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Introduction

It has been proved that pumping the essential part of vibratory energy of main structures is possible by endowing nonlinear properties of coupled oscillators [START_REF] Gendelman | Transitions from localization to nonlocalization in strongly nonlinear damped oscillators[END_REF][START_REF] Gendelman | Reflection of short rectangular pulses in the ideal string attached to strongly nonlinear oscillator[END_REF]. Later on this phenomenon was used for transferring the energy of main systems to secondary oscillators with very small mass compared to the main one's and with essential cubic geometrical nonlinearity. The phenomenon is named as "energy pumping" and the light and nonlinear oscillator is called as nonlinear energy sink (NES) . Efficiency of the NES in localization of vibratory energy and passive control of systems has been proved experimentally as well [START_REF] Mcfarland | Experimental investigation of targeted energy transfers in strongly and nonlinearly coupled oscillators[END_REF][START_REF] Kerschen | Theoretical and experimental study of multimodal targeted energy transfer in a system of coupled oscillators[END_REF][START_REF] Kerschen | Experimental demonstration of transient resonance capture in a system of two coupled oscillators with essential stiffness nonlinearity[END_REF][START_REF] Gourdon | Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: theoretical and experimental results[END_REF][START_REF] Lee | Suppressing aeroelastic instability using broadband passive targeted energy transfers, part 2: experiments[END_REF][START_REF] Vaurigaud | Efficient targeted energy transfer with parallel nonlinear energy sinks: theory and experiments[END_REF][START_REF] True Savadkoohi | Targeted energy transfer with parallel nonlinear energy sinks, part II: theory and experiments[END_REF][START_REF] Wierschem | Experimental testing and numerical simulation of a six-story structure incorporating two-degree-of-freedom nonlinear energy sink[END_REF]. However in most of above mentioned studies, the nonlinearity of the NES is cubic and the main structural system is supposed to be linear or to present smooth nonlinearity [START_REF] Lee | Suppression of aeroelastic instabilities by means of targeted energy transfers: part I, theory[END_REF][START_REF] Gendelman | Asymptotic analysis of passive nonlinear suppression of aeroelastic instabilities of a rigid wing in subsonic flow[END_REF][START_REF] Vaurigaud | Targeted energy transfer with parallel nonlinear energy sinks part I: design theory and numerical results[END_REF]. Some research works have been carried out to consider other types of nonlinearities for the geometrical potential of the NES and their efficiency in passive control of main systems, e.g. vibro-impact and non-polynomial nonlinearities, non-smooth potential function with constant or time-dependent mass [START_REF] Gendelman | Analytic treatment of a system with a vibro-impact nonlinear energy sink[END_REF][START_REF] Gendelman | Targeted energy transfer in systems with non-polynomial nonlinearity[END_REF][START_REF] Lamarque | Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink[END_REF][START_REF] Nucera | Targeted energy transfers in vibro-impact oscillators for seismic mitigation[END_REF][START_REF] True Savadkoohi | Vibratory energy exchange between a linear and a non-smooth system in the presence of the gravity[END_REF][START_REF] Savadkoohi | Vibratory energy localization by non-smooth energy sink with time-varying mass[END_REF][START_REF] Lamarque | Dynamics of a linear system with time-dependant mass and a coupled light mass with non-smooth potential[END_REF]. There have been some research works that consider nonlinear main structural system to be controlled by cubic or non-smooth NES; in detail: a main oscillator with piece-wise linear and also Dahl-type behavior and a coupled nonsmooth NES [START_REF] Lamarque | Multi-scales dynamics of two coupled non-smooth systems[END_REF][START_REF] True Savadkoohi | Dynamics of coupled Dahl type and non-smooth systems at different scales of time[END_REF]; the main system with hysteresis behavior of Bouc-Wen type and a NES with general nonlinear potential function [START_REF] Lamarque | Dynamical behavior of a Bouc-Wen type oscillator coupled to a nonlinear energy sink[END_REF]; the main structure with single or several Saint-Venant elements [START_REF] Bastien | Non Smooth Deterministic or Stochastic Discrete Dynamical Systems: Applications to Models with Friction or Impact[END_REF] in parallel and a NES with cubic or general potential function [START_REF] Weiss | Dynamical behavior of a mechanical system including Saint-Venant component coupled to a nonlinear energy sink[END_REF][START_REF] Lamarque | Targeted energy transfer between a system with a set of Saint-Venant elements and a nonlinear energy sink[END_REF]. The current paper is a summary of our two previous research works which deals with the localization of vibratory energy of: (i) vertical main structural systems by a nonsmooth NES [START_REF] True Savadkoohi | Vibratory energy exchange between a linear and a non-smooth system in the presence of the gravity[END_REF] and (ii) main structural systems with a set of parallel Saint-Venant elements by a NES with general potential function [START_REF] Lamarque | Targeted energy transfer between a system with a set of Saint-Venant elements and a nonlinear energy sink[END_REF]. Organization of the chapter is as it follows: summary of the general methodology to deal with multiple scale dynamics of a main oscillator and a coupled NES is given in Sect. 2. Energy exchanges between a vertical linear system and a coupled nonsmooth NES is presented in Sects. 3 and 4 deals with studying of the dynamics of a main structural system including a set of parallel Saint-Venant elements and a coupled NES with a general nonlinear potential function. Finally conclusions are collected in Sect. 5.

General Methodology to Deal with Two Coupled Oscillators: A Main System + NES

In order to study multiple energy exchanges between a main oscillator and a coupled NES, we implement following steps [START_REF] Lamarque | Dynamical behavior of a Bouc-Wen type oscillator coupled to a nonlinear energy sink[END_REF]:

• re-scaling the system.

• transferring the system to the center of mass and relative displacement.

• applying complex variables to the system and using Galerkin technique by keeping first harmonics (and constant terms). • embedding the time to different scales (fast and slow time scales) and detecting invariant manifold at the fast time scale and equilibrium points and fold singularities of the reduced order form of the system at the slow time scale.

