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Localization of Vibratory Energy of Main
Linear/Nonlinear Structural Systems
by Nonlinear Energy Sink

C.-H. Lamarque and A. Ture Savadkoohi

Abstract Two systems are considered: the system I is composed of a main linear
structure which is coupled to a nonsmooth nonlinear energy sink. Here, effects of
the gravity forces are not neglected. The system II consists of a main structure with
a set of parallel Saint-Venant elements that is attached to a nonlinear energy sink
with general odd nonlinear potential function. Time multi-scale energy exchanges
between two oscillators is detected; in detail: the invariant manifold of the system at
fast time scale is traced while detected equilibrium and singular points at slow time
scale give us envision about system behavior(s) at pseudo-steady-state regime(s).
All of detected behaviors provide us design tools for tuning necessary parameters
of nonlinear energy sink for the localization of vibratory energy of main structural
systems.

1 Introduction

It has been proved that pumping the essential part of vibratory energy of main struc-
tures is possible by endowing nonlinear properties of coupled oscillators [1, 2]. Later
on this phenomenon was used for transferring the energy of main systems to sec-
ondary oscillatorswith very smallmass compared to themain one’s andwith essential
cubic geometrical nonlinearity. The phenomenon is named as “energy pumping” and
the light and nonlinear oscillator is called as nonlinear energy sink (NES) [3–35].
Efficiency of the NES in localization of vibratory energy and passive control of sys-
tems has been proved experimentally as well [36–43]. However in most of above
mentioned studies, the nonlinearity of the NES is cubic and the main structural sys-
tem is supposed to be linear or to present smooth nonlinearity [16, 26, 27]. Some
research works have been carried out to consider other types of nonlinearities for
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the geometrical potential of the NES and their efficiency in passive control of main
systems, e.g. vibro-impact and non-polynomial nonlinearities, non-smooth poten-
tial function with constant or time-dependent mass [44–50]. There have been some
research works that consider nonlinear main structural system to be controlled by
cubic or non-smooth NES; in detail: a main oscillator with piece-wise linear and also
Dahl-type behavior and a coupled nonsmooth NES [51, 52]; the main system with
hysteresis behavior of Bouc-Wen type and a NES with general nonlinear potential
function [53]; the main structure with single or several Saint-Venant elements [54]
in parallel and a NES with cubic or general potential function [55, 56]. The current
paper is a summary of our two previous research works which deals with the local-
ization of vibratory energy of: (i) vertical main structural systems by a nonsmooth
NES [48] and (ii) main structural systemswith a set of parallel Saint-Venant elements
by a NES with general potential function [56]. Organization of the chapter is as it
follows: summary of the general methodology to deal with multiple scale dynamics
of amain oscillator and a coupled NES is given in Sect. 2. Energy exchanges between
a vertical linear system and a coupled nonsmooth NES is presented in Sects. 3 and
4 deals with studying of the dynamics of a main structural system including a set of
parallel Saint-Venant elements and a coupled NES with a general nonlinear potential
function. Finally conclusions are collected in Sect. 5.

2 General Methodology to Deal with Two Coupled
Oscillators: A Main System + NES

In order to study multiple energy exchanges between a main oscillator and a coupled
NES, we implement following steps [53]:

• re-scaling the system.
• transferring the system to the center of mass and relative displacement.
• applying complex variables to the system and usingGalerkin technique by keeping
first harmonics (and constant terms).

• embedding the time to different scales (fast and slow time scales) and detecting
invariant manifold at the fast time scale and equilibrium points and fold singular-
ities of the reduced order form of the system at the slow time scale.

3 Localization of Vibratory Energy of Vertical Main Linear
Structural Systems by Coupled Non-smooth NES

Here we would like to analyze time multi-scale energy exchanges between a linear
system and a nonsmooth NES. Gravity loads are not neglected. Let us consider the
academic model of a system which is subjected to vertical excitations as is depicted
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Fig. 1 The academic model
of the system under gravity
(g) loads and external force
Γ sin(Ωt). m = εM ,
0 < ε � 1; masses oscillate
vertically
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in Fig. 1. The system is composed of a linear main structure (M) which is coupled to
a non-smooth NES (m) system. Governing system equations can be summarized as:

⎧
⎨

⎩

M ÿ1 + k1y1 + F(y1 − y2) + η(ẏ1 − ẏ2) + Mg = Γ sin(Ωt)

mÿ2 + F(y2 − y1) + η(ẏ2 − ẏ1) + mg = 0
(1)

where η is the continues linear damping of theNES and F is the non-smooth potential
function of the NES which is defined as follows:

F(z) = −∂V (z)

∂z
= −F(−z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if −δ ≤ z ≤ δ

k2(z − δ) if z ≥ δ

k2(z + δ) if z ≤ −δ

(2)

If we suppose that T = t

√
k1
M

= tϑ , then the system (1) in the T domain reads:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ÿ1 + y1 + 1

k1
F(y1 − y2) + η√

k1M
(ẏ1 − ẏ2) + Mg

k1
=

Γ sin(
Ω

ϑ
T )

k1

ε ÿ2 + 1

k1
F(y2 − y1) + η√

k1M
(ẏ2 − ẏ1) + mg

k1
= 0

(3)
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We introduce the following variables: ε = m

M
, γ = Mg

k1
, ελ = η√

k1M
,
1

k1
F(z) =

ε F̃(z), k = 1

ε

k2
k1

, ω = Ω

ϑ
and

Γ

k1
= ε f0. So, scaled potential of the NES reads:

F̃(z) =
⎧
⎨

⎩

0 i f −δ ≤ z ≤ δ

k(z − δ) i f z ≥ δ

k(z + δ) i f z ≤ −δ

(4)

Following system can be derived:

⎧
⎨

⎩

ÿ1 + y1 + ε F̃(y1 − y2) + ελ(ẏ1 − ẏ2) + γ = ε f0 sin(ωT )

ε ÿ2 + ε F̃(y2 − y1) + ελ(ẏ2 − ẏ1) + εγ = 0
(5)

We are interested to study forced vibration but also the transient behavior occurring
before reaching the steady-state regime. The frequency of the main system in (5)
is equal to “1” and we would like to analyze system behavior in the vicinity of 1:1
resonance. We will suppose that ω = 1 + σε and since ε is a small, it means that
we will pinpoint system behavior around 1:1 resonance. Let us transfer the system
to the following coordinates: ⎧

⎨

⎩

v = y1 + εy2

w = y1 − y2
(6)

In the second equation of the system (5), the parameter ε has been kept intentionally
in order to show coupling terms between two equations of the system (5) and physical
orders of respective equations. Especially v is associated to the center of two masses
(1, ε). If we divide the second equation of the system (5) by ε, then we will have a
system of twomasses at the same order (1, 1), leading to v = y1+y2 andw = y1−y2
which do not have appropriate physical meanings for the system under consideration.
The consequence should be to keep nonlinear terms in both resulting equations for
v and w.
By adding and subtraction two equations of the system (5) we will have:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v̈ + 1

1 + ε
(v + εw) + γ (1 + ε) = ε f0 sin(ωT )

ẅ + 1

1 + ε
(v + εw) + (1 + ε)F̃(w) + (1 + ε)λẇ = ε f0 sin(ωT )

(7)

We introduce a modified form of Manevitch’s complex variables [57] to the
system (7):
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⎧
⎨

⎩

B1 + ϕ1eiωT = v̇ + iωv

B2 + ϕ2eiωT = ẇ + iωw
(8)

with B1 = ib1, B2 = ib2 and i2 = −1. B1 and B2 are constant terms taking into
account the fact that the dynamical system (5) (including γ ) is not written around
the (y1, y2, ẏ1, ẏ2) = (0, 0, 0, 0). So, we have to include constant terms to take into
account nonlinear terms in averaging. It corresponds to taking into account constant
terms of Fourier series togetherwith first harmonic terms.We can present the function
F̃(w) in the form of Fourier series:

F̃(w) = F̃
(b2

ω
− i

2ω
(ϕ2eiωT − ϕ∗

2e−iωT )
)

=
+∞∑

j=−∞
f j (b2, ϕ2, ϕ

∗
2 )e

iω jT (9)

where the ∗ represents the complex conjugate of the function under consideration.
We implement the Galerkin method using a truncated Fourier series (constant and
first harmonic) and then we endow multiple time scales approach to investigate the
evolution of the Fourier-coefficients. The constant and first harmonic of the (7) by
considering variables of (8) and j = 0, 1 in (9) read as:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

1 + ε

(
b1
ω

+ ε
b2
ω

)

+ (1 + ε)γ = 0

1

1 + ε

(
b1
ω

+ ε
b2
ω

)

+ (1 + ε) fz(b2, ϕ2, ϕ
∗
2 ) = 0

(10)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕ̇1 = − i

2
ε f0 + i

2ω(1 + ε)
(ϕ1 + εϕ2) − i

2
ωϕ1

ϕ̇2 = − i

2
ε f0 + i

2ω(1 + ε)
(ϕ1 + εϕ2) − λ(1 + ε)

2
ϕ2 − i

2
ωϕ2 − (1 + ε) f f (b2, ϕ2, ϕ

∗
2 )

(11)
where fz(b2, ϕ2, ϕ

∗
2 ) and f f (b2, ϕ2, ϕ

∗
2 ) are zero and first Fourier coefficients which

can be evaluated as:

fz(b2, ϕ2, ϕ
∗
2 ) = ω

2π

∫ 2π
ω

0
F̃

(b2
ω

− i

2ω
(ϕ2eiωT − ϕ∗

2e−iωT )
)

dT (12)

f f (b2, ϕ2, ϕ
∗
2 ) = ω

2π

∫ 2π
ω

0
F̃

(b2
ω

− i

2ω
(ϕ2eiωT − ϕ∗

2e−iωT )
)

e−iωT dT (13)

It can be proved that [48]:

f f (b2, ϕ2, ϕ
∗
2 ) = − iϕ2

2
G f

(|ϕ2|2
)

(14)
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where for any variable χ ≥ 0

G f
(
χ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 i f
b2
ω

+
√

χ

ω
< δ

k

2πω

(

π + 2b2
χ

√

χ − (b2 − δω)2 − 2δω

χ

√

χ − (b2 − δω)2−

2b2
χ

√

χ − (b2 + δω)2 − 2δω

χ

√

χ − (b2 + δω)2+

2 arccos
(b2 + δω√

χ

) + 2 arcsin
(b2 − δω√

χ

)
)

i f
b2
ω

+
√

χ

ω
≥ δ

(15)
and

fz
(
χ

) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 i f
b2
ω

+
√

χ

ω
< δ

k

πω

(

b2π +
√

(b2 + √
χ − δω)(−b + √

χ + δω)−

√
(−b2 + √

χ − δω)(b2 + √
χ + δω)+

(b2 − δω) arcsin
(b2 − δω√

χ

) + (b2 + δω) arcsin
(b2 + δω√

χ

)
)

i f
b2
ω

+
√

χ

ω
≥ δ

(16)

