
HAL Id: hal-01638115
https://hal.science/hal-01638115

Submitted on 19 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time, Timelines and Temporal Scopes in the Antescofo
DSL v1.0

Jean-Louis Giavitto, José-Manuel Echeveste, Arshia Cont, Philippe Cuvillier

To cite this version:
Jean-Louis Giavitto, José-Manuel Echeveste, Arshia Cont, Philippe Cuvillier. Time, Timelines and
Temporal Scopes in the Antescofo DSL v1.0. International Computer Music Conference (ICMC),
ICMA, Oct 2017, Shanghai, China. �hal-01638115�

https://hal.science/hal-01638115
https://hal.archives-ouvertes.fr

Time, Timelines and Temporal Scopes in the Antescofo DSL v1.0

Jean-Louis Giavitto
CNRS UMR STMS 9912

IRCAM & UPMC & Sorbonne University, Paris
giavitto@ircam.fr

José Echeveste, Arshia Cont, Philippe Cuvillier
Antescofo

Agoranov, Paris
name@antescofo.com

ABSTRACT

This paper presents the model of time developed in the ver-
sion 1.0 of the Antescofo system. Antescofo integrates a
listening module with a dedicated reactive and timed real-
time programming language used to define the electronic
actions to be performed in sync with a human performer.
Since its beginnings, the model of time supported by the
DSL has been developed and enriched, going from implicit
relationships to denotable entities in v1.0. This paper fo-
cuses on the simultaneity and succession relationships that
organize actions on a timeline, the creation of multiple in-
dependent timelines and on the notion of temporal scope
that defines how time passes on a timeline relatively to the
occurrence of events and to the fluence of another time-
line. Temporal scopes offer generic and expressive ways to
“play in time” the electronics with a human performer.

1. INTRODUCTION

Antescofo is system coupling a listening module and a do-
main specific programming language (DSL). It is used by
music composers, and more generally by interactive mul-
timedia designers, to specify and to implement augmented
scores, i.e., temporal scenarios where electronic musical
processes are computed and scheduled in interaction with
a live musician performance. Interaction scenarios are ex-
pressed at a symbolic level through the specification of mu-
sical time in the score (musical events like notes and beats
in relative tempi) and the management of the physical time
of the performance (with relationships like succession, de-
lay, duration, rate. . . of events occurrence on stage).

During the performance, human performers “implement”
the instrumental part of the augmented score, while the lan-
guage runtime evaluates the electronic part with the help of
the information provided by a listening module, to control
and synchronize the electronic actions with the musical en-
vironment.

Antescofo bridges the gap between the composition and
the performance, which requires the handling of several
notions of time. The composer defines potential tempo-
ral relationships between musical entities in an augmented
score. These relationships are expressed through the tem-
poral relationships between Antescofo actions arranged in
timelines and musical events. During the performance, the

Copyright: c©2017 Jean-Louis Giavitto et al. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License 3.0 Unported, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are
credited.

potential temporal relationships specified by the composer
become actual with the realization of musical events by the
musicians and the computation of electronic actions by the
computer. A unique feature of Antescofo is that the com-
poser is able to specify constraints between the potential
and the actual temporal relationships.

This paper introduces the various temporal notions at work
in Antescofo. It presents the dynamic control structures
used to specify sequences of actions into timelines and how
a timeline gathers both event-driven and time-driven rela-
tionships.

Since the version v1.0, the passing of time, i.e., the pro-
gression on a timeline, is also a denotable entity in the lan-
guage: the notion of temporal scope defines the advance-
ment on a timeline relatively to another timeline. This
progression accommodates the event-driven view and the
timed view of time. Temporal scopes make possible to syn-
chronize with external systems that have their own non-
deterministic timelines like a human musician.

Organization of the paper. Next section presents the han-
dling of succession and simultaneity in synchronous lan-
guages, a successful approach developed in the realm of
real-time programming for the development of embedded
systems. Section 3 compares the Antescofo specification
of succession and simultaneity with the approach devel-
oped by ChucK [1], another DSL in computer music that
fulfills the synchrony hypothesis and provides a strong and
coherent time model. Section 4 introduces the notion of
temporal scope that defines how the beats on a timeline
are converted into physical time. This conversion is driven
by the progression on another timeline, a mechanism that
provides all features needed for playing “in time”.