Localization of Vibratory Energy of Vertical Main Linear Structural Systems by Coupled Non-smooth NES

Here we would like to analyze time multi-scale energy exchanges between a linear system and a nonsmooth NES. Gravity loads are not neglected. Let us consider the academic model of a system which is subjected to vertical excitations as is depicted in Fig. 1. The system is composed of a linear main structure (M) which is coupled to a non-smooth NES (m) system. Governing system equations can be summarized as:

⎧ ⎨ ⎩ M ÿ1 + k 1 y 1 + F(y 1 -y 2 ) + η( ẏ1 -ẏ2 ) + Mg = Γ sin(Ωt) m ÿ2 + F(y 2 -y 1 ) + η( ẏ2 -ẏ1 ) + mg = 0 ( 1 
)
where η is the continues linear damping of the NES and F is the non-smooth potential function of the NES which is defined as follows:

F(z) = - ∂ V (z) ∂z = -F(-z) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 0 i f-δ ≤ z ≤ δ k 2 (z -δ) if z ≥ δ k 2 (z + δ) if z ≤ -δ (2) 
If we suppose that T = t k 1 M = tϑ, then the system (1) in the T domain reads:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ÿ1 + y 1 + 1 k 1 F(y 1 -y 2 ) + η √ k 1 M ( ẏ1 -ẏ2 ) + Mg k 1 = Γ sin( Ω ϑ T ) k 1 ε ÿ2 + 1 k 1 F(y 2 -y 1 ) + η √ k 1 M ( ẏ2 -ẏ1 ) + mg k 1 = 0 (3) 
We introduce the following variables:

ε = m M , γ = Mg k 1 , ελ = η √ k 1 M , 1 k 1 F(z) = ε F(z), k = 1 ε k 2 k 1 , ω = Ω ϑ and Γ k 1 = ε f 0 .
So, scaled potential of the NES reads:

F(z) = ⎧ ⎨ ⎩ 0 i f -δ ≤ z ≤ δ k(z -δ) i f z ≥ δ k(z + δ) i f z ≤ -δ (4) 
Following system can be derived:

⎧ ⎨ ⎩ ÿ1 + y 1 + ε F(y 1 -y 2 ) + ελ( ẏ1 -ẏ2 ) + γ = ε f 0 sin(ωT ) ε ÿ2 + ε F(y 2 -y 1 ) + ελ( ẏ2 -ẏ1 ) + εγ = 0 (5)
We are interested to study forced vibration but also the transient behavior occurring before reaching the steady-state regime. The frequency of the main system in ( 5) is equal to "1" and we would like to analyze system behavior in the vicinity of 1:1 resonance. We will suppose that ω = 1 + σ ε and since ε is a small, it means that we will pinpoint system behavior around 1:1 resonance. Let us transfer the system to the following coordinates:

⎧ ⎨ ⎩ v = y 1 + εy 2 w = y 1 -y 2 (6) 
In the second equation of the system (5), the parameter ε has been kept intentionally in order to show coupling terms between two equations of the system (5) and physical orders of respective equations. Especially v is associated to the center of two masses (1, ε). If we divide the second equation of the system (5) by ε, then we will have a system of two masses at the same order (1, 1), leading to v = y 1 + y 2 and w = y 1y 2 which do not have appropriate physical meanings for the system under consideration. The consequence should be to keep nonlinear terms in both resulting equations for v and w. By adding and subtraction two equations of the system (5) we will have:

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ v + 1 1 + ε (v + εw) + γ (1 + ε) = ε f 0 sin(ωT ) ẅ + 1 1 + ε (v + εw) + (1 + ε) F(w) + (1 + ε)λ ẇ = ε f 0 sin(ωT ) (7)
We introduce a modified form of Manevitch's complex variables [START_REF] Manevitch | The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables[END_REF] to the system (7):

⎧ ⎨ ⎩ B 1 + ϕ 1 e iωT = v + iωv B 2 + ϕ 2 e iωT = ẇ + iωw (8)
with B 1 = ib 1 , B 2 = ib 2 and i 2 = -1. B 1 and B 2 are constant terms taking into account the fact that the dynamical system (5) (including γ ) is not written around the (y 1 , y 2 , ẏ1 , ẏ2 ) = (0, 0, 0, 0). So, we have to include constant terms to take into account nonlinear terms in averaging. It corresponds to taking into account constant terms of Fourier series together with first harmonic terms. We can present the function F(w) in the form of Fourier series:

F(w) = F b 2 ω - i 2ω (ϕ 2 e iωT -ϕ * 2 e -iωT ) = +∞ j=-∞ f j (b 2 , ϕ 2 , ϕ * 2 )e iωj T ( 9 
)
where the * represents the complex conjugate of the function under consideration. We implement the Galerkin method using a truncated Fourier series (constant and first harmonic) and then we endow multiple time scales approach to investigate the evolution of the Fourier-coefficients. The constant and first harmonic of the ( 7) by considering variables of (8) and j = 0, 1 in (9) read as:

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 1 1 + ε b 1 ω + ε b 2 ω + (1 + ε)γ = 0 1 1 + ε b 1 ω + ε b 2 ω + (1 + ε) f z (b 2 , ϕ 2 , ϕ * 2 ) = 0 (10) 
⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ φ1 = - i 2 ε f 0 + i 2ω(1 + ε) (ϕ 1 + εϕ 2 ) - i 2 ωϕ 1 φ2 = - i 2 ε f 0 + i 2ω(1 + ε) (ϕ 1 + εϕ 2 ) - λ(1 + ε) 2 ϕ 2 - i 2 ωϕ 2 -(1 + ε) f f (b 2 , ϕ 2 , ϕ * 2 ) (11) where f z (b 2 , ϕ 2 , ϕ * 2 ) and f f (b 2 , ϕ 2 , ϕ * 2 )
are zero and first Fourier coefficients which can be evaluated as:

f z (b 2 , ϕ 2 , ϕ * 2 ) = ω 2π 2π ω 0 F b 2 ω - i 2ω (ϕ 2 e iωT -ϕ * 2 e -iωT ) dT (12) f f (b 2 , ϕ 2 , ϕ * 2 ) = ω 2π 2π ω 0 F b 2 ω - i 2ω (ϕ 2 e iωT -ϕ * 2 e -iωT ) e -iωT dT (13) 
It can be proved that [START_REF] True Savadkoohi | Vibratory energy exchange between a linear and a non-smooth system in the presence of the gravity[END_REF]:

f f (b 2 , ϕ 2 , ϕ * 2 ) = - iϕ 2 2 G f |ϕ 2 | 2 (14) 
where for any variable χ ≥ 0

