
HAL Id: hal-01638162
https://hal.science/hal-01638162v1

Preprint submitted on 19 Nov 2017 (v1), last revised 21 Jan 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance analysis and improvement of the Bike
Sharing System Using Closed Queuing Networks With

Blocking Mechanism
Bacem Samet, Florent Couffin, Marc Zolghadri, Maher Barkallah, Mohamed

Haddar

To cite this version:
Bacem Samet, Florent Couffin, Marc Zolghadri, Maher Barkallah, Mohamed Haddar. Performance
analysis and improvement of the Bike Sharing System Using Closed Queuing Networks With Blocking
Mechanism. 2017. �hal-01638162v1�

https://hal.science/hal-01638162v1
https://hal.archives-ouvertes.fr


Running head: BIKE SHARING SYSTEM ANALYSES WITH QUEUING THEORY 1

Performance analysis and improvement of the Bike Sharing System Using Closed Queuing

Networks With Blocking Mechanism

Bacem Sametab, Florent Couffina, Marc Zolghadria, Maher Barkallahb and Mohamed

Haddarb

aQuartz-Supmeca, 3 rue Fernand Hainaut, Saint-Ouen, France; bLA2MP-ENIS, Sfax,

Tunisia



BIKE SHARING SYSTEM ANALYSES WITH QUEUING THEORY 2

Performance analysis and improvement of the Bike Sharing System Using Closed Queuing

Networks With Blocking Mechanism

Nomenclature

ci The number of servers in node i

M The number of nodes

L The total number of bikes in the network

Li The virtual capacity of node i

Ni The capacity of the Single Server queue i

πij The blocking probability that a completer from the queue i is blocked by the

queue j i = 1, ...,M.j = 1, ...,M.j 6= i

λi The rate of the inter-arrival time of bikes to node i, i = 1, ...,M

λ̃i The rate of the effective (without rejection) inter-arrival time of bikes to node i

Cai The squared coefficient of variation (scv) of the inter-arrival time of bikes to node

i

pi(ni) The marginal probability of the node i to contain ni bikes

〈ni〉 The mean number of bikes in node i

Xi The throughput of node i

Ab The availability of bikes

Ad The availability of docks

yi The Lagrangian coefficients corresponding to the constraints φi, i = 1, ...,M

C̃di The squared coefficient of variation of the effective (without rejection)

inter-departure time from queue i

µ̃i The rate of the effective (without rejection) service at the node i

C̃si The effective (without rejection) squared coefficient of variation of the service

time of queue i
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Introduction

The first bike sharing system (BSS) was launched in Amsterdam in 1965 (Shaheen,

2012). Such systems offer soft and flexible mode of transport and are environmental

friendly. A BSS consists of stations distributed throughout the city. Every station has a

limited number of docking space for bikes. A user picks up a bike from a non-empty

station; uses it for a journey and brings it to a destination station if a free dock is

available. Otherwise, he/she goes towards another station for docking. The central studied

problem in such systems is to determine a satisfactory number of bikes and docks per

station (Laporte, Meunier, & Wolfler Calvo, 2015; Nair, Miller-Hooks, Hampshire, & Bušić,

2013) to guarantee a high satisfaction rate. Relevant strategies for bikes re-distribution by

BSS operators, fleet-sizing, finding the capacity of docking of the station and geographic

dispatching of stations are among the most studied subjects in this field. Three sets of

operations can be carried out to increase a BSS performances, required by users and

operators:

• Monitoring. It corresponds to those real-time or very short/short time regulation

activities targeting at freeing places in saturated stations and feeding the starving

ones. This is often done manually by relocating bikes using trucks (Kadri, Kacem, &

Labadi, 2016; Ho & Szeto, 2016). Another possible monitoring operation is to make

consumers use the system differently by bringing bikes to some critical starving

stations for instance via financial incentives (Preisler, Dethlefs, & Renz, 2016; Lin,

Wang, & Feng, 2017).

• Control. Controlling means to modify the number of docks and bikes of the BSS.

These actions are more expensive and require often transformations at stations and

their control system (Nair & Miller-Hooks, 2014; García-Palomares, Gutiérrez, &

Latorre, 2012) .

• (re-)Design. It is to define the very initial network for the first implementation of a
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BSS or to redefine it, partially or totally, by adding new stations or eliminating

useless ones. It corresponds therefore to the most complex decisions and include

those ones regarding the capacity of (old and new) stations and the bike fleet size

(Garcia-Gutierrez, Romero-Torres, & Gaytan-Iniestra, 2014; Mizuno, Iwamoto, Seki,

& Yamaki, 2016)

All these activities are performed by the BSS operator. One rational way to make such

decisions, would be to use a relevant BSS model, realistic enough to analyze the possible

decisions’ impacts on the global performance of the system before any real implementation.

Such usable models have to deal with stochastic parameters and also scaling. By scaling we

mean to be able to model (partially or totally) a BSS according to several detail levels to

ease their analysis, performance measurement, control and (re-)design. This requirement is

mainly due to the very large size of such systems. Together, these two characteristics make

the modeling tasks hard and that is the reason why various modeling techniques have been

used by researchers to test their relevancy and predictability. Hereafter, we will discuss the

related works in BSS monitoring-control-design in order to show out what challenges still

persist and to justify our motivations in this research. A BSS is a stochastic system due to

the randomness of the parameters which qualify and quantify the users’ behaviors

(inter-arrivals and travel times for instance) (Gast, Massonet, Reijsbergen, & Tribastone,

2015; Montoliu, 2012). Browsing the literature, we found research works, dealing with this

randomness, using discrete event simulation techniques or more formal models based on

stochastic techniques. As well, it should been noticed that there are other techniques such

as data mining (Bordagaray, Dell’Olio, Fonzone, & Ibeas, 2016; Jiménez, Nogal, Caulfield,

& Pilla, 2016; Vogel, Greiser, & Christian, 2011) or mathematical programming (Hu & Liu,

2014; Ghosh, Varakantham, Adulyasak, & Jaillet, 2015; Pal & Zhang, 2017) that are

excluded from this state-of-the-art. Hereafter, we present a critical analysis of some of the

past research papers.
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Simulation-based approaches

The simulation works are used either for BSS studies or more generally for Vehicle

Sharing Systems, noted VSS, see for instance (Clemente, Fanti, Iacobellis, & Ukovich, 2013;

Clemente, Fanti, Mangini, & Ukovich, 2013; M. Fanti, Mangini, Pedroncelli, & Ukovich,

2016; Labadi, Benarbia, Barbot, Hamaci, & Omari, 2015; Febbraro, Sacco, & Saeednia,

2012; Kaspi, Raviv, & Tzur, 2014; Barth & Todd, 1999). The main used approach is almost

always the same. First, the model’s components (users, bikes, stations) are identified and

their parameters are put in the simulator. The behavior of each component is programmed

using the possibilities offered by the simulation environment (i.e. possible travels of bikes).