To deal with the systems (10) and (11), an asymptotic approach [58] by introducing
slow times τ1, τ2, …with the fast time τ0 can be implemented as follows:

T = τ0, τ1 = ετ0, . . . , (17)

so,
d

dT
= ∂

∂τ0
+ ε

∂

∂τ1
+ · · · (18)

In the next sections we will try to have finer envision into systems (10) and (11) at
different orders of ε in order to grasp the system behavior during different scales of
time.
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3.1 Truncated Fourier Series: Constant Term

The general form of the system (10) show that γ = fz(N 2
2 ). During the ε0 order, it

leads to:
b1 = −γ (19)

while during the ε1 order we have:

b2 = −γ (2 + σ) (20)

3.2 Truncated Fourier Series: First Harmonic

3.2.1 ε0 Order

We assume that the system is around 1:1 resonance (ω = 1 + σε). Equation (11) at
the ε0 order yield to:

∂ϕ1

∂τ0
= 0 ⇒ ϕ1 = ϕ1(τ1) (21)

∂ϕ2

∂τ0
+

i
(
1 − G f

(|ϕ2|2
)) + λ

2
ϕ2 = i

2
ϕ1

(22)

so, fixed points of the system (Φ(τ1)) can be evaluated by following equation:

i
(
1 − G f

(|Φ|2)
)

+ λ

2
Φ = i

2
ϕ1

(23)

Let us assume that ϕ1 = N1eiδ1 and Φ = N2eiδ2 , so (23) can be re-written as the
following form:

N2 − iλN2 − G f (N 2
2 )N2 = N1ei(δ1−δ2) (24)

which leads us to follow invariant manifold of the system during τ0 time scale (τ0-
invariant):

N1 = N2

√

λ2 + (
1 − G f (N 2

2 )
)2 (25)

A typical invariant manifold for given system parameters is illustrated in Fig. 2. It
has been proved that stability borders of the τ0-invariant is defined as it follows [48]:

λ2 + (
1 − G f (N 2

2 )
)(
1 − H(N 2

2 )N2 − G f (N 2
2 )

)
> 0 (26)
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Fig. 2 τ0-invariant manifold
of the system and its stable
and unstable zones
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γ=9.81 × 10−4

Stable and unstable zones of the invariant manifold are depicted in Fig. 2. In fact
when the system arrives to the vicinity of the unstable zone, it tries to reach another
stable zone via a bifurcation. This will lead to the energy pumping phenomenon.

3.2.2 ε1 Order

At the order of ε1 the first equation of the system (11) reads as:

∂ϕ1

∂τ1
= − i

2
f0 + i

2
(Φ − ϕ1 − σϕ1) − i

2
σϕ1 (27)

Let us try to enlighten the behavior of the system at the τ1 time scale “around” the
invariant manifold at the time scale τ0. By considering (23), following system can
be derived:

∂

∂τ1

(
Φ − iλΦ − ΦG f (|Φ|2))

= i

2

(

− f0 − 2σ
(
Φ − iλΦ − G f

(|Φ|2)Φ
)

+ iλΦ + G f
(|Φ|2)Φ

) (28)

and if we suppose that Φ = N2(τ1)eiδ2(τ1), following compact for of equations can
be obtained:

∂ N2

∂τ1
= f1(N2, δ2)

g(N2)
(29)

∂δ2

∂τ1
= f2(N2, δ2)

g(N2)
(30)
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where,

f1(N2, δ2) = f0 sin(δ2)
(

G f
(
N 2
2

) − 1
)

− λN2 + λ f0 cos(δ2) (31)

f2(N2, δ2) = −1 − G f
(
N 2
2

) − 2N 2
2 G ′

f

(
N 2
2

)

N2
f0 cos(δ2) − λ

N2
f0 sin(δ2)

− λ2(1 + 2σ) +
(
1 − G f

(
N 2
2

) − 2N 2
2 G ′

f

(
N 2
2

))(
− 2σ + 2σ G f

(
N 2
2

) + G f
(
N 2
2

))

(32)

g(N2) = 2
(
1 + λ2 − 2G f

(
N2
2

) − 2N2
2 G′

f

(
N2
2

) + G2
f

(
N2
2

) + 2N2
2 G f

(
N2
2

)
G′

f

(
N2
2

))

(33)
The relation g(N2) = 0 provides two values for N2, namely N21 and N22. They are
called as fold lines of the system. We will use these equations later on for detailed
bifurcation analysis of the system.

For detecting the invariant manifold of the system at the τ1 time scale

(τ1-invariant), (28) can be re-written as (
∂ϕ1

∂τ1
= 0):

i

2

(

− f0 − 2σ
(
Φ − iλΦ − G f

(|Φ|2)Φ
)

+ iλΦ + G f
(|Φ|2)Φ

)

= 0 (34)

or

f0 = N2

√

λ2(1 + 2σ)2 +
(
(1 + 2σ)G f

(
N 2
2

) − 2σ
)2

(35)

A typical invariant manifold of the system at the time scale τ1 is depicted in Fig. 3.
Intersections of this invariant manifold (for a given f0) with the τ0-invariant are
positions of fixed points.

