and a parameter dependence in the field a, that is

—div(a(y)Vu) = f for all x € D with u(z) =0 on 9D. (5.2)

In this example we consider “checkerboard” random fields where a(y) is piecewise constant on a
dyadic subdivision of the unit-square. That is, for a given level j > 0, we consider the dyadic
partition

271 )
D = U Sk],l
k=0
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B(V,, Wy,) against m for n = 20, worst-case OMP B(V,, Wy,) against m for n = 40, worst-case OMP

0.8

—= 0.6 — 0.6
s s
S S
Q. Q.
0.4 0.4
—— local avg T = 9.0e — 02 — local avg T = 9.0e - 02
02 —— local avg T = 5.0e - 02 02 ——- local avg T=5.0e — 02
—— local avg T=1.0e — 02 —— local avg T=1.0e — 02
—-. local avg T=5.0e — 03 —-. local avg T=5.0e — 03
delta / point eval / delta / point eval
00 : 00
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
m m

Figure 5.4: The resulting 5(V,,, W) against m for n = 20 and n = 40 and a selection of measure-
ment widths 7.

with ' ' ' ' | |
SU) = k270, (b + 1)279[x [(277, (04 1)279] kK £e0,...,2 —1,

The random field is defined as

27 -1
aly) =1+ k;g XU (5.3)

where X S) is the indicator function on S,(c] l) , and the y, ¢ are random coefficients that are indepen-
dent, each with identical uniform distribution on [—1,1].

For the reduced basis space, we generate n random parameters yW, . y™ | with each y®) e
-1, 1]22], and solve the variational form of (5.2) using P; finite elements to produce the corre-
sponding solutions wu(y*)). In our numerical test, we take j = 2, that is 16 parameters, and we
use for the finite element space a triangulation 7;, on a regular grid of mesh size h = 277. Our
approximation space is then defined as

V= span{uh(y(l)), . ,uh(y("))} (5.4)

As to the dictionary D, we consider local averages by the nodal basis functions of the finite element
space, so the linear form ¢, in this dictionary are indexed by the mesh points of 7p,.

Here, we compare the performance of the above reduced basis space which we label here V;ed,
with the trigonometric polynomial spaces

ysin — span{¢p,: 1 < k x £ < n},

where the ¢y ¢ are given by the linear interpolation on 7}, of ﬁ/% sin(kmrxzq) sin(dnxs) for k,l =
1,...,rand n = r2.

We recall that the worst case performance of the state estimation algorithm as defined in (1.13)
is given by the product of the inverse inf-sup constant pu(V,,W;,,) by the approximation error
e = dist(M,V,,). Since the exact computation of &, is out of reach, we instead study the the
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average projection error for a collection of solutions uy(a(y)) to V,, = V,r*d or V", The left side of
Figure 5.5 shows that the reduced bases outperform the trigonometric polynomial spaces by several
order of magnitude, as to the decay of this approximation error. On the other hand, the right side
of Figure 5.5 shows (here in the case n = 20) that when applying the greedy algorithm, the inf-sup
constant 3(V,, W,,) is better behaved for the trigonometric polynomial spaces, however only by
a moderate factor of around 1.1. Therefore the final trade-off is clearly in favor of reduced basis

spaces.
Projection errors for various solutions of up(a(y)) and average B(Vn, Wp,) against m for sinusoid and reduced bases with n = 20
1.0
—— Sinusoid basis: average projection error
N Reduced basis: average projection error
10
0.8
_ 06
= =
< =
! s
2 &
B 0.4
107
0.2
—— Sinusoid basis
Reduced basis
0.0
10 20 30 40 20 40 60 80 100 120 140
n m
Figure 5.5: Results on unit square.
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