Running a discrete event simulation is based on the sequential execution of elementary

events ordered in what so called sample paths (Fishman, 2001). Elementary events could

be for instance the arrival to or the departure from the bike stations. Numerous sample

paths are generated to characterize the behavior patterns of the target system. The system

state evolves after the occurrence or activation of elementary events contained in those

sample paths. At the end of the simulation runs, the pre-selected performance indicators

and behaviors of various components are studied based on the collected data. The goals of

simulation studies could be context-specific (vehicles usage rate or users’ waiting time for

instance) sticked with the case study, or they could be more generic (i.e. profit or service

rate improvement). For instance, in (Clemente, Fanti, Iacobellis, & Ukovich, 2013), authors

use a simulation model for relocation of vehicles (i.e. voluntary displacement of vehicles

within the network of stations) to increase the system revenue and level of service. The

service level is defined there as "the ratio of the average number of served users to the total

number of users arrived at the station". The closed QN fits well to the VSS studies because

of the fixed number of jobs, i.e. vehicles, within the network of stations. Among all types

of closed QN, a specific class, referred to as BCMP (Baskett, Chandy, Muntz, &

Palacios-Gomez, 1975), is quite promising. A BCMP-QN is an extension of the Jackson

network and interestingly admits a product form solution for the joint distribution of the
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jobs in the network. This made them very popular. A first use of the BCMP-QN model for

VSS studies is due to George and Xia in (D. K. George & Xia, 2011). A bike station is

considered there as a queuing node with one single server with a queue of bikes waiting for

service. The server servicing time is the inter-arrival time of users to pick up bikes. The

travel between two bike stations was modeled by a queuing node with an infinite server. In

this work, George and Xia look for the optimal fleet size and propose a nonlinear

optimization problem by defining the profit of the operator as a function of the fleet size.

Authors proved that the stations should have the same availabilities to meet maximum

user satisfaction. Authors were able to solve the CQN problem containing 100 stations and

find out the optimal fleet size. In their study, Fanti et al. in (M. P. Fanti, Mangini,

Pedroncelli, & Ukovich, 2014) modeled an electrical VSS to evaluate the operator revenue.

They extended the queuing framework introduced by (D. K. George & Xia, 2011) by

adding a multiple server queuing node to illustrate the recharging process.

The major limitation of these aforementioned models is that they consider both an

infinite capacity for all stations.

Some other attempts were made by (Fricker & Gast, 2014; H. ter Beek, Gnesi,

Latella, & Massink, 2015; Fricker & Bourdais, 2015) to model the system in an aggregated

manner by assuming that all the stations of the VSS can be put into one cluster called a

homogeneous system. This presupposes that all the stations have the same parameters:

capacity, arrival rate of users and uniform routing of users among stations. These

hypotheses are used to study large systems and look for evaluation of asymptotic

performances. However, these hypotheses are patently far from the reality where a VSS

contains simultaneously highly dynamic stations (close to transportation hubs with a high

turn-over for instance) and starving and saturated stations. To deal with these

shortcomings, the models were extended to study heterogeneous systems containing several

clusters of stations, see (H. ter Beek et al., 2015; Fricker, Gast, & Mohamed, 2012) and

(Fricker & Servel, 2016). Authors used the mean field technique for the analysis of the
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models. This technique, originating from statistical physics (Opper & Saad, 2001),

provides the limiting steady-state queue length in the system as it gets large (number of

stations and fleet size). This technique offers an alternative analytical method deriving

steady state analysis even if a closed form expression for stationary state is out of reach.

The asymptotic studies provide a relevant answer to scaling for large size systems

such as VSS or BSS. By considering homogeneous or heterogeneous clusters, these models

handle the characteristics of individual stations (routing and inter-arrival of users) in an

aggregated manner. Moreover, these models take account of the limited capacity of

stations by a re-orientation strategy. This means that when a dock demand is rejected by a

full station, the bike user is led towards one of the possible stations of the network

randomly chosen from the entire network. Patently, this latter point does not model well

the real behavior of users which would head towards the neighboring stations close to the

rejection station (i.e. the destination station).

To sum up this presentation of the used models in the literature, the Table.1 gathers

their advantages and drawbacks. Globally, some lessons may be learnt from the resolution

techniques. The discrete event simulation offers the possibility to model every individual

station but suffers from the scaling capability and do not offer rigorous insights to the

studied system dynamics. The stochastic models offer a powerful alternative and by using

specific techniques, they allow to deal well with scaling. Nevertheless, their major

limitations come from their inability to take account of the whole reality; they need to use

simplification hypotheses.

Our goal and methodology

We deal with fleet and dock sizing of a BSS. Our motivation is to suggest a more

realistic model of a BSS considering:

• the limited capacity of stations,

• the behavior of users rejected by a full destination station.
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We focus on a local study of a set of inter-connected stations within the entire network.

The model does not deal with scaling but is able to model fine-tuned behavior of users.

The methodology used throughout this study is as follows. To improve the modeling

capability of the suggested QN models available in the literature, we introduced the

blocking mechanism of full stations extending the original queueing model proposed by

George and Xia. Moreover, the behavior of consumers in the case of station rejection was

modeled by a relevant routing matrix, defined thanks to the treatment of data gathered

from the Paris’ BSS opendata. Combined as such, the obtained model is then solved and

its performance indicators were defined. The resolution technique is the one initially set up

by (Kouvatsos & Xenios, 1989) by using the Entropy Maximization (Jaynes, 1957) of the

probability distribution of the queue lengths. Finally, in an iterative approach, we made a

sensitivity study of two major performance indicators: the bike and dock availabilities.

The remainder of this paper is organized as follows. In section 2, we describe the

closed queuing network for the BSS with blocking mechanisms. In section 3, the resolution

of the corresponding framework is exposed; these techniques gather those ones suggested

by (Kouvatsos & Xenios, 1989). In section 4, a case study of a system of 20 stations,

extracted from the BSS of Paris called Velib, is presented. Several control studies are

carried out such as fleet sizing, capacity sizing, inter-arrival of users and routing changes

for stations. The results are then discussed. Finally, in the last section, we give an

overview of the advantages and limitations of this model and highlight some future

perspectives in terms of modeling and resolution technique improvements. Finally, in the

appendix we provide the necessary details of the used resolution technique.

Queuing model with RS-RD blocking for BSS

Closed Queuing model with blocking

The closed network is composed of M nodes treating a fix number of jobs (here the

bikes) L. The jobs are probabilistically routed between the nodes. These routings are
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captured in a routing matrix αij, i, j = 1, ...,M . The bike stations have a limited capacity.

If a new job or bike looks to enter to a full waiting space of a node, the blocking

mechanism impeaches it. Several blocking mechanisms are studied in the literature such as

the transfer blocking, blocking-before-service or repetitive blocking, see (Bose, 2013).

We exploit the repetitive service random destination blocking type, noted

RS-RD, for its convenience. Hereafter, we go through various components of the used

model and interpret.

Model for the BSS

Three types of queuing nodes are used to model the whole structure of the BSS:

• SS, a limited capacity single server node. It represents a real bike station. A limited

capacity waiting line is associated with this node. The queue capacity, noted N,

corresponds to the number of docks of the bike station.