Fig. 3 τ1-invariant manifold
of the system
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3.3 Analytical Results Versus Numerical Integrations

Since the overall system is under gravity loading, the initial equilibrium state of each
mass (y10 and y20) should be evaluated. Let us consider different hypothesis as the
equilibrium state for the system (1):

• −δ < y2 − y1 < +δ so F(y2 − y1) = 0
This assumption leads us to following system:

⎧
⎨

⎩

k1y1 + Mg = 0

mg = 0
(36)

which is an impossible equality. So, this assumption is not valid at the equilibrium
state of the overall system.

• y2 − y1 < −δ so F(y2 − y1) = k2(y2 − y1) + k2δ
This leads to following system:

⎧
⎨

⎩

k1y1 − k2(y2 − y1) − k2δ + Mg = 0

k2(y2 − y1) + k2δ + mg = 0
(37)

so, ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y10 = − Mg

k1
(1 + ε) = −γ (1 + ε)

y20 = − Mg

k1
(1 + ε) − δ − mg

k2
= −γ (1 + ε) − δ − ε

Mg

k2

(38)

This equilibrium point should be considered in all numerical results. We can impose
equilibrium states to the numerical results as follows:

⎧
⎨

⎩

vnumerical = (y1 − y10) + ε(y2 − y20)

wnumerical = (y1 − y10) − (y2 − y20)
(39)

So, N1 and N2 can be defined in terms of original system of equations (N exact
1 and

N exact
2 ) as:

N exact
1 = √

(vnumerical)2 + (ẏ1 + ε ẏ2)2. (40)

N exact
2 = √

(wnumerical)2 + (ẏ1 − ẏ2)2. (41)
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Let us consider the following initial conditions for the system:

⎧
⎨

⎩

y1(0) = 1.5 + y10 , ẏ1(0) = 0

y2(0) = y20 , ẏ2(0) = 0
(42)

Figure4 presents τ0-invariant of the system and corresponding numerical results
which are obtained by direct integration of (5) with the external forcing amplitude
f0 = 0.1. When the system arrives to the unstable zone, it tries to reach other stable
zone by an abrupt jump between its stable branches through a bifurcation. This
bifurcation leads the master structure to experience very low amplitude compared to
initial stages of the vibration (see Fig. 5).

3.4 Strongly Modulated Response in the Presence of Gravity

The strongly modulated response (SMR) of the system in the vicinity of the 1:1
resonance is characterized by relaxation oscillations between stable branches of the
slow invariant manifold, i.e. switches between slow motions at stable critical mani-
folds of the system and fast jumps between them. Starosvetsky and Gendelman [21]
pinpointed this behavior in two coupled oscillators with essential cubic nonlinearity
for the NES while Lamarque et al. [46] investigated the same behavior in systems
with non-smooth NES. Let us consider (29) and (30). The possible relaxation of the
system can occur if the flow in the vicinity of the lower fold line, i.e. N21, experiences
some bifurcation, i.e. for some points at the lower fold, N ′

2 changes its direction, so
phase trajectories of the lower stable branch can change their direction and aim at

Fig. 4 τ0-invariant manifold
of the system in the presence
of the gravity and
corresponding numerical
result with f0 = 0.1.
Numerical results are
obtained by direct
integration of (5)
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Fig. 5 Variation of system
amplitudes with respect to
the time ( f0 = 0.1): a N2; b
N1. Results are obtained by
direct integration of (5)
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the fold line N21 for a jump to upper stable branch. This criterion will be satisfied if
in (29) and (30):

f1(N2, δ2) = 0

f2(N2, δ2) = 0
(43)

which corresponds to ordinary fixed points of the system under consideration. If in
addition to this, g(N2) = 0 (the denominator of (29)) then the system will have
fold singularities, i.e. singularity and equilibrium points coincide, so N2 = N21 and
N2 = N22. It is worthwhile to mention that g(N2) = 0 is exactly equivalent to
stability borders which are presented by (26) [48], i.e.
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λ2 + (
1 − G f (N 2

2 )
)(
1 − H(N 2

2 )N2 − G f (N 2
2 )

) = 0 (44)

Lamarque et al. [46] proved that necessary forcing condition for existence of the first
pair of folded singularities, i.e. (N21, δ21), is:

f0 ≥ f0(1cri tical) = λN21
√

λ2 +
(

1 − G f
(
N 2
21

)
)2 (45)

and the second pair of folded singularities on the second fold, i.e. (N22, δ21) and
(N22, δ22), exists if:

f0 ≥ f0(2cri tical) = λN22
√

λ2 +
(

1 − G f
(
N 2
22

)
)2 (46)

Let us analyze the system under external forcing term f0 = 0.3 > f0(1cri tical) =
0.254. The global behavior of the system is depicted in Fig. 6while histories of system
amplitudes are illustrated in Fig. 7. The response of the system is strongly modulated
by trapping into hysteresis loops and bifurcations between its stables branches. In
order to clarify this, phase portraits of the system is depicted in Fig. 8awhile a zoomed
area of this figure is illustrated in Fig. 8b. It is seen that some flow lines change their
direction toward the fold line N21 which gives a hint of the relaxation of the system
by facing to folded singularities in the form of saddle and node (see Fig. 8b).