G f χ) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 0 i f b 2 ω + √ χ ω < δ k 2πω π + 2b 2 χ χ -(b 2 -δω) 2 - 2δω χ χ -(b 2 -δω) 2 - 2b 2 χ χ -(b 2 + δω) 2 - 2δω χ χ -(b 2 + δω) 2 + 2 arccos b 2 + δω √ χ + 2 arcsin b 2 -δω √ χ i f b 2 ω + √ χ ω ≥ δ
(15) and

f z χ = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 0 i f b 2 ω + √ χ ω < δ k πω b 2 π + (b 2 + √ χ -δω)(-b + √ χ + δω)- (-b 2 + √ χ -δω)(b 2 + √ χ + δω)+ (b 2 -δω) arcsin b 2 -δω √ χ + (b 2 + δω) arcsin b 2 + δω √ χ i f b 2 ω + √ χ ω ≥ δ (16) 
To deal with the systems [START_REF] Kerschen | Energy transfers in a system of two coupled oscillators with essential nonlinearity: 1:1 resonance manifold and transient bridging orbits[END_REF] and [START_REF] Gourdon | Energy pumping for a larger span of energy[END_REF], an asymptotic approach [START_REF] Nayfeh | Nonlinear Oscillations[END_REF] by introducing slow times τ 1 , τ 2 , …with the fast time τ 0 can be implemented as follows:

T = τ 0 , τ 1 = ετ 0 , . . . , (17) so 
, d dT = ∂ ∂τ 0 + ε ∂ ∂τ 1 + • • • (18) 
In the next sections we will try to have finer envision into systems [START_REF] Kerschen | Energy transfers in a system of two coupled oscillators with essential nonlinearity: 1:1 resonance manifold and transient bridging orbits[END_REF] and [START_REF] Gourdon | Energy pumping for a larger span of energy[END_REF] at different orders of ε in order to grasp the system behavior during different scales of time.

Truncated Fourier Series: Constant Term

The general form of the system [START_REF] Kerschen | Energy transfers in a system of two coupled oscillators with essential nonlinearity: 1:1 resonance manifold and transient bridging orbits[END_REF] show that γ = f z (N 2 2 ). During the ε 0 order, it leads to:

b 1 = -γ (19) 
while during the ε 1 order we have:

b 2 = -γ (2 + σ ) (20)

Truncated Fourier Series: First Harmonic

ε 0 Order

We assume that the system is around 1:1 resonance (ω = 1 + σ ε). Equation ( 11) at the ε 0 order yield to:

∂ϕ 1 ∂τ 0 = 0 ⇒ ϕ 1 = ϕ 1 (τ 1 ) ( 21 
)
∂ϕ 2 ∂τ 0 + i 1 -G f |ϕ 2 | 2 + λ 2 ϕ 2 = i 2 ϕ 1 (22) 
so, fixed points of the system (Φ(τ 1 )) can be evaluated by following equation:

i 1 -G f |Φ| 2 + λ 2 Φ = i 2 ϕ 1 (23) 
Let us assume that ϕ 1 = N 1 e iδ 1 and Φ = N 2 e iδ 2 , so ( 23) can be re-written as the following form:

N 2 -iλN 2 -G f (N 2 2 )N 2 = N 1 e i(δ 1 -δ 2 ) ( 24 
)
which leads us to follow invariant manifold of the system during τ 0 time scale (τ 0invariant):

N 1 = N 2 λ 2 + 1 -G f (N 2 2 ) 2 (25) 
A typical invariant manifold for given system parameters is illustrated in Fig. 2. It has been proved that stability borders of the τ 0 -invariant is defined as it follows [START_REF] True Savadkoohi | Vibratory energy exchange between a linear and a non-smooth system in the presence of the gravity[END_REF]: Stable and unstable zones of the invariant manifold are depicted in Fig. 2. In fact when the system arrives to the vicinity of the unstable zone, it tries to reach another stable zone via a bifurcation. This will lead to the energy pumping phenomenon.

λ 2 + 1 -G f (N 2 2 ) 1 -H (N 2 2 )N 2 -G f (N 2 2 ) > 0 (26) 

ε 1 Order

At the order of ε 1 the first equation of the system (11) reads as:

∂ϕ 1 ∂τ 1 = - i 2 f 0 + i 2 (Φ -ϕ 1 -σ ϕ 1 ) - i 2 σ ϕ 1 ( 27 
)
Let us try to enlighten the behavior of the system at the τ 1 time scale "around" the invariant manifold at the time scale τ 0 . By considering [START_REF] Starosvetsky | Vibration absorption in systems with a nonlinear energy sink: nonlinear damping[END_REF], following system can be derived:

∂ ∂τ 1 Φ -iλΦ -ΦG f (|Φ| 2 ) = i 2 -f 0 -2σ Φ -iλΦ -G f |Φ| 2 Φ + iλΦ + G f |Φ| 2 Φ ( 28 
)
and if we suppose that Φ = N 2 (τ 1 )e iδ 2 (τ 1 ) , following compact for of equations can be obtained:

∂ N 2 ∂τ 1 = f 1 (N 2 , δ 2 ) g(N 2 ) ( 29 
)
∂δ 2 ∂τ 1 = f 2 (N 2 , δ 2 ) g(N 2 ) ( 30 
)
where,

f 1 (N 2 , δ 2 ) = f 0 sin(δ 2 ) G f N 2 2 -1 -λN 2 + λ f 0 cos(δ 2 ) (31) f 2 (N 2 , δ 2 ) = - 1 -G f N 2 2 -2N 2 2 G f N 2 2 N 2 f 0 cos(δ 2 ) - λ N 2 f 0 sin(δ 2 ) -λ 2 (1 + 2σ ) + 1 -G f N 2 2 -2N 2 2 G f N 2 2 -2σ + 2σ G f N 2 2 + G f N 2 2 (32) g(N 2 ) = 2 1 + λ 2 -2G f N 2 2 -2N 2 2 G f N 2 2 + G 2 f N 2 2 + 2N 2 2 G f N 2 2 G f N 2 2 (33)
The relation g(N 2 ) = 0 provides two values for N 2 , namely N 21 and N 22 . They are called as fold lines of the system. We will use these equations later on for detailed bifurcation analysis of the system.