2. TIME IN PROGRAMMING LANGUAGES

The classical analysis of time in philosophy distinguishes
between two temporal entities, instant and duration that
are linked by three temporal modes or relationships: suc-
cession, simultaneity and permanence. This analysis can
be used to classify programming languages and computer
music systems by their handling of instant and duration:

• Dealing with succession and simultaneity of instants leads
to the event-triggered or event-driven view, where a pro-
cessing activity is initiated as a consequence of the oc-
currence of a significant event. For instance, this is the
underlying model of time in MIDI.

• Managing duration and permanence points to a time-
triggered or time-driven view, where activities are ini-
tiated periodically at predetermined date and last. This
is the usual approach in audio computations.

mailto:giavitto@ircam.fr
mailto:echeveste@antescofo.com
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

These two points of view [2] are supported in Antescofo
and the composer/programmer can express his own musi-
cal processes in the most appropriate style.

2.1. Instants and Succession: Sequential Languages

Sequential programming languages usually deal only with
instants (which are the location in time of elementary com-
putations) and their succession. The actual duration of a
computation does not matter, nor does the interval of time
between two instants: these instants are atomic events.

This model is that of MIDI: basic events are note on and
note off messages. There is no notion of duration in MIDI:
the duration of a note is represented by the interval of time
between a note on and the corresponding note off and it
has to be managed externally to the MIDI device, e.g. by
a sequencer. In addition, two MIDI events cannot happen
simultaneously. So we cannot say for instance that a chord
starts at some point in time, because starting the emission
of the notes of the chords are distinct sequential events.

There is two “sources of succession” in programming
languages: explicit succession, as specified with the ex-
plicit sequence of statements in a language like C or the
; operator in Pascal ; and the causality which implies for
instance that the condition of a conditional must be calcu-
lated before computing the selected branch.

2.2. Simultaneity

In a purely sequential programming language, it is very
difficult to do something at a given date. We can imag-
ine a mechanism that suspends the execution for a given
duration and wakes up at the given date, as in

sleep(12 p.m. - now()) ;
computation to do at 12 p.m.

or if we have a mechanism that suspends the execution un-
til the arrival of a date

wait(12 p.m.) ;
computation to do at 12 p.m.

or until the occurrence of an event:

wait(MIDI message) ;
process received message

Notice that the computation resumes after the date or the
event. On a practical level, this is usually negligible (e.g.,
chords can be emulated in MIDI using successive events).
However, at a conceptual level, it means that simultaneity
cannot be directly expressed in the language, which will
make the specification of some temporal behaviors more
difficult.

To express simultaneity in the previous code fragment,
we have to imagine that computations happen infinitely
fast, allowing events to be considered atomic and truly syn-
chronous. This is the synchrony hypothesis whose conse-
quences have been investigated in the development of syn-
chronous languages dedicated to the development of real-
time embedded systems like Esterel [3], Lustre or Lucid
Synchrone [4].

2.3. Synchronous Languages

Synchronous languages have not only postulated infinitely
fast computations, allowing two computations to occur si-
multaneously, they have also postulated that two compu-

tations occurring at the same instant are nevertheless or-
dered. This marks a strong difference between simultane-
ity and parallelism (more on this below) and articulates, in
an odd way, succession and simultaneity (one relationship
does not imply the negation of the other).

However, there are no logical flaws in this idea [5]. Much
better, this hypothesis reconciles determinism with the mod-
ularity and expressiveness of concurrency: at a certain ab-
straction level, we may assume that an action takes no time
to be performed (i.e. its execution time is negligible at this
abstraction level) and we may assume a sequential execu-
tion model (the sequence of actions is performed in a spe-
cific and well determined order) which implies determin-
istic and predictable behavior. Such determinism can lead
to programs that are significantly easier to specify, debug,
and analyze than nondeterministic ones [6].

A good example of the relevance of the synchrony hy-
pothesis in the design of real-time systems is the send-
ing of messages, in MAX or PureData, to control some
device. To change the frequency of an ugen, the gener-
ator must have already been turned on. But there is no
point in postulating an actual delay between turning on the
generator and changing its frequency default value. The
corresponding two messages are sent in the same logical
instant but in a specific order. Another example is audio
processing when computations are described by a global
dataflow graph. From the audio device perspective, time is
discretized in instants corresponding to the input and the
output of an audio buffer. In one of these instants, all com-
putations described by the global graph happen together.
However, in this instant, computations are ordered, e.g. by
traversing the audio graph in depth-first order from audio
sources to sinks.