• MSB, a virtual blocking node. Associated always with a SS node, it models the

blocking mechanism of the real bike station. An MSB node has a short and negligible

serving time comparing to other service time of SS and MS nodes. The number of

servers in a MSB, equals exactly the fleet size of the system which noted L meaning

that even if all the BSS bikes come to the bike station, they can be treated by this

blocking node.

• MS, a virtual travel node. It models the travel between two bike stations (i.e. two SS

nodes).

Fig. 1 shows how these nodes are connected together.

The departure of bikes from stations. The departure of bikes from a bike

station is supported by the SS node. As suggested by George and Xia in (D. K. George &

Xia, 2011), the service time of the SS server equals to the inter-arrival time of users to this

station.
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The arrival of bikes to stations. The arrival of the bikes to a bike station i is

modeled by the interactions between the SSi node and its associated virtual blocking node

MSBi. The blocking behavior is ensured by the RS-RD blocking as follows:

The bike comes first to MSBi. Two cases are possible:

(i) the SSi queue is not full. The bike leaves MSBi and arrives to SSi, delayed only

by the negligible time of the MSB node servicing time. The user locks the bike and the

journey is ended.

(ii) the SSi queue is full. The bike is sent back to MSBi. After this first loop, the

next bike station is selected based on the routing probabilities.

Here, the definition of the routing probabilities is fundamental. The routing to SSi

has the highest probability. The closest bike stations will have high probabilities while far

away stations are practically excluded from this re-orientation by very low probabilities.

This routing strategy models the behavior of a user who could wait for a while at the

station for a free dock (departure of a bike).

At any new bike station, the user will have the same behavior pattern. The user will

repeat the process again and again until the bike gets parked.

The travel between stations. There is no constraints for travels between bike

stations. The MS node has therefore an infinite capacity to model the infinite travel ways.

In the most extreme case, all the bikes of a BSS could be on the roads. Therefore, the

travel between any couple of stations is modeled thanks to the virtual node MS containing

L parallel servers. The serving time is the travel time of users.

The explicit model of two bike stations. Fig. 2 shows the explicit model of two

interconnected bike stations 1 and 2. This figure expands the model of Geroge and Xia by

introducing the blocking mechanism through the MSB nodes.

Nodes 1 and 2 in dark gray represent the two real bike stations (SS nodes). Each SS

node is fed by bikes coming from its virtual blocking node represented by dotted lines

stations (MSB stations). The light gray stations model the four possibilities of traveling
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(MS stations) between the two stations.

Modeled as such, solving the closed queuing network model means to find out the

probability of any state of any node (mainly the SS) in the permanent state and to deduce

the required performance indicators describing the whole system. In the next section, we

present the Maximum Entropy resolution approach used for this framework.

Resolution of the closed network under RS-RD blocking using Entropy

Maximization Method

State space

The BSS is modeled by a closed network under RS-RD blocking mechanism. It

consists of M (First Come First Served) nodes with general interarrival-time and

service-time distributions. These nodes can either be with a limited capacity (i.e. N) single

server (G/G/1/N) or a multiple servers with infinite capacity (G/G/L) where L represents

the number of servers. For a given fleet size L, the state space of the network can be

represented by:

S =
{

(n1, ..., nM) :
M∑

i=1
ni = L, 0 ≤ ni ≤ Li, i = 1, ...,M

}
(1)

where Li = min(Ni, L) is the virtual capacity of the node i of the network and Ni the

capacity of the single server node i. The state vector (n1, n2, ..., nM) is noted from now on

n, and the equilibrium probability of the network to be in the state n is noted p(n). Let

also pi(ni) be the equilibrium marginal state probability of a queue i containing ni jobs.

From solving this network, we seek to calculate the probability of each state p(n). These

probabilities allow to compute various performance indicators generally associated with

any nodes. Referring to(Kouvatsos & Xenios, 1989; Kouvatsos, 1994), an approximative

product form for this network can be computed using the Entropy Maximization through

an iterative approach. The product-form simplifies the resolution as the nodes of the

network can be considered separately and solved in isolation (Bolch, Greiner, de Meer, &

S.Trivedi, 2006).
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Procedure for solving the closed network of the BSS model

Analytical formulations and details of the resolution are due to Kouvatsos, see

(Kouvatsos, 1994; Kouvatsos & Xenios, 1989), and are shortly provided in appendix B. We

give hereafter an overview of the resolution procedure. The closed network is solved in two

phases: (1) the resolution of the pseudo-open network corresponding to the original closed

network, (2) the deduction of the probability of the states p(n) of the original closed

network.

Phase 1-Solving the pseudo-open queuing network

In this part of the resolution, in an iterative manner, all the blocking probabilities,

πij, and the scv (squared coefficient of variation) of the effective inter-departure time, C̃di,

are computed by initializing the iterations by some arbitrary values.

Initialization- The algorithm starts by setting some initial arbitrary values for πij

and C̃di, i.e. defining an arbitrary probability value for the bike rejection and the

dispersion of the effective inter-departure time from the nodes.

Step 1- For every queue:

• The inter-arrival rate and its scv {λi, Cai} are computed.

• The effective service time and its dispersion {µ̃i, C̃si} are also calculated.

Step 2- The nodes of the network, i, i=0,...,M, are individually solved applying the

Lagrange multipliers method for maximization of the Entropy function (10) subject to

normalization (11) and marginal constraints (12)–(14). Therefore, for every queue, the

Lagrange coefficients (i.e. g(i,k), xi and yi for i = 1, ...,M and k = 1, ..., ci) relating to the

corresponding constraints (see Appendix B) will be then available.

• SS nodes are solved as censored nodes1, (GE(λi,Cai) /GE(µ̃i, C̃si) /1/0;Ni).

1 i.e. those node s where the arriving customers are turned away when the buffer is full
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• MSB and MS nodes are solved as stable nodes2 (GE(λi,Cai) /GE(µ̃i,C̃si)/L).

Step 3- New values of the blocking probabilities πij are calculated from the newly

obtained values of pi(ni), and C̃si by using an iterative method to find the roots of ( 49)

presented in the Appendix B.

Step 4- Return to step 1 until convergence of {πij} i=0,...,M, j=0,...,M. The

convergence value is fixed as a problem-solving parameter to find out a relatively quick

solution determination. One can use for instance 0.01 to fix the idea.

Step 5- Find new values for {C̃di}, i=0,...,M, (53), once the last set of πij is obtained

from the step 4.

Step 6- Return to step 1 until convergence of {C̃di} i=0,...,M. In a same manner,

the convergence criterion is chosen by user. According to (Kouvatsos, 1994) and

(Kouvatsos & Xenios, 1989), the convergence is always guaranteed. In our case, the

convergence criterion is 0.01.

Phase 2-Solving the closed queuing network

The resolution of the pseudo-open queuing network gives an estimation of the

Lagrange coefficients for the closed queuing network. These parameters are implemented

for the maximum entropy state probability p(n) (33) of the original closed network. This is

performed in the rest of the approach.