Fig. 6 τ0-invariant manifold
of the system in the presence
of the gravity and
corresponding numerical
result with f0 = 0.3.
Numerical results are
obtained by direct
integration of (5)
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Fig. 7 SMR and Beating
response of two oscillators
with external forcing term
f0 = 0.3 > f0(1cri tical) =
0.254: a) N2; b) N1. Results
are obtained by direct
integration of (5)
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4 Localization of Vibratory Energy of a Main System
with a Set of Saint-Venant Elements by a NES
with General Nonlinearity

4.1 Representation of the System

We consider the systemwhich is depicted in Fig. 9: It consists of two coupled oscilla-
tors. The first one with mass, stiffness and damping as M , k0 and λ̃, which possesses
a set of parallel Saint-Venant elements with characteristics as k̃ j (stiffness) and α j

(threshold of the Saint-Venant element), j = 1, 2, . . . , n. Each Saint-Venant element
has an internal variable (displacement u j ). The second oscillator, namely NES has

14



Fig. 8 Phase portrait for the
system with f0 = 0.3 >

f0(1cri tical) = 0.254, a the
overall view; b the zoomed
area around folded
singularities
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the mass, stiffness and damping as m (0 < ε = m

M
� 1), c̃1 and λ̃1. The potential

of the NES (F) is supposed to be a general “nonlinear” and “odd” function, i.e.
F(−z) = −F(z) (e.g. F(z) = z3) [56]. If x (versus y) be the displacement of the
mass M (respectivelymassm), governing equations of the system can be summarized
as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M
d2x

dt2
+ λ̃

dx

dt
+ λ̃1(

dx

dt
− dy

dt
) + k0x +

n∑

j=1

k̃ j u j + c̃1F(x − y) = f1(t)

m
d2y

dt2
+ λ̃1(

dy

dt
− dx

dt
) + c̃1F(y − x) = 0

(du j

dt
+ β(

u j

η j
)
)


 dx

dt
, η j = α j

k̃ j
, j = 1, 2, . . . , n

(47)
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k0

λ̃

k̃1

k̃2

k̃n

α1

α2

αn

M

f1(t)

x

c̃1

λ̃1 m

y

Fig. 9 Two coupled oscillators: the first one with a set of parallel Saint-Venant elements and under
external force f1(t); the second one with general and odd nonlinear potential function (m = εM ,
0 < ε � 1)

Fig. 10 The β graph in
Saint-Venant element

x

β(x)

−1 +1

The β graph which is depicted in Fig. 10 can be described as it follows:

β(x) =

⎧
⎪⎪⎨

⎪⎪⎩

∅ if x ∈ ] − ∞,−1[∪]1,+∞[
0 if x ∈ ] − 1, 1[
R− if x = −1
R+ if x = 1

(48)
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Let us introduce τ = t

√
k0
M

= ϑ t ,
λ̃ϑ

Mϑ2 = ελ0,
k̃ j

Mϑ2 = εk j ,
c̃1

Mϑ2 = εc10,

λ̃1ϑ

Mϑ2 = ελ10,
f1(

τ
ϑ
)

Mϑ2 = ε f10 sin(Ωτ).

We mention that the differential inclusions of the model under consideration come
from basic constitutive equations of the Saint-Venant elements as:

k j u j ∈ α jσ(
dx

dt
− du j

dt
), j = 1, 2, . . . , n (49)

where σ is the graph of the sign:

σ(z) =
⎧
⎨

⎩

−1 if z < 0
[ − 1, 1] if z = 0
1 if z > 0

(50)

So, one should take into account that
d.

dt
= ϑ

d.

dτ
and

k̃ j u j ∈ α jσ
(
ϑ(

dx

dτ
− du j

dτ
)
)

j = 1, 2, . . . , n

⇔ k̃ j u j ∈ α jσ
(
(
dx

dτ
− du j

dτ
)
)

j = 1, 2, . . . , n
(51)

Finally (47) are equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2x

dτ 2
+ ελ0

dx

dτ
+ ελ10(

dx

dτ
− dy

dτ
) + x + ε

n∑

j=1

k j u j + εc10F(x − y)

= ε f10 sin(Ωτ)

ε
d2y

dτ 2
+ ελ10(

dy

dτ
− dx

dτ
) + εc10F(y − x) = 0

(du j

dτ
+ β(

u j

η j
)
)


 dx

dτ
, η j = α j

k̃ j
, j = 1, 2, . . . , n

(52)
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Let us introduce coordinates of the center of mass and relative displacement via

{
v = x + εy
w = x − y

⇔

⎧
⎪⎨

⎪⎩

x = v + εw

1 + ε

y = v − w

1 + ε

(53)

System (52) becomes:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2v

dτ 2
+ ελ0

1 + ε
(

dv

dτ
+ ε

dw

dτ
) + v + εw

1 + ε
+ +ε

n∑

j=1

k j u j = ε f10 sin(Ωτ)

d2w

dτ 2
+ ελ0

1 + ε
(

dv

dτ
+ ε

dw

dτ
) + v + εw

1 + ε
+ +ε

n∑

j=1

k j u j

+(1 + ε)(λ10
dw

dτ
+ c10F(w)) = ε f10 sin(Ωτ)

(du j

dτ
+ β(

u j

η j
)
)


 1

1 + ε
(

dv

dτ
+ ε

dw

dτ
), η j = α j

k̃ j
, j = 1, 2, . . . , n

(54)

4.2 Dynamical Behavior Around 1:1 Resonance

Let us set T = Ωτ and · = d

dτ
. We introduce the following complex variables [57]

to the system:

φ1eiT = Ω(v̇ + ıv) , φ∗
1e−iT = Ω(v̇ − iv)

φ2eiT = Ω(ẇ + iw) , φ∗
2e−iT = Ω(ẇ − iw)

φ2+ j eiT = Ω(u̇ j + iu j ) , φ∗
2+ j e

−iT = Ω(u̇ j − iu j ) , j = 1, 2, . . . , n
(55)

with i2 = −1. To investigate the 1:1 resonance, we assume Ω = 1 + σε.
We consider only equations obtained by Galerkin method and truncated Fourier
series: Indeed we take into account only first harmonic eiT for each equation. To
calculate the corresponding Fourier coefficients we assume that φl and φ∗

l (l =
1, 2, . . . , n + j) do not depend on T . We will either verify this assumption during
the multiple scales analysis, or we will assume that after a transient long enough φl

and φ∗
l (l = 1, 2, . . . , n + j) reach to an “asymptotic state” independently of T .