3. SIMULTANEITY AND SUCCESSION IN
ANTESCOFO

Action is the name used in Antescofo to refer to some com-
putations. Elementary actions are basic predefined opera-
tions. They can be instantaneous (assignation, sending a
message, evaluating an expression) or they can have dura-
tion. An example of elementary action that has a non-null
duration is the curve, which interpolates between parame-
ters during a definite time interval.

Compound actions organize the temporal relationships of
several sub-actions. Succession is one of such construc-
tions.

3.1. Succession Operators

They are five succession operators in Antescofo: the jux-
taposition, the delay, the followed-by and the ended-by.
These binary operators are associative at the exception of
the delay.

Juxatposition. The juxtaposition operator is implicit: two
actions a and b that appears one after the other, as a b in the
score, are performed simultaneously.

Delay. The delay operator is used to launch an action b af-
ter a specified duration has elapsed. The delay begins with
the start of action a. The operator is written in infix form
using the specified duration as the operation. For example,

“a 5 b” will start b 5 beats after the start of a. Notice that
“a 0 b” is equivalent to “a b”.

They are several ways to specify a delay. An expression
e evaluating into a numerical value always refers to the
passing of time in the current temporal scope (whose unit
is always called a beat). The labeling of the expression by
s or ms defines a delay in seconds or milliseconds, that is,
in the scope of the physical time: a 5s b will start b five
seconds after the start of a.

Notice that this may seem similar to “chunking” a delay
in ChucK. Indeed,

a; 5::s => now; b

in ChucK gives the same results as “a 5s b” in Antescofo
if we suppose that a and b are instantaneous computations.
This is no longer true if a has some duration as discussed
in sect. 3.3.

Followed-by and Ended-by. These two operators are sim-
ilar to the juxtaposition but differs with respect to the refer-
ence point used for the succession. Instead of considering
the start of a, the ==> (followed-by) and the +=> (ended-
by) operators consider the termination of a: a ==> b will
trigger b at the end of a; if a is a compound action that
spawns sub-actions, +=> will further wait the termination
of all sub-actions (recursively) before launching b.

This notion of succession is a semantic one, not a syntac-
tic one as for the usual succession operator. For example,
if :: P is a process (process identifiers begin with :: in An-
tescofo), then

: : P () +=> p r i n t " stop "

will print "stop" at the termination of :: P and all of the
spawned children, not after the launch of :: P. For this rea-
son, operators ==> and +=> are similar to continuation
operators [7].

3.2. Control Structures

Succession operators define a local temporal relation be-
tween two actions. Additional control structures, like it-
eration, process call and reaction, can be used to specify
more global relationships (others control structures avail-
able in Antescofo are not addressed in this paper).

Iteration. The construction “loop p a” iterates the execu-
tion of a every p. Expression p defines a time interval. It
can be a constant to define a periodic iteration, or its value
can change during loop’s execution. For instance

$p := 1
loop $p {

$p := $p ∗ 0.95
a

}

defines an exponential accelerando for the iterations of ac-
tion a (in Antescofo, variable identifiers begin with $).

Each instance of the loop body runs in its own thread. So
instances of loop bodies may overlap in time if the duration
of a loop body exceeds the period p. For example the loop
at left produces the trace given on the right:

loop 1 {
p r i n t 1

1 p r i n t 2
1 p r i n t 3

}
iteration 1

iteration 2

iteration 3

1 2 3

1 2 3

1 2 3

Process Call. An Antescofo program can be parametrized
and abstracted in a process definition. This process can
later be called as an action. The call itself is atomic and
the process runs in its own thread.

Process definitions are first class values. They can also
be recursive. For example

@proc_def : : T ic ($d) { $d p r i n t t i c }
@proc_def : : Toc ($d) { $d p r i n t toc }
@proc_def : : Clock ($p , $q) {

: : $p (0)
: : $q (1)

2 : : Clock ($p , $q)
}

defines three processes. Processes :: Tic and :: Toc are ele-
mentary actions performed after a delay given in parame-
ter. The last process :: Clock calls the two processes given
as arguments and then calls itself recursively after a de-
lay. This recursion is not bounded but it implies a delay.
So there is no accumulation of actions to perform before a
given date. The net result is equivalent to

loop 2 {
: : $p (0)
: : $q (1)

}

So the call :: Clock(::Tic, :: Toc) spawns a periodic clock that
alternates the triggering of the actions in parameter every
beat.