Step 7- Use a convolution method to compute the marginal probabilities, pi(ni),

i ∈ 0, ...,M , for the original CQN.

Step 8- Find two parameters of the nodes which are the mean queue length 〈ni〉, and

throughput Xi for i = 0, ...,M .

Step 9- Correct the Lagrangian Coefficients yi corresponding to the constraint of the

state probabilities of the full SS nodes (14). In fact, the Lagrange Coefficients obtained

2 i.e. those nodes without capacity limitations
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from the resolution of the pseudo-open network (noted by ỹi), obtained in Step-2, should

be revised by using:

yi = ỹiλ̃iL

[
Xi

M∑
j=1

λj 〈nj〉
Xj

]−1

(2)

Step 10- Return to step 7 till obtaining the same ratio of the rate of the effective

interarrival-time to the throughput, (3) for all the nodes

H = λ̃i

Xi

i = 1, ...,M (3)

Performance indicators of the BSS

The resolution technique presented in the past section allows us to compute the

following performance indicators:

1. Availability of bikes for each bike station. This is the probability that a user finds

at least one bike at the station i (4).

2. Availability of docks for each bike station. This is the probability that a user finds

at least one free dock at the station i (5).

3. Global performance of a station. It combines both availabilities by using relevant

weights coefficient ai and bi (6) to allow decision-makings regarding individual

stations.

Abi = 1− pi(ni = 0) (4)

Adi = 1− pi(ni = Ni) (5)

aiAbi + biAdi (6)

1
M

M∑
i=1

aiAbi + biAdi (7)

where i refers to the SS node corresponding to a real station, and ai + bi = 1, i = 1, ...,M .
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Numerical Results

Data analysis and Hypothesis

The VelibâĂŹ system consists of almost 1700 stations and 23000 bikes (Steffan,

2012). The resolution algorithm was time consuming for the whole network. The

computation complexity of the algorithm is O(k1(Ω + 1)3) for Phase 1 and of O(k2M
2L2)

for Phase 2 (Kouvatsos & Xenios, 1989), where k1 is the number of iterations for steps 1-6,

k2 is the number of execution of the loop in steps 7-10 and Ω is the cardinality of

{πij : i, j = 1, ...,M ; i 6= j}. Accordingly, it was decided to focus on a small geographic zone

with a limited number of stations (20 stations).

We considered 3 stations in "Ile de la Cite" which is at the very center of Paris. Other

17 stations, i.e. the most visited destination stations from these three aforementioned

stations complete the subnetwork of stations studied here. All these stations are located in

Paris touristic zones and have a stable usage rate. In fact, analyzing the usage rate (Feng,

Affonso, & Zolghadri, 2017), they represent a very similar pattern of usage during a day.

The data were collected for a period of 30 days, between 5 September and 15 October 2016

excluding the weekends. This period was chosen because of the homogeneity in the weather

conditions. Raw data was collected from the Open database of JCDecaux, the operator of

Velib. The data was treated to derive the parameters of the network such as the rate and

the scv of the service time of the nodes and the routing matrix. Mainly, we focused on the

time points where bikes are picked up in one of these 20 stations bring to another station.

The inter-arrival rate of users to stations is obtained from the treatment of the

inter-departure of bikes from these stations. In fact, the inter-arrival of users to a station

equals the inter-departure of bikes when there is at least one bike in the station. We

treated the data by considering only those states where non-empty condition was met. We

estimated the number of users arriving to pick up bikes at each station by an hour time

slot for every day during the considered period. Then for every time slot, the mean rate

and its dispersion were calculated over all the days of the studied period. Moreover, it was
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observed that the values of rate and scv of two time slots (from 8am to 9am and from 9am

to 10am) are very close, we decided then to study these two time slots together. The study

is then focused on the network dynamic from 8 am to 10 am which corresponds to a rush

hour of bike usage in these stations.

The duration of the travels between the stations were extracted from the raw data

too. We have then calculated the rates and the squared coefficient of variations over this

data. This gives the needed parameters of the MS nodes of the model. Regarding the

routing probabilities, the raw data were treated by eliminating weekends and special events

such as festival days. The probability of taking a certain rout to a destination station

equals then to the ratio between the number of trips to this destination and the sum of all

the trips departing from the origin station. By this way, the routing probabilities between

the stations in the studied zone and from-and-to the exterior stations were computed.

Selecting the sub-network, the aforementioned closed queuing model resolution technique

was used even if we knew that the sub-network cannot be considered as a real closed

network. However, by selecting the most visited stations from the three central stations

limited greatly side effects of connection between the considered zones (the 20 stations)

and the rest of the network. This issue is discussed in the conclusions and perspectives

section of the paper.

Experiments and Results

The resolution method of the model of 20 stations was programed and implemented

in Matlab. We seek to foresee the effects of the fleet size, the docking capacity, the

inter-arrival rate of users picking up bikes and the flow of incoming bikes to a station on

the system performance.

• Fleet-sizing. We would like to study the effect of fleet size change on the stations

performance indicators: dock availability and bike availability. We present the fleet

sizing of three different bike stations: 4002, 4003 and 4017 in Fig. 3. Having different
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characteristics, the behavior of these stations is detailed hereafter.

It can be noticed that the bike availability of stations increases while the fleet size

increases and tends towards 100%. This is normal because increasing the number of

bikes makes their availability at the stations more probable. Conversely, the dock

availability decreases from 100% as the fleet size increases. This is also quite normal,

because a higher number of bikes in the system decreases the possibility of finding

free docks at the stations. This opposite evolution of the two curves creates a

crossing point. The crossing point appears in all the stations and it reflects an

interesting zone of performance, called the best performance area and represented by

a dotted rectangle in Fig. 3. In fact, both availabilities are higher than 0,95 in this

zone. This behavior was observed for all of the other bike stations not reported in

this paper. In Fig. 3, we show the curve representing the global performance of a

station. In this case, it was decided to attribute the same importance to both

indicators reflecting that it is always interesting to find out bikes and docks at

stations. In a real situation, the system operator could attribute different coefficients

according to the dynamic situation of stations (societal and geographic specificity of

the station, see Performance indicators of the BSS). For instance, for a bike

station close to a transport hub it can be judged that the presence of the bikes in the

morning rush hours is more important than dock availability. By this way, the best

performance areas can be found out easily on the figure. Obviously, every station

reach the performance area for a different fleet size. For instance, for station 4002 the

optimal fleet size would be 150 bikes and for station 4017 the best performance is

noticed for a fleet of 650 bikes. Therefore, as the fleet size involves all the stations, it

is necessary to compute the fleet size taking account of all the stations. Fig. 4 shows

the evolution of the aggregated network performance indicator as a function of the

fleet size. The two availabilities have equal importance, i.e.

ai = bi = 0.5, i = 1, ...,M,M = 20. In the same figure, we show the curves of the
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mean availability of bikes and the mean availability of docks of all the stations.