For detecting the invariant manifold of the system at the τ 1 time scale (τ 1 -invariant), ( 28) can be re-written as (

∂ϕ 1 ∂τ 1 = 0): i 2 -f 0 -2σ Φ -iλΦ -G f |Φ| 2 Φ + iλΦ + G f |Φ| 2 Φ = 0 (34) 
or

f 0 = N 2 λ 2 (1 + 2σ ) 2 + (1 + 2σ )G f N 2 2 -2σ 2 (35) 
A typical invariant manifold of the system at the time scale τ 1 is depicted in Fig. 3. Intersections of this invariant manifold (for a given f 0 ) with the τ 0 -invariant are positions of fixed points. 

Analytical Results Versus Numerical Integrations

Since the overall system is under gravity loading, the initial equilibrium state of each mass (y 10 and y 20 ) should be evaluated. Let us consider different hypothesis as the equilibrium state for the system (1):

• -δ < y 2 -y 1 < +δ so F(y 2 -y 1 ) = 0
This assumption leads us to following system:

⎧ ⎨ ⎩ k 1 y 1 + Mg = 0 mg = 0 ( 36 
)
which is an impossible equality. So, this assumption is not valid at the equilibrium state of the overall system.

• y 2 -y 1 < -δ so F(y 2 -y 1 ) = k 2 (y 2 -y 1 ) + k 2 δ
This leads to following system:

⎧ ⎨ ⎩ k 1 y 1 -k 2 (y 2 -y 1 ) -k 2 δ + Mg = 0 k 2 (y 2 -y 1 ) + k 2 δ + mg = 0 (37) so, ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ y 10 = - Mg k 1 (1 + ε) = -γ (1 + ε) y 20 = - Mg k 1 (1 + ε) -δ - mg k 2 = -γ (1 + ε) -δ -ε Mg k 2 (38) 
This equilibrium point should be considered in all numerical results. We can impose equilibrium states to the numerical results as follows:

⎧ ⎨ ⎩ v numerical = (y 1 -y 10 ) + ε(y 2 -y 20 ) w numerical = (y 1 -y 10 ) -(y 2 -y 20 ) (39) 
So, N 1 and N 2 can be defined in terms of original system of equations (N exact 1 and N exact 2 ) as:

N exact 1 = (v numerical ) 2 + ( ẏ1 + ε ẏ2 ) 2 . ( 40 
)
N exact 2 = (w numerical ) 2 + ( ẏ1 -ẏ2 ) 2 . ( 41 
)
Let us consider the following initial conditions for the system:

⎧ ⎨ ⎩ y 1 (0) = 1.5 + y 10 , ẏ1 (0) = 0 y 2 (0) = y 20 , ẏ2 (0) = 0 (42)
Figure 4 presents τ 0 -invariant of the system and corresponding numerical results which are obtained by direct integration of ( 5) with the external forcing amplitude f 0 = 0.1. When the system arrives to the unstable zone, it tries to reach other stable zone by an abrupt jump between its stable branches through a bifurcation. This bifurcation leads the master structure to experience very low amplitude compared to initial stages of the vibration (see Fig. 5).

Strongly Modulated Response in the Presence of Gravity

The strongly modulated response (SMR) of the system in the vicinity of the 1:1 resonance is characterized by relaxation oscillations between stable branches of the slow invariant manifold, i.e. switches between slow motions at stable critical manifolds of the system and fast jumps between them. Starosvetsky and Gendelman [START_REF] Starosvetsky | Strongly modulated response in forced 2DOF oscillatory system with essential mass and potential asymmetry[END_REF] pinpointed this behavior in two coupled oscillators with essential cubic nonlinearity for the NES while Lamarque et al. [START_REF] Lamarque | Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink[END_REF] investigated the same behavior in systems with non-smooth NES. Let us consider [START_REF] Savadkoohi | Analysis of the transient behavior in a two dof nonlinear system[END_REF] and [START_REF] Starosvetsky | Response regimes in forced system with non-linear energy sink: quasi-periodic and random forcing[END_REF]. The possible relaxation of the system can occur if the flow in the vicinity of the lower fold line, i.e. N 21 , experiences some bifurcation, i.e. for some points at the lower fold, N 2 changes its direction, so phase trajectories of the lower stable branch can change their direction and aim at the fold line N 21 for a jump to upper stable branch. This criterion will be satisfied if in [START_REF] Savadkoohi | Analysis of the transient behavior in a two dof nonlinear system[END_REF] and [START_REF] Starosvetsky | Response regimes in forced system with non-linear energy sink: quasi-periodic and random forcing[END_REF]:

f 1 (N 2 , δ 2 ) = 0 f 2 (N 2 , δ 2 ) = 0 ( 43 
)
which corresponds to ordinary fixed points of the system under consideration. If in addition to this, g(N 2 ) = 0 (the denominator of ( 29)) then the system will have fold singularities, i.e. singularity and equilibrium points coincide, so N 2 = N 21 and

N 2 = N 22 .
It is worthwhile to mention that g(N 2 ) = 0 is exactly equivalent to stability borders which are presented by (26) [START_REF] True Savadkoohi | Vibratory energy exchange between a linear and a non-smooth system in the presence of the gravity[END_REF], i.e.

λ 2 + 1 -G f (N 2 2 ) 1 -H (N 2 2 )N 2 -G f (N 2 2 ) = 0 (44) 
Lamarque et al. [START_REF] Lamarque | Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink[END_REF] proved that necessary forcing condition for existence of the first pair of folded singularities, i.e. (N 21 , δ 21 ), is:

f 0 ≥ f 0(1critical) = λN 21 λ 2 + 1 -G f N 2 21 2 (45) 
and the second pair of folded singularities on the second fold, i.e. (N 22 , δ 21 ) and (N 22 , δ 22 ), exists if:

f 0 ≥ f 0(2critical) = λN 22 λ 2 + 1 -G f N 2 22 2 (46) 
Let us analyze the system under external forcing term f 0 = 0.3 > f 0(1critical) = 0.254. The global behavior of the system is depicted in Fig. 6 while histories of system amplitudes are illustrated in Fig. 7. The response of the system is strongly modulated by trapping into hysteresis loops and bifurcations between its stables branches. In order to clarify this, phase portraits of the system is depicted in Fig. 8a while a zoomed area of this figure is illustrated in Fig. 8b. It is seen that some flow lines change their direction toward the fold line N 21 which gives a hint of the relaxation of the system by facing to folded singularities in the form of saddle and node (see Fig. 8b). 