Reaction. The previous control structures initiate an ac-
tion relative to the beginning (or the end) of another action,
or after a delay has elapsed. Antescofo introduces several
ways to start an action in reaction to an event. They are sev-
eral kind of events: the performance of a musical event, the
reception of a Max, PD, OSC message. . . and the occur-
rence of an arbitrary logical condition. Reactions to the last
kind of events are handled by the whenever control structure
that launches an action a every time its condition cond is
fulfilled:

whenever (cond) a

The condition cond characterizes a specific instantaneous
state in the system, expressed as a logical expression like
“$x + $y > 3” (action a is launched each time the sum $x + $y
changes its value for a value greater than 3). The condi-
tion can also specify a durative state called temporal pat-
terns [8]. For instance, the complex event: “variable $pitch
takes the same value $x during at least 2 beats and then is
assigned to the same value $x before 1 beat has elapsed”,
is defined by the construction:

@pattern_def lap {
@local $x

s ta te $p i t ch value $x dur ing [2]
before [1] event $p i t ch value $x

}

Temporal Restriction. Without other indications, a loop
runs forever and a whenever watches the variables in its con-
dition until the end of the program. Bounding guards can
be specified to restrict these lifetimes or the lifetime of any
other action. The interval on which a loop runs, can be
specified by a logical guard: the loop stops its iteration
when a logical expression becomes true (but the existing
instances of the loop body continue their executions). This
interval can also be specified directly as a time interval us-
ing the during clause:

loop 1 { a } u n t i l ($x == 3)
loop 1 { a } wh i le ($x != 3)
loop 1 { a } dur ing [3]
loop 1 { a } dur ing [3 s]
loop 1 { a } dur ing [3 #]

The sharp # in the last during clause is similar to the label s
and denotes logical time: the loop body is instantiated ex-
actly 3 times before aborting the loop. Notice that durative
actions can also be explicitly aborted.

3.3. Parallelism and Simultaneity

We mentioned that chuncking a delay in ChucK is not equiv-
alent to the Antescofo’s delay operator. Starting an activity
(after a delay) with the start of another one, requires im-
plicitly that all activities are independent and run in paral-
lel. This is apparent in “a 1 b” if we replace a by an action
that takes some time like a loop. In

loop 1ms { c }
1ms b

the action b is started at 1ms, simultaneously with the sec-
ond iteration of the loop. In the following ChucK code,
action b is never performed:

while (true) { c; 1::ms => now; };
1::ms => now; b

The interpretation of “a 1s b” and “a; 1::s => now; b”
differs greatly: the ChucK program is a sequential program
that is stopped for a given duration when chuncking the
delay, while the Antescofo program describes two parallel
activities that are shifted in time. To achieve the Antescofo
semantic in ChucK, one has to explicitly use shreds (i.e.
ChucK threads) to make the actions independent:

spork ˜ a;
1::s => now;
spork ˜ b;

(the spork operator forks a new shred). The previous ex-
ample points the difference between Antescofo and ChucK,
and more generally, the approach taken by imperative syn-
chronous languages: despite the fact that they all fulfill the
synchrony hypothesis, computations happen infinitely fast
and sequentially in existing imperative synchronous lan-
guages, while computations in Antescofo are infinitely fast
and occur in parallel.

This formulation may seem absurd until one realizes that,
here, parallelism refers to a logical notion related to the
structure of the program evaluation and is not related to
an operational property of the execution. In this view, a
program is parallel if several threads describe the progres-
sion of the computation. Here a thread corresponds to an
instruction counter that points in a succession of actions.
In the case of ChucK, all control structures are sequential
(i.e. takes place in one thread) except the explicit thread
creation operation spork. On the other hand, threads are
implicit in Antescofo and are derived from the simultaneity
and the succession structure of compound actions.

Coroutines. Similarly to ChucK, Antescofo threads of ac-
tivities are implemented using coroutines [9], not processes
or posix threads. The concept of coroutines was intro-
duced in the early 1960s and constitutes one of the oldest
proposals of a general control abstraction. The notion of
coroutine was never precisely defined, but three fundamen-
tal characteristics of a coroutine are widely acknowledged:

• the values of data local to a coroutine persist between
successive calls;

• the current execution of a coroutine is suspended as con-
trol leaves it, only to carry on where it left off when
control re-enters the coroutine at some later stage;

• they are non-preemptive: coroutines explicitly transfer
control among themselves with some control-transfer
operations (there is no preemption, nor interruption).

