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ON THE LIMIT SOBOLEV REGULARITY FOR DIRICHLET AND NEUMANN PROBLEMS ON LIPSCHITZ DOMAINS

We construct a bounded C 1 domain Ω in R n for which the H 3/2 regularity for the Dirichlet and Neumann problems for the Laplacian cannot be improved, that is, there exists f in C ∞ (Ω) such that the solution of ∆u = f in Ω and either u = 0 on ∂Ω or ∂ n u = 0 on ∂Ω is contained in H 3/2 (Ω) but not in H 3/2+ε (Ω) for any ε > 0. An analogous result holds for L p Sobolev spaces with p ∈ (1, ∞).

INTRODUCTION

The motivation for this note comes from a question of regularity of the time-harmonic Maxwell equations in Lipschitz domains. In the variational theory of Maxwell's equations, basis for the analysis of many algorithms of numerical electrodynamics, the following two function spaces are fundamental:

X N = H(div, Ω) ∩ H 0 (curl, Ω) = {u ∈ L 2 (Ω; C 3 ) | div u ∈ L 2 (Ω), curl u ∈ L 2 (Ω; C 3 ), u × n = 0 on ∂Ω} (1.1) X T = H 0 (div, Ω) ∩ H(curl, Ω) = {u ∈ L 2 (Ω; C 3 ) | div u ∈ L 2 (Ω), curl u ∈ L 2 (Ω; C 3 ), u • n = 0 on ∂Ω} (1.2)
Here n is the outward unit normal vector field on the boundary of the domain Ω ⊂ R 3 .

If Ω is a bounded Lipschitz domain, then it has been known for a long time [START_REF] Weber | A local compactness theorem for Maxwell's equations[END_REF][START_REF] Picard | An elementary proof for a compact imbedding result in generalized electromagnetic theory[END_REF] that X N and X T are compactly embedded subspaces of L 2 (Ω; C 3 ), and it has been shown more precisely [START_REF] Costabel | A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains[END_REF][START_REF] Mitrea | Finite energy solutions of Maxwell's equations and constructive Hodge decompositions on nonsmooth Riemannian manifolds[END_REF] that they are contained in the Sobolev space H 1 2 (Ω, C 3 ) = W 1 2 ,2 (Ω, C 3 ). For large classes of more regular domains, X N and X T are contained in H 1 (Ω, C 3 ) (see [START_REF] Amrouche | Vector potentials in three-dimensional nonsmooth domains[END_REF] for C 1,1 domains, [START_REF] Filonov | Principal singularities of the magnetic field component in resonators with a boundary of a given class of smoothness[END_REF] for C 3 2 +ε domains, [START_REF] Saranen | On an inequality of Friedrichs[END_REF] for X N on convex domains, [START_REF] Taylor | Lipschitz domains, domains with corners, and the Hodge Laplacian[END_REF] for "almost convex" domains). The regularity is diminished by corner singularities, but one also knows [START_REF] Amrouche | Vector potentials in three-dimensional nonsmooth domains[END_REF] that for every Lipschitz polyhedron or, more generally, piecewise smooth domain Ω that is at least C 2 -diffeomorphic to a polyhedron, there exists ε > 0 such that

X N ∪ X T ⊂ H 1 2 +ε (Ω; C 3 ) .
(1.

3)

The additional regularity described by ε is of some use in the numerical analysis of Maxwell's equations (see for example [START_REF] Alonso | An optimal domain decomposition preconditioner for low-frequency timeharmonic Maxwell equations[END_REF][START_REF] Ainsworth | Discrete extension operators for mixed finite element spaces on locally refined meshes[END_REF]). The parameter ε can become arbitrarily small, depending on the corner angles of ∂Ω, but it depends only on these angles, that is, on the local Lipschitz constant of ∂Ω. Based on this observation, one could ask the question whether for any Lipschitz domain Ω, there exists such an ε > 0 for which (1.3) holds. This question is the motivation for the present investigation.
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To the best of the author's knowledge, the conjecture that such an ε > 0 always exists is not incompatible with the currently available regularity results for Maxwell's equations on Lipschitz domains, but we shall show that it is not true. As a corollary of our constructions, we obtain a counterexample that is even C 1 .