Representation of the System

We consider the system which is depicted in Fig. 9: It consists of two coupled oscillators. The first one with mass, stiffness and damping as M, k 0 and λ, which possesses a set of parallel Saint-Venant elements with characteristics as k j (stiffness) and α j (threshold of the Saint-Venant element), j = 1, 2, . . . , n. Each Saint-Venant element has an internal variable (displacement u j ). The second oscillator, namely NES has the mass, stiffness and damping as m (0 < ε = m M 1), c1 and λ1 . The potential of the NES (F) is supposed to be a general "nonlinear" and "odd" function, i.e. F(-z) = -F(z) (e.g. F(z) = z 3 ) [START_REF] Lamarque | Targeted energy transfer between a system with a set of Saint-Venant elements and a nonlinear energy sink[END_REF]. If x (versus y) be the displacement of the mass M (respectively mass m), governing equations of the system can be summarized as: The β graph which is depicted in Fig. 10 can be described as it follows:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ M d 2 x dt 2 + λ dx dt + λ1 ( dx dt - dy dt ) + k 0 x + n j=1 k j u j + c1 F(x -y) = f 1 (t) m d 2 y dt 2 + λ1 ( dy dt - dx dt ) + c1 F(y -x) = 0 du j dt + β( u j η j ) dx dt , η j = α j k j , j = 1, 2, . . . , n (47) 
β(x) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ∅ if x ∈ ] -∞, -1[∪]1, +∞[ 0 if x ∈ ] -1, 1[ R -if x = -1 R + if x = 1 (48) Let us introduce τ = t k 0 M = ϑt, λϑ Mϑ 2 = ελ 0 , k j Mϑ 2 = εk j , c1 Mϑ 2 = εc 10 , λ1 ϑ Mϑ 2 = ελ 10 , f 1 ( τ ϑ ) Mϑ 2 = ε f 10 sin(Ωτ ).
We mention that the differential inclusions of the model under consideration come from basic constitutive equations of the Saint-Venant elements as:

k j u j ∈ α j σ ( dx dt - du j dt ), j = 1, 2, . . . , n ( 49 
)
where σ is the graph of the sign:

σ (z) = ⎧ ⎨ ⎩ -1 if z < 0 [ -1, 1] if z = 0 1 i f z > 0 (50) 
So, one should take into account that d. dt = ϑ d. dτ and

k j u j ∈ α j σ ϑ( dx dτ - du j dτ ) j = 1, 2, . . . , n ⇔ k j u j ∈ α j σ ( dx dτ - du j dτ ) j = 1, 2, . . . , n (51) 
Finally [START_REF] Nucera | Targeted energy transfers in vibro-impact oscillators for seismic mitigation[END_REF] are equivalent to

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ d 2 x dτ 2 + ελ 0 dx dτ + ελ 10 ( dx dτ - dy dτ ) + x + ε n j=1 k j u j + εc 10 F(x -y) = ε f 10 sin(Ωτ ) ε d 2 y dτ 2 + ελ 10 ( dy dτ - dx dτ ) + εc 10 F(y -x) = 0 du j dτ + β( u j η j ) dx dτ , η j = α j k j , j = 1, 2, . . . , n (52) 
Let us introduce coordinates of the center of mass and relative displacement via

v = x + εy w = x -y ⇔ ⎧ ⎪ ⎨ ⎪ ⎩ x = v + εw 1 + ε y = v -w 1 + ε (53)
System ( 52) becomes:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ d 2 v dτ 2 + ελ 0 1 + ε ( dv dτ + ε dw dτ ) + v + εw 1 + ε + +ε n j=1 k j u j = ε f 10 sin(Ωτ ) d 2 w dτ 2 + ελ 0 1 + ε ( dv dτ + ε dw dτ ) + v + εw 1 + ε + +ε n j=1 k j u j +(1 + ε)(λ 10 dw dτ + c 10 F(w)) = ε f 10 sin(Ωτ ) du j dτ + β( u j η j ) 1 1 + ε ( dv dτ + ε dw dτ ), η j = α j k j , j = 1, 2, . . . , n (54) 

Dynamical Behavior Around 1:1 Resonance

Let us set T = Ωτ and • = d dτ . We introduce the following complex variables [57] to the system:

φ 1 e i T = Ω(v + ıv) ,φ * 1 e -i T = Ω(v -iv) φ 2 e i T = Ω( ẇ + iw) , φ * 2 e -i T = Ω( ẇ -iw) φ 2+ j e i T = Ω( u j + iu j ) , φ * 2+ j e -i T = Ω( u j -iu j ) , j = 1, 2, . . . , n (55) 
with i 2 = -1. To investigate the 1:1 resonance, we assume Ω = 1 + σ ε.