In addition, Antescofo’s coroutines have several specific
features. There is no explicit coroutine creation. They
are first-class objects that can be freely manipulated by
the programmer. There is only one control transfer op-
eration: waiting for a delay. This operation corresponds to
the yield operation used to suspend a coroutine execution:
the coroutine’s continuation point is saved so that the next
time the coroutine is resumed, its execution will continue
from the exact point where it suspended. But in Antescofo
there is no explicit resume operation: they are implied im-
plicitly by the succession relationships and the passing of
time.

A coroutine is a sequence of instantaneous actions inter-
leaved with delay. So each action a in a coroutine has a
date that corresponds to the sum of delays that precedes
a. Coroutines have a priority, so the actions that must be
run at a given date (in the same instant) are unambiguously
ordered. For example, in

{ 2 a 3 b }
{ 3 c 2 d }

actions b and d occur at the same date 5. Their execu-
tion is nevertheless ordered deterministically (by their or-
der of appearance in the score). The fact that b and d are
simultaneous can be here determined statically, i.e., prior
the program execution. But in general, delays are defined
by arbitrary expressions and the simultaneity relationship
cannot be determined statically.

4. SHARING TIMELINES AND COLLECTIVE
PERFORMANCES

The previous operators locate actions on a timeline. To
tackle two fundamental problems faced by mixed music,
Antescofo introduces the handling of multiple timelines re-
lated by synchronization strategies.

In the context of written music, mixed music is defined
as the association in live performance of human musicians
and computer mediums interacting in real-time. Mixed
music raised two problems to the computer part:

1. music as a performance,

2. and performance as a collective process.

The first point refers to the divide between the score and its
realization. Usually, notation does not specify all of the el-
ements of music precisely, which leaves room for interpre-
tation. The score can be thought of as a set of constraints
that must be fulfilled by the interpretation but many scores’
incarnations may answer these constraints. The interpreta-
tion matters, conveying some meaning and assigning sig-
nificance to the musical material. It is the performer’s re-
sponsibility to choose/implement one of these possible in-
carnations. In doing so, the performer takes many deci-
sions based on performance practice, musical background,

Figure 1. Mixed Music

individual choices and also because he is part of an ensem-
ble: the music is played together with other musicians and
the collective will dramatically affect the interpretation.

These two points challenge mixed music: how should
various prescriptions of rhythm, tempo, dynamics and so
on, be precisely realized by a computer w.r.t. their speci-
fication in the augmented score? Computers cannot make
these decisions out of the blue and, in addition, have to take
the other performers into account.

The Antescofo answer is to let the programmer specify
electronic actions on a timeline T but to parametrize the
progression of time on T relatively to (the progression of
time in) another timeline U .

This approach corresponds to a big shift of paradigm in
mixed music and score following: U can be the progres-
sion of one musician on its own score and T the schedule
of the electronic accompaniment. Electronic actions are
not triggered on the occurrence of some musical events,
but rather the timelines of the electronic actions are aligned
(synchronized) with the timeline of the performer(s).

4.1. Timelines

A timeline is a common temporal reference frame: atomic
actions on the same timeline have a date expressed in beats,
and these dates can be compared and ordered. A date can
be defined by the occurrence of an event (in this case it can-
not be located in the physical time before its occurrence) or
by the expiration of a delay starting from another date. In
addition, the handling of duration requires a notion of rate
(or speed), the tempo, which drives the beat/time mapping
in-between events.

Synchronous languages are based on a discrete notion
of time. Physical time is typically handled as an external
event, for instance the reception of a periodic signal (e.g.,
the audio interrupt). This approach presents two draw-
backs: (i) action launched at a given date cannot be an-
ticipated (in a discrete-event system, the interval of time
between events is irrelevant); and (ii) duration is not in the
domain of discourse. As a consequence, continuous no-
tions like “going twice slower”, “accelerando” or “playing

this phrase from here to there” [10], are difficult to express,
if not impossible.