Very interestingly, the global performance curve shows a flat performance area

between 380 and 520 bikes. This means the whole subnetwork has a very robust

behavior regarding the fleet size; the global performance is about 88% for a fleet size

varying between these two extreme values. The analysis can be completed by

considering a "reference fleet size". In our case, we consider that 440 which represents

the highest network performance corresponds to the reference fleet size. In (ITDP,

2013), authors reveal that in most of the bike sharing systems (Montreal, London,

etc.), operators use an experimental ratio of docking capacity to fleet size of 2 - 2.5.

Applying this rule in our case, since the total capacity of the 20 stations is 621 docks,

the fleet size should be between 248 and 310 bikes. Our conclusion is therefore

different from this experimental rule. This can be explained by the fact that operators

are leveraging docking availabilities at expense of the availabilities of bikes following

this rule; in our case we have given the same importance to both availabilities.

Let us now look at the stations 4002 and 4017 more precisely according to their local

optimal performances which refer to their respective best fleet size and the reference

fleet size: 150, 650 and 440, see Table.2.

With 150 bikes in the network, the station 4002 offers a high chance of finding an

available bike and a free dock. At the reference fleet size, the station 4002 would have

almost always available bikes but more rarely available docks. A bike-demanding user

has therefore a very high chance of finding an available bike while a dock-demanding

user has only about 52% of chance to find out a free dock. It seems that the station

4002 has a tendency to have more incoming bikes than outgoing ones. Finally, with

650 bikes, the same station 4002 becomes saturated offering almost always bikes but

rarely free docks. Opposite situations can be found for the station 4017, even if the

bike finding chance remains quite high for the reference fleet size.
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To pursue the studies of the sub-network, we used the reference fleet size. For this

fleet size, we focused on an arbitrary station (station 4003). This station has the bike

and dock availabilities of Ab =1, Ad=0.8, cf. Fig. 3. As, the best performance zone

is not reached for the reference fleet size, it would be interesting to find out the

sensitivity of these performance indicators using other decisions such as modifying its

capacity, the inter-arrival rate of users and the incoming flows of bikes.

• Docking capacity. To visualize the effect of docking capacity, we modified the

number of docks of the station 4003 by adding or removing a proportion of its actual

capacity (20 docks) as shown in Fig. 5. When the capacity is increased the

availability of bikes tends to remain constant, which is quite normal. The chance of

finding a free dock is also increased allowing more users to bring their bikes to this

station. These results are rational and reasonable if we compare the state of the

station at two special fleet sizes: the reference fleet size (440 bikes) and the optimal

fleet size (320 bikes) for this station. With an initial capacity of 20 docks, our first

analysis shows that the best performance is reached for a fleet of 320 bikes (see

Fig.3). Since the reference fleet size (440 bikes) is greater than this station optimal

feet size, the number of bikes in the subnetwork is greater. We would see more bikes

remaining at this station. Therefore, we tend to have a saturated station for this

reference fleet size and therefore a lower availability of docks. So, to overcome the

shortage of docks, the capacity of the station should be enlarged. Nevertheless, the

100% global performance may be reached by 140 more docks (700% of capacity

increase) ! Obviously, this is not realistic to target at that level of performance for

evident reasons (cost, place, etc.).

• Incoming flow variation.

It is possible to modify the incoming flow of bikes to stations by an economic

incentive for instance. In this experiment, we would like to find out how the
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performance of the station 4003 evolves as a function of the incoming flow. This effect

is represented in Fig. 6. For the initial incoming flow rate, the availability of bikes is

100% but the chance of finding a free dock is lower, i.e. 80%. We would like to know

whether any change in the incoming flow could contribute to increase the dock

availability without serious deterioration of the bikes availability. By focusing on the

global performance of the station (same importance of bike and dock availabilities) in

Fig. 6, it can be seen that the maximum rate is located at the incoming flow of -20%.

This allows to have very good bike and dock availabilities (about 96%). This result is

also coherent. As a matter of fact, as previously mentioned, this station has a

tendency to be full. So, it is reasonable to reduce its incoming flow of bikes (here by

20%) to make it "less" full while allowing a good bike availability.

• Demands for bikes variation.

It is also possible to increase the demand of bikes (to drain the bike from saturated or

closely saturated stations) by economic incentives again for instance. Therefore, we

would like to know then, whether a BSS operator may launch such incentives to

improve the performance of stations. Fig. 7 shows the result of these experiments

where both the bike and dock availabilities and the global performance of the station

are computed as a function of the variation of the arrival rate of users to the station

4003. For the initial value of arrival rate, the dock availability is 80% while the bike

availability is very good (close to 100%). The highest global performance value is

obtained for an increase of 27% of the arrival rate. In this situation, both availabilities

are very good (around 97%). This result is consistent with the aforementioned fact

that the station 4003 tends to be full and increasing the demand rate of bikes allow

to increase the dock availability while reducing slightly the bike availability.
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Discussion of the obtained results

By monitoring or controlling the BSS, an operator seeks to get the best performances

for the stations and for the entire system. This target would be for the whole day or at least

for the peak hours. In these experiments, we focused on a the performance of a subnetwork

during the morning rush hours, from 8am to 10am. Feng et al. in (Feng et al., 2017) shows

that there are two peaks of usage of the system: in the morning and at the evening. So, the

same experiments can be conducted to the other hours in the evening. Our experiments

have shown that modifying the used parameters do modify the bike and dock availabilities,

but they do evolve in the opposite direction. So, trade-offs should be found between them.

To this respect, the global performance indicator seems to authors as a better indicator on

which the operator can rely. It is simple and can reflect the local target (for every studied

station taking account of the station’s specificities) or for the whole (sub)network.

Control-oriented decisions: Robustness of the global performance

regarding the fleet size. Practically, the BSS operator has to do some control actions by

adding the number of bikes and/or docks to increase the stakeholders satisfaction in a more

permanent way. Studying the fleet size, it was noticed that every station has a different

optimal fleet size regarding its global performance. This suggests clearly that finding out

the best size of the fleet for the whole considered sub-network should go through trade-offs

among the stations where some stations could be more critical than others. In our case

study, the stations which are at the center of Paris (very close to the more touristic sites)

could be considered as critical. In other cases, the criticality would be based on satisfaction

of station geographical position i.e. close to working areas or transport hubs (close to train

stations, etc.). In a top-down analysis, the operator can first find out the "best" fleet size

which maximizes the global performance of the whole subnetwork. The very good news is

that this global performance is not very sensitive to the fleet size for a large size window

(between 380 and 500 bikes). The global performance is quite robust regarding this

parameter. It is therefore possible to dig out the exact fleet size by considering the size
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that increases the performances for critical stations in a second step.

Control-oriented decisions: The global performance not highly sensitive to

capacity sizing. As the second control action, we wanted to evaluate the capacity change

of a station, here the station 4003, which tends to be saturated. It was observed that the

increase of the capacity improves the availability of docks with holding the same

availability of bikes. But, by decreasing the capacity, a deterioration of both availabilities is

observed. However, the capacity modifications are expensive and do not procure too much

performances. More studies are still necessary to this respect but out first set of results

tend to tell that the global performance is not highly sensitive to capacity sizing.