We consider only equations obtained by Galerkin method and truncated Fourier series: Indeed we take into account only first harmonic e i T for each equation. To calculate the corresponding Fourier coefficients we assume that φ l and φ * l (l = 1, 2, . . . , n + j) do not depend on T . We will either verify this assumption during the multiple scales analysis, or we will assume that after a transient long enough φ l and φ * l (l = 1, 2, . . . , n + j) reach to an "asymptotic state" independently of T . Nevertheless we also keep φl and φ2 in the equations. Then we obtain following system:

Ω φ1 - Ω 2i φ 1 + ελ 0 (φ 1 + εφ 2 ) 2(1 + ε) + φ 1 + εφ 2 2iΩ(1 + ε) + ε n j=1 k j φ j+2 2Ωi = ε f 10 2i Ω φ2 - Ω 2i φ 2 + ελ 0 (φ 1 + εφ 2 ) 2(1 + ε) + φ 1 + εφ 2 2iΩ(1 + ε) + n j=1 k j φ j+2 2Ωi +(1 + ε)(c 10 F + λ 10 2 φ 2 ) = ε f 10 2i φ j+2 = φ 1 + εφ 2 (1 + ε)π ξ j |φ 1 + εφ 2 | (1 + ε)Ω , j = 1, 2, . . . , n (56) 
where

F = 1 2π 2π 0 e -i T F φ 1 e i T -φ * 2 e -i T 2iΩ dT ( 57 
)
and ξ j (z)(∀z ∈ R + , j = 1, 2, . . . , n) reads:

ξ j (z) = ⎧ ⎨ ⎩ π if z η j θ + e -iθ sin(θ ) -4e -i θ 2 sin( θ 2 ) - 4η j z e -i(θ+ π 2 ) if z > η j ( 58 
)
with θ = arccos(1 - 2η j z ) ( 59 
)
As in the Sect. 3 a multiple scale approach [START_REF] Nayfeh | Nonlinear Oscillations[END_REF] with a small (and given) parameter ε is presented by considering fast time T 0 = T , and slow times T l = ε l T , l = 1, 2, . . . so that:

d dT = d dT 0 + ε d dT 1 + ε 2 d dT 2 + . . . ( 60 
)

ε 0 -Order of the System

At ε 0 order, following equations can be derived from the system of ( 56):

∂φ 1 ∂ T 0 = 0 ⇒ φ 1 = φ 1 (T 1 , T 2 , . . .) (61) ∂φ 2 ∂ T 0 + φ 1 -φ 2 2i + c 10 F + λ 10 2 φ 2 = 0 ( 6 2 
)

φ j+2 = φ 1 π ξ j (|φ 1 |), j = 1, 2, . . . , n (63) 
We can see from equations that φ 1 is a constant versus T 0 = T , as well as φ j+2 , j = 1, 2, . . . , n, so the assumption for calculation of Fourier coefficients of e i T = e i T 0 is verified a posteriori. For φ 2 , we can not claim the same property. This is why we process as follows: We assume that when T 0 → ∞, φ 2 reaches an asymptotic equilibrium governed by a manifold called T 0 -invariant. Then we have:

φ 1 -φ 2 2i + c 10 F + λ 10 2 φ 2 = 0 ( 6 4 ) 
so that implicitly φ 2 may depend on T 1 now, but no longer on T 0 (after T 0 long enough to approach the asymptotic state of φ 2 governed by ( 64)). We study modulation of the dynamics around periodic solution depending on time T 0 associated to the T 0invariant. Let us also notice that equations for φ j+2 , j = 1, 2, . . . , n are governed by first order differential equations.

ε 1 -Order of the System and Modulations Around T 0 -Invariant

The ε 1 order of the first equation of system (56) reads:

dφ 1 dT 1 + λ 0 2 φ 1 + φ 2 2i - 2σ + 1 2i φ 1 + n j=1 k j φ j+2 2i = f 10 2i (65) 
Let us consider T 0 -invariant and also obtained solutions at ε 0 order for φ j+2 , j = 1, 2, . . . , n. We write (64) in the general form:

φ 1 = H (φ 2 , φ * 2 ) (66) 
We introduce polar form for φ j , j = 1, 2, . . . , n + 2 as it follows:

φ j = N j e iδ j , N j ∈ R + , δ j ∈ R (67) 
From relation (66) it is clear that we can obtain two explicit analytical solutions providing N 1 and δ 1 as functions of N 2 and δ 2 :

N 1 = H 1 (N 2 , δ 2 ) δ 1 = H 2 (N 2 , δ 2 ) (68)
From the (63) we have:

N j+2 e iδ j+2 = N 1 π e iδ 1 ξ j (N 1 ), j = 1, 2, . . . , n (69) 
or

N j+2 e i(δ j+2 -δ 1 ) = N 1 π ξ j (N 1 ), j = 1, 2, . . . , n (70) 
so that

N j+2 = N 1 π |ξ j (N 1 )|, j = 1, 2, . . . , n (71) 
and δ j+2 depends on N 1 and δ 1 . Let us write

δ j+2 = ρ j (N 1 , δ 1 ), j = 1, 2, . . . , n (72) 
From (65) we have:

∂ N 1 ∂ T 1 + i N 1 ∂δ 1 ∂ T 1 + ( λ 0 2 - 2σ + 1 2i )N 1 + N 2 2i e i(δ 2 -δ 1 ) + n j=1 k j N 1 π ξ j (N 1 ) 2i = f 10 2i e -iδ 1
(73) Introducing real and imaginary parts of ξ

ξ j (N 1 ) = ξ jr (N 1 ) + iξ ji (N 1 ), j = 1, 2, . . . , n (74) 
finally one can obtain:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∂ N 1 ∂ T 1 + λ 0 2 N 1 + N 2 2 sin(δ 2 -δ 1 ) + n j=1 k j N 1 π ξ ji (N 1 ) 2 = - f 10 2 sin(δ 1 ) N 1 ∂δ 1 ∂ T 1 + 2σ + 1 2 N 1 - N 2 2 cos(δ 2 -δ 1 ) - n j=1 k j N 1 π ξ jr (N 1 ) 2 = - f 10 2 cos(δ 1 ) (75) 
Then, from (68) we can reach a linear system in

∂ N 2 ∂ T 1 and ∂δ 2 ∂ T 1 : ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ∂ H 1 ∂ N 2 ∂ N 2 ∂ T 1 + ∂ H 1 ∂δ 2 ∂δ 2 ∂ T 1 -m 1 = 0 H 1 ( ∂ H 2 ∂ N 2 ∂ N 2 ∂ T 1 + ∂ H 2 ∂δ 2 ∂δ 2 ∂ T 1 ) -m 2 = 0 (76) 
where

-m 1 = λ 0 2 H 1 + N 2 2 sin(δ 2 -H 2 ) + n j=1 k j H 1 π ξ ji (H 1 ) 2 + f 10 2 sin(δ 1 ) -m 2 = 2σ + 1 2 H 1 - N 2 2 cos(δ 2 -H 2 ) - n j=1 k j H 1 π ξ jr (H 1 ) 2 + f 10 2 cos(δ 1 )
(77) Finally, by solving the system (76), the following equations are obtained:

∂ N 2 ∂ T 1 = f1 (N 2 , δ 2 ) g(N 2 , δ 2 ) N 2 ∂δ 2 ∂ T 1 = f2 (N 2 , δ 2 ) g(N 2 , δ 2 ) (78) where f1 (N 2 , δ 2 ) = H 1 ∂ H 2 ∂δ 2 m 1 - ∂ H 1 ∂δ 2 m 2 f2 (N 2 , δ 2 ) = N 2 ( ∂ H 1 ∂ N 2 m 2 -H 1 ∂ H 2 ∂ N 2 m 1 ) g(N 2 , δ 2 ) = H 1 ( ∂ H 1 ∂ N 2 ∂ 2 ∂δ 2 - ∂ H 2 ∂ N 2 ∂ H 1 ∂δ 2 ) (79)

Analysis of the Dynamics: General Method

The analysis of the dynamical behavior corresponding to a modulation at 1:1 resonance around the T 0 -invariant is given by:

• geometry of the T 0 -invariant in the N 1 , N 2 and δ 2 space associated to the relation

N 1 = H 1 (N 2 , δ 2 ).
• equilibrium points of the reduced system (78) are given by:

⎧ ⎨ ⎩ f 1 (N 2 , δ 2 ) = 0, f 2 (N 2 , δ 2 ) = 0 g 1 (N 2 , δ 2 ) = 0, g 2 (N 2 , δ 2 ) = 0 (80) if f 1 , f 2 ,
g 1 and g 2 correspond to numerators and denominators of the system (78).

• singular points of the reduced system (78) are given by:

⎧ ⎨ ⎩ f 1 (N 2 , δ 2 ) = 0, f 2 (N 2 , δ 2 ) = 0 g 1 (N 2 , δ 2 ) = 0, g 2 (N 2 , δ 2 ) = 0 (81) if f 1 , f 2 ,
g 1 and g 2 correspond to numerators and denominators of the system (78). Singular points are potentially associated to bifurcations.

Analysis of the Dynamics for a Particular Case

Let us choose n = 2 and

F(z) = z 3 (82)
in such a case, we have

F = 1 2i G(|φ 2 | 2 )φ 2 (83) with G(χ ) = 3 4 χ , χ ≥ 0 (84) 
Then

φ 1 = H (φ 2 , φ * 2 ) = φ 2 -2ic 10 F -iλ 10 φ 2 = φ 2 - 3 4 c 10 |φ 2 | 2 φ 2 -iλ 10 φ 2
and

H 1 (N 2 , δ 2 ) = N 2 λ 2 10 + (1 - 3 4 c 10 N 2 2 ) 2 H 2 (N 2 , δ 2 ) = δ 2 + arctan -λ 10 1 -3 4 c 10 N 2 2 (86)
Now, m 1 and m 2 can be obtained from the general expression in (77). Moreover, we have simplified expression for g since H 1 does not depend on δ 2 and H 2 depends linearly on δ 2 .

g(N 2 , δ 2 ) = H 1 ∂ H 1 ∂ N 2 (87)
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From the expression of H 1 it is clear that g does not depend on δ 2 . We have also:

f1 (N 2 , δ 2 ) = H 1 m 1 f2 (N 2 , δ 2 ) = ∂ H 1 ∂ N 2 m 2 -H 1 ∂ H 2 ∂ N 2 m 1 N 2 (88)
Finally, let us give expressions of f 1 , f 2 , g 1 and g 2 . The reduced system of equations reads:

f1 g = m 1 ∂ H 1 ∂ N 2 = m 1 λ 2 10 + (1 -3 4 c 10 N 2 2 ) 2 λ 2 10 + (1 -3 4 c 10 N 2 2 )(1 -9 4 c 10 N 2 2 ) f2 g = N 2 ( ∂ H 1 ∂ N 2 m 2 -H 1 ∂ H 2 ∂ N 2 m 1 ) H 1 ∂ H 1 ∂ N 2 = 3λ 10 c 10 N 2 2 m 1 + 2m 2 λ 2 10 + (1 -3 4 c 10 N 2 2 )(1 -9 4 c 10 N 2 2 ) 2 λ 2 10 + (1 -3 4 c 10 N 2 2 )(1 -9 4 c 10 N 2 2 ) λ 2 10 + (1 -3 4 c 10 N 2 2 )(1 -9 4 c 10 N 2 2 )
(89) so that:

f 1 = m 1 λ 2 10 + (1 -3 4 c 10 N 2 2 ) 2 f 2 = 3λ 10 c 10 N 2 2 m 1 + 2m 2 λ 2 10 + (1 -3 4 c 10 N 2 2 )(1 -9 4 c 10 N 2 2 ) g 1 = λ 2 10 + (1 - 3 4 c 10 N 2 2 )(1 - 9 4 c 10 N 2 2 ) g 2 = 2g 1 λ 2 10 + (1 -3 4 c 10 N 2 2 ) 2 (90) 
Equilibrium points are given by:

f 1 = 0 , f 2 = 0 and g 1 = 0 (91)
and singular points are governed by:

f 1 = 0 , f 2 = 0 and g 1 = 0 (92)
This is equivalent to:

m 1 = 0 g 1 = 0 ( 93 
)
Then g 1 = 0 provides analytical values of N 2 (fold lines):

N 2 = 2 3 1 c 10 2 ∓ 1 -3λ 2 10 (94)
For a given N 2 , m 1 depends only on the variable δ 2 and can be solved numerically.