Most real-time computer music programming languages
rely on a discrete-event model of time and timed relations
are emulated by counting the quantum of time provided
by a clock. However, robust discrete-event emulation of
continuous time is difficult (think to the accumulation of
rounding errors in the iteration of a loop), it is a burden
to do it explicitly and it is often expensive (computations
occur at each quantum of time).

Antescofo handles both events and continuous duration.
The latter are managed through the notion of tempo, which
drives the mapping of the relative date on a timeline (ex-
pressed in beats) to the physical time (expressed in sec-
onds). The former are shared between timelines: an atomic
event is a synchronization point that is simultaneously seen
by all timelines

4.2. Temporal Scopes

The way time progresses on T relatively to U is defined
by a temporal scope TU . A temporal scope instantiates a
synchronization strategy which defines the temporal rela-
tionships to maintain between T and a referred timeline U .
The temporal scope makes explicit what means “playing in
time with U” without the timelines being identical.

Each timeline has a unique temporal scope and each ac-
tion refers to a temporal scope. If two actions share the
same temporal scope TU , they are located on the same
timeline and they progress in the same way relatively to
U : they see the same events and they progress at the same
speed.

The job of the Antescofo runtime is to compute as soon
as possible these dates and the tempo to schedule the ac-
tions at their corresponding date and at the correct rate.
Some preliminaries synchronization strategies have been
presented in [11]. The novelty with the version v1.0 is that
synchronization strategies can be the result of a computa-
tion and that temporal scopes are explicit, making possible
to parametrize a compound action with a temporal scope
or to pass a temporal scope as an argument of a procedure.

4.3. Dynamic Definition of Timelines

Primitive timelines are timelines corresponding to the evo-
lution of external processes, like human performers. Exter-
nal processes notify to Antescofo the occurrence of events
and a tempo extraction algorithm [12] is used to attach to
each event e, an associated tempo ė. Physical time is a
primitive timeline with no events and a fixed tempo of one
beat per second.

By default, child actions inherit the temporal scope of
their parent. The programmer/composer may label an ac-
tion by a synchronization strategy (qualifiers begin with
@...) leading to the creation of a new temporal scope. Cre-
ation is lazy: temporal scope with the same behavior are
shared. The programmer may refer to an existing tem-
poral scope, for instance to specify that a compound ac-
tion must be performed in sync with another compound
action (by sharing the same temporal scope). However An-
tescofo does not introduce a new type of values to repre-
sent temporal scope: they are managed through the notion
of coroutine: each coroutine refers to one temporal scope

(the temporal scope of the actions performed by the corou-
tine). Coroutines are first class values and are used to refer
to a temporal scope where this is needed.

5. CLASSICAL EXAMPLES

Antescofo provides a whole spectrum of synchronization
strategies following the use of the information of position
and the information of tempo. In the following examples,
we use these synchronization strategies to emulate in An-
tescofo the synchronization capabilities provided by the
Ableton Link protocol [13]. We suppose that we have a
process :: P running and we want to specify its progression
relatively to some information coming from the environ-
ment through an OSC message /sync at port 43210:

oscrecv sync 43210 / sync $s

This Antescofo statement creates an OSC receiver which
dispatches the argument of the message into variable $s.

Tempo synchronization is easy if this information is pro-
vided as the argument of the message. The action

: : P () @tempo = $s

calls process code::P and executes it in a new timeline
which is defined by a tempo $s and no event. When a
new tempo is broadcasted, the progression of the actions
spawned by :: P changes accordingly.

Suppose that the tempo changes by increment. A way
to smooth the tempo changes is to proceed gradually. We
can use a reaction to trigger a loop that will increase or
decrease gradually the tempo applied to :: P. This is easily
written:

whenever ($s) {
abor t $ l
$de l ta = ($s − $ is) /100
$ l := loop 0.1 { $ i s += $de l ta }

u n t i l ($ i s >= $s)
}
: : P () @tempo = $ is

The tempo of :: P is now defined by variable $is. When a
new tempo is received, the whenever is activated and trigger
a loop which will increase or decrease the :: P’s tempo ev-
ery 0.1 beat until reaching the new value by steps of $delta.
The $l variable records the coroutine corresponding to the
loop. This reference is used when a new tempo is received
to abort the eventual running loop (if there is still one) be-
fore to start the new one.