Monitoring decisions: The global performance relatively robust to the

departure and arrival of bikes to stations. In terms of monitoring actions, there are

instantaneous corrective measures that can be taken by the operator to gain further

performances. Acting locally on a station by changing its attractiveness seems to be very

interesting.

Curves in Fig. 6 and Fig. 7 show that locally, modifications of the arrival and

departure rates of bikes to stations impact directly their global performances. However, the

global performance remains again relatively robust around the determined best rates. For

instance, changing the incoming flow of bikes or the bikes demand rate by 10% induces

only 1% of performance deterioration. The monitoring actions are performed now by

trucks, but our experiments show that economic incentives are very effective. Lowering the

service price during the rush hours for instance can contribute to compensate the normal

tendency of saturation and starving.

Conclusions and further research works

The conclusions of this research can be shown according to the following points:

1. Modeling and resolution. In this work, a closed queuing network supporting a

blocking mechanism was used to model and to assess the performance of a BSS.
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Accordingly, a resolution approach based on the Entropy maximization was applied to

solve the obtained model. The originality of this work resides in its ability to model

in a more realistic way the dynamic of stations and the network. We introduced the

limited capacity of stations to the initial model developed by (D. K. George & Xia,

2011). Moreover, by exploiting the reality of Paris’ BSS, we introduced within the

model, a more realistic behavior of bike returns from the destination stations.

2. Methodological issues. The performance of a BSS was determined by bikes and docks

availability. These two indicators were aggregated together into a global performance

which allows to take account of local preferences for station management. These

performance indicators were computed for the model against decisions subdivided

into three categories: monitoring, control and (re-)design. Focused on the two first

ones, the monitoring decisions target at improving the system performance acting on

real or short time. Regulation of bikes arrival (incoming flow) and departure

(demand) are the two monitoring decisions. Control decisions are more expensive and

tend to procure more durable performances dealing with changing the fleet size or the

capacity size.

3. Experiments and discussions. As the resolution is quite complex and very

time-consuming, it was decided to model a subnetwork of Paris BSS composed of 20

stations. Following a restrict experimentation protocol, real data were gathered,

pre-treated, and used for experiments. Two sets of experiments were conducted

following the monitoring and control decision possibilities. The results allowed to

draw conclusions:

• Control decisions: fleet-sizing. They have positive influences on the bike

availability but will patently degrade the dock availability if the fleet is too

large. Locally, every station points at a fleet size that maximizes its optimal

global performance. From the subnetwork point of view, the global performance
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is quite robust for a relatively "large" window of fleet size.

• Control decisions: capacity-sizing. Increasing the capacity has no effect on the

availability of bikes but enhance the availability of docks; its reduction

deteriorates both availabilities. More expensive than the fleet-sizing decisions,

the global performance evolves slowly by a drastic increase of the station’s

capacity (700% for station 4003).

The BSS operator has to improve first the size of the fleet before taking actions for

modifying the stations capacity.

4. Monitoring decisions: bikes arrival and departure. Locally modification of bikes

arrival to and departure from a station seems to be very effective with a concrete

impact of the global performance, once the exact arrival and departure rates

identified thanks to the computed results. They may be cheaper than the used

techniques now by operators (bikes displacements by trucks). Their effectiveness

needs however a deeper economical study.

Despite these insights to the BSS monitoring and control decisions, there are some

shortcomings that should be improved in the future. As the resolution of the model is

tedious and time consuming, a subnetwork of the real BSS was chosen for the experiments.

Extracting such subnetwork needs further research to evaluate the side effects of exchanges

between the subnetwork stations and those stations outside the subnetwork. However,

hopefully, there is no need to take account of the whole network when focusing on a

subnetwork, because according to the statistics of the bike usage in Paris, almost no travel

is registered farer than 30 minutes from a given station. In this case, to consider the most

statistically representative ring around the subnetwork, the ring should contain all those

stations 30 minutes far from the frontier stations. This allows to study more in detail the

subnetwork. However, the second tough point to work it out is the efficiency of the

programs used in this research. They should be optimized to reduce the computation
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times, make them reasonable and feasible. The last perspective of research corresponds to

the extension of the study to other time windows during a typical day.
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Table 1

State of the art.

Simulation-based techniques Stochastic approaches

Regulation

(Clemente, Fanti, Iacobellis, &

Ukovich, 2013; Clemente, Fanti,

Mangini, & Ukovich, 2013; Labadi

et al., 2015; Febbraro et al., 2012;

Barth & Todd, 1999)

(D. George, 2012; Fricker & Gast,

2014)

Design/re-

design

(M. Fanti et al., 2016; Kaspi et al.,

2014)

(D. K. George & Xia, 2011; Fricker

& Gast, 2014; H. ter Beek et al.,

2015; Fricker & Bourdais, 2015;

Fricker et al., 2012; Fricker & Servel,

2016)

Main Ad-

vantages

• Can deal with detailed model.

• Are flexible and allow to model

every single station.

• Are easy to use for partial

VSS.

• Are not time-consuming to

populate the model with sta-

tions.

• Give insights about the per-

forming system.

Main

Draw-

backs

• There is no formal way to val-

idate the model and to verify

the results.

• Are time consuming and hard

to implement for large sys-

tems.

• Hardly allow scaling.

• Modeling basics and resolution

are complex.

• Their resolution complexity

imposes the use of approxi-

mate solutions.
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Table 2

Stations 4002 and 4017

Fleet 4002 4017

150

bike finding chance 97%: almost always 42%: low chance

dock finding chance 97%: almost always 100%: almost always

440

bike finding chance 100%: almost always 80%: not good chance

dock finding chance 52%: not good chance 100%: almost always

650

bike finding chance 100%: almost always 95%: almost always

dock finding chance 35%: low chance 95%: almost always
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Figure 1 . The structure of the queuing network model.
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Figure 3 . Availabilities as function of the fleet size
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Figure 4 . The 20 stations performance
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Figure 5 . The effect of the capacity change
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Figure 6 . The effect of the incoming flow of bike change
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Figure 7 . The effect of the demand for bikes change
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Appendix A

Queuing Networks

An elementary queuing node is composed of a server and a waiting line of finite or infinite

size. Jobs arrive at the queue waiting there to be served by the server. Such queuing node

is defined by several parameters that allow to model its dynamic behavior (transient and

stationary). The service time is the amount of time necessary to fulfill an operation on

jobs. The arrival of jobs to the queuing node follows a dynamic pattern. The inter-arrival

time and the service time are random variables modeled by a probability distribution law,

very often the exponential distribution. The service station could have more than a server.