Analytical Developments Versus Numerical Integrations

Let us set

c 10 = 1, λ 10 = 0.1, λ 0 = 0.1, η 1 = 0.1, η 2 = 0.15, k 1 = 1, k 2 = 2, ε = 0.001.
We consider that f 10 = 0.7. Euler's scheme [START_REF] Bastien | Non Smooth Deterministic or Stochastic Discrete Dynamical Systems: Applications to Models with Friction or Impact[END_REF][START_REF] Schmidt | Energy pumping for mechanical systems involving non-smooth Saint-Venant terms[END_REF] with time steps as Δτ = 10 -4 is endowed for solving system of [START_REF] True Savadkoohi | Dynamics of coupled Dahl type and non-smooth systems at different scales of time[END_REF]. Assumed initial conditions are x(0) = 0.5 and y(0 Predictions of all possible dynamics of the system until reaching the infinity of the T 1 time scale are shown in Fig. 11. It is seen that the system has two fold singularities on the first fold line N 21 , namely points 1 and 2, two equilibrium points (no. 3 and no. 4) and another equilibrium point between two fold lines of the system (unstable area) namely point no. 5. T 0 -Invariant of the system and corresponding numerical results are presented in Fig. 12. The system presents SMR by persisting direct and reverse bifurcations between its stability borders. This is due to the existence of fold singularities on fold line(s) of the system [START_REF] Starosvetsky | Strongly modulated response in forced 2DOF oscillatory system with essential mass and potential asymmetry[END_REF][START_REF] Lamarque | Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink[END_REF]. This behavior will be more visible by looking at the histories of system amplitudes which are obtained by numerical integration and are illustrated in Fig. 13. Phase portraits of the reduced system (78) around singular points no. 1 and 2 are presented in Figs. 14 and15 show that these singular points are in the form of saddle and nodes on the fold line of the system (N 21 ). During SMR both oscillators and all of their components present beating responses: displacement histories of two oscillators which are depicted in Fig. 16 and also histories of internal variables of Saint-Venant elements that are presented in Fig. 17 show not only beating responses of all components of two oscillators during SMR but also activations of Saint-Venant elements during energy exchanges. The SMR of an optimized designed system is a very desirable behavior from passive control and also energy harvesting view points since both oscillators continue to exchange the energy with large intervals of energy changes for the NES and small energy intervals for the main system. The system possesses two equilibrium points namely points no. 3 and 4 (see Fig. 11). It can be attracted by one of these points after a very long time at T 1 time scale or during higher time scales (T 2 , T 3 , …). Due to costly simulation time we did not run it for very long time scales. 

) = ẋ(0) = ẏ(0) = u 1 (0) = u 2 (0) = 0.

Conclusions

Multiple scale energy exchanges of two different coupled systems are considered: (I) a vertical system (i.e. consideration of effects of the gravity) which consists of a linear main structural system and a coupled nonsmooth nonlinear energy sink; (II) a main oscillator with a set of Saint-Venant elements that is coupled to a nonlinear energy sink with a general odd nonlinear potential function. Invariants of both systems and their geometries at fast time scale let us understand the process of energy exchanges between two oscillators with explanation of possible bifurcations between two coupled oscillators. Reduced form of equations of systems at slow time scale give us some tools to predict all possible regimes of systems during energy exchanges: systems can face periodic regimes due to existence of equilibrium points while they can present strongly modulated responses when fold singularities are present. These studies provide analytical design tools for tuning parameters of nonlinear energy sink according to the design goal which can be passive control of linear/nonlinear main structural systems by means of nonlinear energy sink. Experimentally realizations of both systems can be carried out by considering a moving light mass in a (frictionless) guide which is encased between two elastic walls at each end for representing a nonsmooth NES of the system I. Identification of parameters of Magnetorheological dampers which present hysteresis behaviors can lead to models represented by system II (with potentially added smooth nonlinear terms to the main structure) [START_REF] Bastien | Non Smooth Deterministic or Stochastic Discrete Dynamical Systems: Applications to Models with Friction or Impact[END_REF][START_REF] Wang | Magnetorheological fluid dampers: a review of parametric modelling[END_REF].
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 1 Fig.1The academic model of the system under gravity (g) loads and external force Γ sin(Ωt). m = εM, 0 < ε 1; masses oscillate vertically
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 2 Fig.2τ 0 -invariant manifold of the system and its stable and unstable zones
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 1 Fig. 3 τ 1 -invariant manifold of the system
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 45 Fig.4τ 0 -invariant manifold of the system in the presence of the gravity and corresponding numerical result with f 0 = 0.1. Numerical results are obtained by direct integration of[START_REF] Vakakis | Energy pumping in nonlinear mechanical oscillators: part II-resonance capture[END_REF] 
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 67 Fig.6τ 0 -invariant manifold of the system in the presence of the gravity and corresponding numerical result with f 0 = 0.3. Numerical results are obtained by direct integration of[START_REF] Vakakis | Energy pumping in nonlinear mechanical oscillators: part II-resonance capture[END_REF] 

Fig. 8

 8 Fig.[START_REF] Gendelman | Bifurcations of nonlinear normal modes of linear oscillator with strongly nonlinear damped attachment[END_REF] Phase portrait for the system with f 0 = 0.3 > f 0(1critical) = 0.254, a the overall view; b the zoomed area around folded singularities
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 910 Fig. 9 Two coupled oscillators: the first one with a set of parallel Saint-Venant elements and under external force f 1 (t); the second one with general and odd nonlinear potential function (m = εM, 0 < ε 1) Fig. 10 The β graph in Saint-Venant element
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 112212113 Fig.11Positions of equilibrium points and fold singularities of the system with external forcing term f 10 = 0.7 (see (78) and (90)):f 1 = 0 (-), f 2 = 0 (---), g 1 = 0 (-• -• -,i.e. fold lines N 21 and N 22 ). The system possesses two fold singularities (no. 1 and 2) and three equilibrium points (no.3, 4 and 5) 

Fig. 14 Fig. 15

 1415 Fig.[START_REF] Manevitch | Parameters optimization for energy pumping in strongly nonhomogeneous 2 dof system[END_REF] Phase portraits of the reduced system with external forcing term f 10 = 0.7 (see (78), (89) and (90)) around the singular point no.1 (saddle) 

Fig. 16

 16 Fig.[START_REF] Lee | Suppression of aeroelastic instabilities by means of targeted energy transfers: part I, theory[END_REF] Displacements histories that are obtained by integration of (52) with external forcing term f 10 = 0.7: a x; b y

Fig. 17

 17 Fig.[START_REF] Panagopoulos | Robustness of targeted energy transfer in coupled oscillators to changes of initial conditions[END_REF] Histories of internal variables of the Saint-Venant elements that are obtained by integration of (52) with external forcing term f 10 = 0.7: a u 1 ; b u 2
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