Nevertheless we also keep φ̇l and φ̇2 in the equations. Then we obtain following
system:
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Ωφ̇1 − Ω

2i
φ1 + ελ0(φ1 + εφ2)

2(1 + ε)
+ φ1 + εφ2

2iΩ(1 + ε)
+ ε

n∑

j=1

k jφ j+2

2Ωi
= ε

f10
2i

Ωφ̇2 − Ω

2i
φ2 + ελ0(φ1 + εφ2)

2(1 + ε)
+ φ1 + εφ2

2iΩ(1 + ε)
+

n∑

j=1

k jφ j+2

2Ωi

+(1 + ε)(c10F + λ10

2
φ2) = ε

f10
2i

φ j+2 = φ1 + εφ2

(1 + ε)π
ξ j

( |φ1 + εφ2|
(1 + ε)Ω

)
, j = 1, 2, . . . , n

(56)

where

F = 1

2π

∫ 2π

0
e−iT F

(φ1eiT − φ∗
2e−iT

2iΩ

)
dT (57)

and ξ j (z)(∀z ∈ R+, j = 1, 2, . . . , n) reads:

ξ j (z) =
⎧
⎨

⎩

π if z � η j

θ + e−iθ sin(θ) − 4e−i θ
2 sin(

θ

2
) − 4η j

z
e−i(θ+ π

2 ) if z > η j
(58)

with

θ = arccos(1 − 2η j

z
) (59)

As in the Sect. 3 a multiple scale approach [58] with a small (and given) parameter ε

is presented by considering fast time T0 = T , and slow times Tl = εl T , l = 1, 2, . . .
so that:

d

dT
= d

dT0
+ ε

d

dT1
+ ε2

d

dT2
+ . . . (60)

4.2.1 ε0-Order of the System

At ε0 order, following equations can be derived from the system of (56):

∂φ1

∂T0
= 0 ⇒ φ1 = φ1(T1, T2, . . .) (61)

∂φ2

∂T0
+ φ1 − φ2

2i
+ c10F + λ10

2
φ2 = 0 (62)
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φ j+2 = φ1

π
ξ j (|φ1|), j = 1, 2, . . . , n (63)

We can see from equations that φ1 is a constant versus T0 = T , as well as φ j+2,
j = 1, 2, . . . , n, so the assumption for calculation of Fourier coefficients of eiT =
eiT0 is verified a posteriori. For φ2, we can not claim the same property. This is why
we process as follows: We assume that when T0 → ∞, φ2 reaches an asymptotic
equilibrium governed by a manifold called T0-invariant. Then we have:

φ1 − φ2

2i
+ c10F + λ10

2
φ2 = 0 (64)

so that implicitlyφ2 may depend on T1 now, but no longer on T0 (after T0 long enough
to approach the asymptotic state of φ2 governed by (64)). We study modulation of
the dynamics around periodic solution depending on time T0 associated to the T0-
invariant. Let us also notice that equations for φ j+2, j = 1, 2, . . . , n are governed
by first order differential equations.

4.2.2 ε1-Order of the System and Modulations Around T0-Invariant

The ε1 order of the first equation of system (56) reads:

dφ1

dT1
+ λ0

2
φ1 + φ2

2i
− 2σ + 1

2i
φ1 +

n∑

j=1

k jφ j+2

2i
= f10

2i
(65)

Let us consider T0-invariant and also obtained solutions at ε0 order for φ j+2, j =
1, 2, . . . , n. We write (64) in the general form:

φ1 = H(φ2, φ
∗
2 ) (66)

We introduce polar form for φ j , j = 1, 2, . . . , n + 2 as it follows:

φ j = N j eiδ j , N j ∈ R+, δ j ∈ R (67)

From relation (66) it is clear that we can obtain two explicit analytical solutions
providing N1 and δ1 as functions of N2 and δ2:

N1 = H1(N2, δ2)

δ1 = H2(N2, δ2)

(68)
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From the (63) we have:

N j+2eiδ j+2 = N1

π
eiδ1ξ j (N1), j = 1, 2, . . . , n (69)

or

N j+2ei(δ j+2−δ1) = N1

π
ξ j (N1), j = 1, 2, . . . , n (70)

so that

N j+2 = N1

π
|ξ j (N1)|, j = 1, 2, . . . , n (71)

and δ j+2 depends on N1 and δ1. Let us write

δ j+2 = ρ j (N1, δ1), j = 1, 2, . . . , n (72)

From (65) we have:

∂ N1

∂T1
+ i N1

∂δ1

∂T1
+ (

λ0

2
− 2σ + 1

2i
)N1 + N2

2i
ei(δ2−δ1) +

n∑

j=1

k j
N1

π
ξ j (N1)

2i
= f10

2i
e−iδ1

(73)
Introducing real and imaginary parts of ξ

ξ j (N1) = ξ jr (N1) + iξ j i (N1), j = 1, 2, . . . , n (74)

finally one can obtain:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ N1

∂T1
+ λ0

2
N1 + N2

2
sin(δ2 − δ1) +

n∑

j=1

k j
N1

π
ξ j i (N1)