All the servers are supposed to have the same service time and a job will choose the first

free server. The waiting jobs are selected for service according to a scheduling discipline

such as First-In-First-Out. The parameters of a node (inter-arrival time, queuing capacity,

server number, server operating time and the queuing schedule) are represented by

Kendall’s notation. For example, in our case, we use G/G/1/K; N censored nodes and

stable G/G/L nodes. The former type queuing node is a single server having a finite

capacity N and a minimum queue length K. In this case the number of jobs cannot neither

less than K nor bigger than N jobs. The latter type queue is composed by L parallel servers

and have no capacity limitation. The arrival and service process for both kinds of queuing

nodes follow the general distribution, noted G, which is defined by its mean and SCV. A

QN is composed of several interconnected nodes. Jobs flow from node to node to perform a

predefined ’routings’. A routing defines the possible nodes that would be visited by a job

after finishing its service at a given node. The routing matrix will define the probability pij

of heading towards the queue j from the queue i, where∑j pij = 1. If the number of jobs in

a QN is fix (no departure nor arrival) the QN is called closed QN, otherwise it is open.
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Appendix B

Resolution Approach

In what follows, we expose the resolution of the closed network with RS-RD blocking

mechanism, the queuing framework for the BSS, as suggested by Kouvatsos in (Kouvatsos

& Xenios, 1989; Kouvatsos, 1994).

In this approach, we use the open network to approximate a solution for the closed

network through a pseudo-open network. A pseudo-open network is a closed network which

is represented as an open network with no external arrival streams and no external

departures (Bose, 2013). The pseudo-open network should have the same characteristics as

the original closed network (same number of queues and servers, service-time

characteristics and transition probabilities). To solve the pseudo-open network we consider

(i) the set (8) which describes the job flow balance at every node with α̃ji shows the

effective (without rejection) transition probability from node j to node i, and (ii) the fixed

number of bikes represented by (9).

λ̃i =
M∑

j=1
α̃jiλ̃j, i ∈ {1, . . . ,M} (8)

L =
M∑

i=1
〈ni〉 (9)

The Entropy Maximization of the open network with RS-RD blocking admits an

approximate product form solution. The resolution of the pseudo-open network requires

then the decomposition and the resolution of the individual nodes in isolation using the

Maximum Entropy Method. Further in this appendix, we present prior information of the

ME resolution of individual nodes of two types: the G/G/1/0;N censored queue and the

stable G/G/L queue which are the building blocks of the network model. Afterward, we

present the resolution technique of the closed queuing network then the approximate ME

product-form solution of the pseudo-open network. We expose then the analytical

decomposition of the network into individual queues. The resolution steps are resumed in
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Fig. B1.

Entropy Maximization for censored and stable queues

Two types of queues G/G/1/0;N censored queue and stable G/G/L queue have to be

solved. The generalized exponential distribution, GE, is used as an approximation of the

generalized distribution to solve this queues. This means that the resolution concerns the

GE/GE/1/0;N censored queue and stable GE/GE/L queue. The state probability

{p(n), n = 0, ..., Li} is determined by maximizing the Entropy function (10) for every queue

when i indexes a queue.

Hp(n) = −
Li∑

n=0
p(n) log p(n) (10)

The Entropy function (10) for censored and stable queues are solved under the

normalization (11) and marginal constraints (12)–(14).

1- The normalization. It looks for having a normalized measure of probabilities of the

queue length.
Li∑

n=0
p(n) = 1 (11)

Hereafter, the values in the marginal constraints are supposed to be known. They are

probabilities and mean queue lengths.

2- The probabilities u(i,k) : i = 1, ...,M. k = 1, ..., ci.

(
∑
n≥k

pi(n) = u(i,k)) (12)

with 0 ≤ u(i,k) ≤ 1.

3- The mean queues lengths excluding ci jobs, 〈n− ci〉, i ∈ {1, . . . ,M}
Li∑

n=0
hi(n)pi(n) = 〈n− ci〉 (13)

〈n− ci〉 ∈ [0, Li] and hi(n) = max(0, n− ci).

4- The probabilities of the full queues, pi(Ni), when i indexes a SS.
Ni∑

n=0
fi(n)pi(n) = φi (14)
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0 ≤ φi ≤ 1 and fi(n) = max(0, n−Ni + 1)

The resolution is presented in (Kouvatsos & Xenios, 1989) by applying Lagrange’s

method. It determines the expressions of the queue length probabilities as a function of the

Lagrange coefficients {g(i,k), k = 1, ..., ci}, xi and yi corresponding respectively to

constraints {u(i,k), k = 1, ..., ci}, 〈ni − ci〉 and φi, i ∈ {1, . . . ,M}. The final solutions are

given by (23) and (29). We consider:

σ̃i = 2
C̃si + 1

, i ∈ {1, . . . ,M} (15)

ρi = λi

µ̃i

(16)

τi = 2
Cai + 1 (17)

GE/GE/1/0;N censored queue resolution

The Lagrange coefficients are obtained as follows:

xi = τiρi + σi(1− τi)
τiρi(1− σi) + σi

(18)

yi = 1
1− (1− σi)xi

(19)

g(i,1) = τiσiρi

τiρi(1− σi) + σi

(20)

fi(n) = max(0, n−Ni + 1) (21)

pi(0) =


(1 + g(i,1)(Ni − 1 + yi))−1 if ρi = 1

(1 + g(i,1)
1−x

Ni−1
i

1−xi
+ yix

Ni−1
i )−1 if ρi 6= 1

 (22)

pi(n) = pi(0) gi,1 x
n−1
i y

fi(n)
i (23)

GE/GE/L stable queue resolution

The Lagrange coefficients are obtained as follows:

xi = λiτi + Lσ̃iµ̃i(1− τi)
λiτi(1− σ̃i) + Lσ̃iµ̃i

(24)

g(i,k) = (λiτi + (k − 1)σ̃iµ̃i(1− τi)σ̃i

kσ̃iµ̃i(1− (1− σ̃i)(1− τi))
k ∈ {1, . . . , L− 1} (25)
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gi,L = (λiτi + (L− 1)σ̃iµ̃i(1− τi)σ̃i

λiτi(1− σ̃i) + Lσ̃iµ̃i

(26)

G(i)
n =

n∏
k=1

g(i,k) (27)

pi(0) =
1 +

L−1∑
n=1

G(i)
n + G

(i)
L

1− xi

−1

(28)

pi(n) =
(

L∏
k=1

g
hk(n)
(i,k)

)
xLq(n) n ∈ {1, . . . , L} (29)

with
hk(n) = 1 if n ≥ k or 0 otherwise

Lq(n) = n− L if n ≥ L or 0 otherwise
(30)

Resolution of the closed network

We consider a closed queuing network under RS-RD blocking mechanism. It consists

of M First Come First Serve multiple server queues with general inter-arrival time and

service time distributions. The state space of such network is the set of tuple of integers

n = (n1, n2, ..., nM), where ni is the number of bikes in node i, i ∈ {1, . . . ,M}. Let p(n) be

the equilibrium probability that the network is in state n and pi(ni) is the equilibrium

marginal state probability of queue i, i ∈ {1, . . . ,M}. The maximum entropy solution p(n)

of the closed queuing network is determined by Maximizing the Entropy functional defined

by:

Hp(n) = −
∑

n
p(n) log p(n) (31)

For the resolution of the network, we assume that we have prior information about the

state probabilities p(n) through the normalization

∑
n
p(n) = 1 (32)

and the marginal constraints {u(i,k) : k = 1, ..., ci} (12), 〈ni − ci〉 (13) and φi (14),

i ∈ {1, . . . ,M}.