One may want to refer to the :: P’s temporal scope, to
use it on another process. This is easily done through the
coroutine that performs P:

$p := : : P () @tempo = $ is

Then we can launch :: Q on the :: P’s timeline:

: :Q() @sync = $p

The @sync attribute specifies the timeline to follow. This
example is not very informative because we have explic-
itly specified the temporal scope of :: P, so we can do the
same for :: Q. However, the idea is that $p may result from
arbitrary complicated expression evaluated in other part of
the score.

Usually, musical applications require beat alignment in
addition to tempo synchronization. We suppose that the

external process send an osc message every beat. So, be-
fore the definition of the osc receiver, we specify that vari-
able $s is used to record the occurrences of event and must
compute tempo information:

@tempovar $s (60 , 1)

This definition specifies a variable which expects a peri-
odic assignment. This variables refers to a timeline where
each assignment is located one beat after the previous one
with a nominal tempo of 60. With this setting, the call

: : P () @sync = $s

will synchronize with the timeline computed from $s. The
default synchronization strategy is to synchronize only with
the tempo. So here we synchronize actions in :: P with the
tempo extracted automatically from the speed of assign-
ment. We can specify that we want to synchronize also on
each event (that is, each beat) by saying that the synchro
must be tight:

: : P () $sync = $s , @tight

such that, in-between events the progression follows the
tempo. When a new event occurs, if this event becomes
earlier w.r.t. to the inferred tempo, the time progression
“makes a jump” to reach the new date. If the event arises
later, the progression is frozen until the actual occurrence
of the event. Smoother synchronization strategies are avail-
able [11].

6. REFERENCES

[1] G. Wang, P. R. Cook, and S. Salazar, “Chuck: A strongly timed com-
puter music language,” Computer Music Journal, 2016.

[2] H. Kopetz, “Event-triggered versus time-triggered real-time sys-
tems,” Operating Systems of the 90s and Beyond, pp. 86–101, 1991.

[3] G. Berry and G. Gonthier, “The Esterel synchronous programming
language: Design, semantics, implementation,” Science of computer
programming, vol. 19, no. 2, pp. 87–152, 1992.

[4] J.-L. Colaço, A. Girault, G. Hamon, and M. Pouzet, “Towards a
higher-order synchronous data-flow language,” in Proceedings of the
4th ACM international conference on Embedded software. ACM,
2004, pp. 230–239.

[5] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-
dorffer, S. Sachs, and Y. Xiong, “Taming heterogeneity-the Ptolemy
approach,” Proceedings of the IEEE, vol. 91, no. 1, pp. 127–144,
2003.

[6] N. Halbwachs, Synchronous programming of reactive systems.
Springer Science & Business Media, 2013, vol. 215.

[7] C. Strachey and C. P. Wadsworth, “Continuations: A mathematical
semantics for handling full jumps,” Higher-order and symbolic com-
putation, vol. 13, no. 1, pp. 135–152, 2000.

[8] J.-L. Giavitto and J. Echeveste, “Real-time matching of antescofo
temporal patterns,” in Proceedings of the 16th International Sym-
posium on Principles and Practice of Declarative Programming.
ACM, 2014, pp. 93–104.

[9] A. L. D. Moura and R. Ierusalimschy, “Revisiting coroutines,” ACM
Trans. on Prog. Languages and Systems (TOPLAS), vol. 31, no. 2,
p. 6, 2009.

[10] C. Trapani and J. Echeveste, “Real time tempo canons with an-
tescofo,” in International Computer Music Conference, 2014, p. 207.

[11] A. Cont, J. Echeveste, J.-L. Giavitto, and F. Jacquemard, “Correct
Automatic Accompaniment Despite Machine Listening or Human
Errors in Antescofo,” in International Computer Music Conference
2012, 2012.

[12] E. W. Large and C. Palmer, “Perceiving temporal regularity in music,”
Cognitive science, vol. 26, no. 1, pp. 1–37, 2002.

[13] “Ableton Link Presentation,” https://ableton.github.io/link/, accessed
april 2017.

https://ableton.github.io/link/

	 Introduction
	 Time in Programming Languages
	 Instants and Succession: Sequential Languages
	 Simultaneity
	 Synchronous Languages

	 Simultaneity and Succession in Antescofo
	 Succession Operators
	 Control Structures
	 Parallelism and Simultaneity

	 Sharing Timelines and Collective Performances
	 Timelines
	 Temporal Scopes
	 Dynamic Definition of Timelines

	 Classical Examples
	 References