2
= − f10

2
sin(δ1)

N1
∂δ1

∂T1
+ 2σ + 1

2
N1 − N2

2
cos(δ2 − δ1) −

n∑

j=1

k j
N1

π
ξ jr (N1)

2
= − f10

2
cos(δ1)

(75)

Then, from (68) we can reach a linear system in
∂ N2

∂T1
and

∂δ2

∂T1
:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ H1

∂ N2

∂ N2

∂T1
+ ∂ H1

∂δ2

∂δ2

∂T1
− m1 = 0

H1(
∂ H2

∂ N2

∂ N2

∂T1
+ ∂ H2

∂δ2

∂δ2

∂T1
) − m2 = 0

(76)
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where

−m1 = λ0

2
H1 + N2

2
sin(δ2 − H2) +

n∑

j=1

k j
H1

π
ξ j i (H1)

2
+ f10

2
sin(δ1)

−m2 = 2σ + 1

2
H1 − N2

2
cos(δ2 − H2) −

n∑

j=1

k j
H1

π
ξ jr (H1)

2
+ f10

2
cos(δ1)

(77)
Finally, by solving the system (76), the following equations are obtained:

∂ N2

∂T1
= f̃1(N2, δ2)

g̃(N2, δ2)

N2
∂δ2

∂T1
= f̃2(N2, δ2)

g̃(N2, δ2)

(78)

where

f̃1(N2, δ2) = H1
∂ H2

∂δ2
m1 − ∂ H1

∂δ2
m2

f̃2(N2, δ2) = N2(
∂ H1

∂ N2
m2 − H1

∂ H2

∂ N2
m1)

g̃(N2, δ2) = H1(
∂ H1

∂ N2

∂ H2

∂δ2
− ∂ H2

∂ N2

∂ H1

∂δ2
)

(79)

4.3 Analysis of the Dynamics: General Method

The analysis of the dynamical behavior corresponding to a modulation at 1:1 reso-
nance around the T0-invariant is given by:

• geometry of the T0-invariant in the N1, N2 and δ2 space associated to the relation
N1 = H1(N2, δ2).

• equilibrium points of the reduced system (78) are given by:

⎧
⎨

⎩

f1(N2, δ2) = 0, f2(N2, δ2) = 0

g1(N2, δ2) �= 0, g2(N2, δ2) �= 0
(80)

if f1, f2, g1 and g2 correspond to numerators and denominators of the system (78).
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• singular points of the reduced system (78) are given by:

⎧
⎨

⎩

f1(N2, δ2) = 0, f2(N2, δ2) = 0

g1(N2, δ2) = 0, g2(N2, δ2) = 0
(81)

if f1, f2, g1 and g2 correspond to numerators and denominators of the system
(78). Singular points are potentially associated to bifurcations.

4.4 Analysis of the Dynamics for a Particular Case

Let us choose n = 2 and
F(z) = z3 (82)

in such a case, we have

F = 1

2i
G(|φ2|2)φ2 (83)

with

G(χ) = 3

4
χ , χ ≥ 0 (84)

Then
φ1 = H(φ2, φ

∗
2 ) = φ2 − 2ic10F − iλ10φ2

= φ2 − 3

4
c10|φ2|2φ2 − iλ10φ2

(85)

and

H1(N2, δ2) = N2

√

λ210 + (1 − 3

4
c10N 2

2 )2

H2(N2, δ2) = δ2 + arctan
( −λ10

1 − 3
4c10N 2

2

)
(86)

Now, m1 and m2 can be obtained from the general expression in (77). Moreover, we
have simplified expression for g̃ since H1 does not depend on δ2 and H2 depends
linearly on δ2.

g̃(N2, δ2) = H1
∂ H1

∂ N2
(87)
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From the expression of H1 it is clear that g̃ does not depend on δ2. We have also:

f̃1(N2, δ2) = H1m1

f̃2(N2, δ2) = (∂ H1

∂ N2
m2 − H1

∂ H2

∂ N2
m1

)
N2

(88)

Finally, let us give expressions of f1, f2, g1 and g2. The reduced system of equations
reads:

f̃1

g̃
= m1

∂ H1
∂ N2

=
m1

√

λ2
10 + (1 − 3

4 c10 N 2
2 )2

λ2
10 + (1 − 3

4 c10 N 2
2 )(1 − 9

4 c10 N 2
2 )

f̃2

g̃
= N2(

∂ H1
∂ N2

m2 − H1
∂ H2
∂ N2

m1)

H1
∂ H1
∂ N2

= 3λ10c10 N 2
2 m1 + 2m2

(
λ2

10 + (1 − 3
4 c10 N 2

2 )(1 − 9
4 c10 N 2

2 )
)

2
(
λ2

10 + (1 − 3
4 c10 N 2

2 )(1 − 9
4 c10 N 2

2 )
)√

λ2
10 + (1 − 3

4 c10 N 2
2 )(1 − 9

4 c10 N 2
2 )

(89)
so that:

f1 = m1

√

λ2
10 + (1 − 3

4 c10 N 2
2 )2

f2 = 3λ10c10 N 2
2 m1 + 2m2

(
λ2

10 + (1 − 3
4 c10 N 2

2 )(1 − 9
4 c10 N 2

2 )
)

g1 = λ2
10 + (1 − 3

4
c10 N 2

2 )(1 − 9

4
c10 N 2

2 )

g2 = 2g1

√

λ2
10 + (1 − 3

4 c10 N 2
2 )2

(90)

Equilibrium points are given by:

f1 = 0 , f2 = 0 and g1 �= 0 (91)

and singular points are governed by:

f1 = 0 , f2 = 0 and g1 = 0 (92)

This is equivalent to: {
m1 = 0
g1 = 0

(93)

224 C.-H. Lamarque and A.Ture Savadkoohi
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Then g1 = 0 provides analytical values of N2 (fold lines):

N2 = 2

3

√
1

c10

(
2 ∓

√

1 − 3λ210
)

(94)

For a given N2, m1 depends only on the variable δ2 and can be solved numerically.