BIKE SHARING SYSTEM ANALYSES WITH QUEUING THEORY 40

The form of the maximized state probability, p(n), subject to the normalization and

the aforementioned marginal constraints is given by

p(n) = 1
Z(L,M)

M∏
i=1

wi(ni) (33)

where Z(L,M) is the normalizing constant.

For single server node (SS), we have:

wi(ni) =


1 if ni = 0

g(i,1)x
ni−1
i y

fi(ni)
i if 0 < ni ≤ Ni

0 otherwise,


(34)

For the multiple servers nodes (MSB or MS):

wi(ni) =


1 if ni = 0,(∏L

k=1 g
hk(ni)
(i,k)

)
x

Lq(ni)
i if ni ∈ {1, ..., L}

 (35)

for k = 1, ..., L and i = 1, ...,M :

• g(i,k) are the Lagrange coefficients corresponding to the constraint u(i,k),

• xi are the Lagrange coefficients corresponding to the constraint 〈ni − 1〉 for the SS

nodes and 〈ni − L〉 for the MS and MBS,

• yi are the Lagrange coefficients corresponding to the constraints φi, i = 1, ...,M .

Moreover:

• fi(ni) = max(0, ni −Ni + 1) and hk(ni) = 1 if ni ≥ k, or 0 otherwise.

• Lq(ni) = ni − L ifni ≥ L, or 0 otherwise.

The measures of the Lagrange coefficients have no closed form expressions in terms of

raw system data. Therefore, they are approximated from those of the pseudo-open

network. The use of this approximation is justified by the fact that "the state probability

of a closed queueing network with population size L can be viewed as the conditional one

of an open network sampled at intervals during which L jobs are enqueued" (Reiser &

Kobayashi, 1975).
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Resolution of the pseudo-open network

In this section we sketch a pseudo-open network and its approximate product form

solution using the Entropy Maximization. The aforementioned notations and the similar

topology to the CQN model are considered. The form of the ME state probability, p(n)

with n ∈ S, is determined by

p(n) = 1
Z(L,M)

M∏
i=1

wi(ni) (36)

with Z(L,M) is the normalizing constant. and

wi(ni) =


g(i,1)x

ni−1
i y

fi(ni)
i for SS(∏L

k=1 g
hk(ni)
(i,k)

)
xLq(ni) for MSB or MS

 (37)

From the resolution of the individual queues (23) and (29) and since it is verified

(Kouvatsos & Xenios, 1989) that Z(L,M) can be expressed as a product of pi(0) it can be

deduced that p(n) could have this form:

p(n) =
M∏

i=1
pi(ni) (38)

where pi(ni) is the approximate marginal ME solution of a stable G/G/L queue for MS and

MSB nodes, or a G/G/1/0;N queue under censored arrival process and a revised service

time distribution for SS nodes. Obviously the ME state probability, p(n), suggests a

decomposition of the open network into individual queues under a censored arrival process

and a revised service time, afterward it goes through the resolution of these individual

queues which is already presented.

The decomposition of the network into individual queues

We first present a decomposition of the network into individual queues and deduce

the rate and the scv of the actual inter-arrival time and the effective service time. We note

by πci the probability that a completer from queue i is blocked under RS-RD blocking and

by αij the transition probability that a completer of queue i attempts to join queue j.
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The effective service-time is the service time in the servers after the consideration of

the limited capacity of the queues and the blocking mechanism. The rate and the scv of

the effective service time distribution are determined by:

µ̃i = µi(1− πci) (39)

C̃si = πci + Csi(1− πci) (40)

with

πci =
M∑

j=1
αijπij (41)

The effective transition probability, which is the transition probability of the network after

consideration of the capacity limitation of the queues and the blocking mechanism, is

determined by:

α̃ji = αji(1− πji)
(1− πcj)

. (42)

The rate of the effective inter-arrival time distribution of a queue i noted by λ̃i is

calculated by solving the flow balance equations (8) and satisfying constraints on the fixed

number of bikes(9).

The departing sub-stream from a queue j to a queue i, λji is given by:

λji = λ̃jα̃ji

(1− πji)
(43)

The scv of the effective arriving stream at queue i generated from queue j is given by:

C̃dji = 1− α̃ji + α̃jiC̃dj (44)

and the blocking probability entering the node i:

πi =
∑

j∈Ai
λjiπji∑

j∈Ai
λji

(45)

C̃ai the scv of the effective inter-arrival time to node i is defined as in (Kouvatsos, 1994;

Kouvatsos & Xenios, 1989).

C̃ai = −1 +
 M∑

j=1

λ̃jα̃ji

λ̃i

(C̃dji + 1)−1

−1

(46)
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The rate and the scv of the inter-arrival time to a node i; λi and Cai are given by:

λi = λ̃i

(1− πi)
. (47)

Cai = C̃ai − πi

(1− πi)
. (48)

In (Kouvatsos & Xenios, 1989), πij the probability that a completer from queue i is blocked

by queue j(6= i) have been demonstrated to have the form:

πij = (1− τij)Nj
σ̃j

σ̃j(1− τij) + τij

pj(0)

+
Nj∑

nj=1
(1− τij)(Nj − nj)pj(nj)

(49)

with

τij = 2
Cdij + 1 , i ∈ {1, . . . ,M} , j ∈ {1, . . . ,M} (50)

and

σ̃j = 2
C̃sj + 1

, j ∈ {1, . . . ,M} (51)

The SCV of the overall arriving stream at queue j generated from queue i

Cdij = (C̃dij − πij)
(1− πij)

(52)

Approximation of the scv of the effective inter-departure time C̃di from queue i can be

analytically approximated at heavy traffic as mentioned in (Kouvatsos & Xenios, 1989) by

the relation:

C̃di = ρ̃i(1− ρ̃i) + (1− ρ̃i)C̃ai + ρ̃i
2C̃si (53)

with

ρ̃i = λ̃i

Lµ̃i

i ∈MS ∪MSB (54)

ρ̃i = λ̃i

µ̃i

i ∈ SS (55)

The resolution method at a glance

In the following figure, the steps for the resolution of the CQN with RS-RD blocking

are shown in synthetic way.
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Maximum Entropy resolution for the individual queues 
of the network

Newton-Raphson Algorithm

Pseudo-open queuing 
network resolution

µi, Csi, αij 

No

Convolution type Iterative 
algorithm 

No

Yes

Yes

Marginal probabilities, Pi(ni)

Throughputs and arrival rates 
proportionality verification 

No

Yes

End

Closed queuing network 
resolution

Figure B1 . Resolution approach of the CQN with RS-RD blocking
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