4.5 Analytical Developments Versus Numerical Integrations

Let us set c10 = 1, λ10 = 0.1, λ0 = 0.1, η1 = 0.1, η2 = 0.15, k1 = 1, k2 = 2,
ε = 0.001. We consider that f10 = 0.7. Euler’s scheme [54, 59] with time steps as
Δτ = 10−4 is endowed for solving system of (52). Assumed initial conditions are
x(0) = 0.5 and y(0) = ẋ(0) = ẏ(0) = u1(0) = u2(0) = 0.

Fig. 11 Positions of
equilibrium points and fold
singularities of the system
with external forcing term
f10 = 0.7 (see (78) and
(90)): f1 = 0 (—), f2 = 0
(− − −), g1 = 0 (−· −· −,
i.e. fold lines N21 and N22).
The system possesses two
fold singularities (no. 1 and
2) and three equilibrium
points (no. 3, 4 and 5)
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Fig. 12 T0-invariant of the
system (solid blue line) and
corresponding numerical
results (black line) that are
obtained by integration of
(52) with external forcing
term f10 = 0.7
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Fig. 13 Histories of system
amplitudes that are obtained
by integration of (52) with
external forcing term
f10 = 0.7: a N1; b N2
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Predictions of all possible dynamics of the system until reaching the infinity of the
T1 time scale are shown in Fig. 11. It is seen that the system has two fold singularities
on the first fold line N21, namely points 1 and 2, two equilibrium points (no. 3 and
no. 4) and another equilibrium point between two fold lines of the system (unstable
area) namely point no. 5. T0-Invariant of the system and corresponding numerical
results are presented in Fig. 12. The system presents SMR by persisting direct and
reverse bifurcations between its stability borders. This is due to the existence of fold
singularities on fold line(s) of the system [21, 46]. This behavior will be more visible
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Fig. 14 Phase portraits of
the reduced system with
external forcing term
f10 = 0.7 (see (78), (89) and
(90)) around the singular
point no. 1 (saddle)
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Fig. 15 Phase portraits of
the reduced system with
external forcing term
f10 = 0.7 (see (78), (89) and
(90)) around the singular
point no. 2 (node)
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by looking at the histories of system amplitudes which are obtained by numerical
integration and are illustrated in Fig. 13. Phase portraits of the reduced system (78)
around singular points no. 1 and 2 are presented in Figs. 14 and 15 show that these
singular points are in the form of saddle and nodes on the fold line of the system
(N21). During SMR both oscillators and all of their components present beating
responses: displacement histories of two oscillators which are depicted in Fig. 16
and also histories of internal variables of Saint-Venant elements that are presented in
Fig. 17 show not only beating responses of all components of two oscillators during
SMR but also activations of Saint-Venant elements during energy exchanges. The
SMR of an optimized designed system is a very desirable behavior from passive
control and also energy harvesting view points since both oscillators continue to
exchange the energy with large intervals of energy changes for the NES and small
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Fig. 16 Displacements
histories that are obtained by
integration of (52) with
external forcing term
f10 = 0.7: a x ; b y
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energy intervals for the main system. The system possesses two equilibrium points
namely points no. 3 and 4 (see Fig. 11). It can be attracted by one of these points
after a very long time at T1 time scale or during higher time scales (T2, T3, …). Due
to costly simulation time we did not run it for very long time scales.
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Fig. 17 Histories of internal
variables of the Saint-Venant
elements that are obtained by
integration of (52) with
external forcing term
f10 = 0.7: a u1; b u2
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5 Conclusions

Multiple scale energy exchanges of two different coupled systems are considered:
(I) a vertical system (i.e. consideration of effects of the gravity) which consists of a
linear main structural system and a coupled nonsmooth nonlinear energy sink; (II)
a main oscillator with a set of Saint-Venant elements that is coupled to a nonlinear
energy sink with a general odd nonlinear potential function. Invariants of both sys-
tems and their geometries at fast time scale let us understand the process of energy
exchanges between two oscillators with explanation of possible bifurcations between
two coupled oscillators. Reduced formof equations of systems at slow time scale give
us some tools to predict all possible regimes of systems during energy exchanges:
systems can face periodic regimes due to existence of equilibrium points while they
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can present strongly modulated responses when fold singularities are present. These
studies provide analytical design tools for tuning parameters of nonlinear energy sink
according to the design goal which can be passive control of linear/nonlinear main
structural systems by means of nonlinear energy sink. Experimentally realizations
of both systems can be carried out by considering a moving light mass in a (friction-
less) guide which is encased between two elastic walls at each end for representing
a nonsmooth NES of the system I. Identification of parameters of Magnetorheo-
logical dampers which present hysteresis behaviors can lead to models represented
by system II (with potentially added smooth nonlinear terms to the main structure)
[54, 60].
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