Proposition 1.1. There exists a bounded C 1 domain Ω ⊂ R 3 , an L 2 (Ω) function g and an L 2 (Ω; C 3 ) function h such that the solutions u ∈ L 2 (Ω; C 3 ) of the system

div u = g , curl u = h in Ω (1.4)
and either u × n = 0 on ∂Ω (1.5)

or u • n = 0 on ∂Ω (1.6)
do not belong to H 1 2 +ε (Ω; C 3 ) for any ε > 0. In the system (1.4), the field h can be chosen to be zero and g can be chosen to be continous on Ω.

As we will see in the following, analogous results are true in dimension 2 and in higher dimensions, and also for non-Hilbert Sobolev spaces over L p with p different from 2.

Non-regular solutions of the div-curl system (1.4) are typically sought as gradients of solutions of the inhomogeneous Laplace (Poisson) equation with either Dirichlet (for (1.5)) or Neumann (for (1.6)) boundary conditions. A non-regularity result for these Laplace boundary value problems is the main result of this paper, see Theorem 1.2 below. It will be proved in Section 3 for dimension d = 2 and in Section 4 for higher dimensions.

We use the standard notation W s,p (Ω) for the Sobolev-Slobodeckij spaces on Ω ⊂ R d , and we recall that for 0 < s < 1 the seminorm

|u| s,p;Ω = Ω Ω |u(y) -u(x)| p |y -x| d+sp dx dy 1 p (1.7)
defines the norm u W s,p (Ω) = u L p (Ω) + |u| s,p;Ω , that W 0,p (Ω) = L p (Ω), and that for any s there holds u ∈ W s+1,p (Ω) ⇐⇒ u ∈ W s,p (Ω) and ∇u ∈ W s,p (Ω; C d ) .

As usual, we write W s,p 0 (Ω) for the closure of C ∞ 0 (Ω) in W s,p (Ω). In view of an interesting property of the domain we are going to construct (see equations (1.10) and (4.1)), we recall that for 1 p < s < 1 + 1 p the subspace W s,p 0 (Ω) is characterized by the condition that the boundary trace vanishes, whereas for 1 + 1 p < s < 2 + 1 p the condition is that both the trace and the normal derivative vanish on ∂Ω.

In order to describe known regularity results, we also need the Bessel potential spaces H s,p (Ω), which are different from W s,p (Ω) if p = 2. For the main properties of these spaces, see [START_REF] Triebel | Interpolation theory. Function spaces. Differential operators[END_REF]. In Triebel's notation W m,p (Ω) = F m p,2 (Ω) for m ∈ N and H s,p (Ω) = F s p,2 (Ω) , and for s ∈ Z : W s,p (Ω) = B s p,p (Ω) . Note that the trace space for both W s,p (Ω) and H s,p (Ω) on a sufficiently smooth boundary is

W s-1 p ,p (∂Ω) if s > 1 p .
Comprehensive regularity results in the H s,p spaces for the Dirichlet problem on Lipschitz domains were given by Jerison and Kenig [START_REF] Kenig | The inhomogeneous Dirichlet problem in Lipschitz domains[END_REF]. They had previously studied the homogeneous Laplace equation with inhomogeneous Neumann conditions [START_REF] Kenig | The Neumann problem on Lipschitz domains[END_REF], and corresponding results for the homogeneous Neumann problem of the inhomogeneous Laplace equation were obtained by Fabes, Mendez and Mitrea [START_REF] Fabes | Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains[END_REF] and Zanger [START_REF] Zanger | The inhomogeneous Neumann problem in Lipschitz domains[END_REF]. In particular, there exist precise answers to the question for which s and p the condition g ∈ H s-2,p (Ω) implies v ∈ H s,p (Ω) for the solutions v of the problems

∆v = g in Ω , v = 0 on ∂Ω (1.8) ∆v = g in Ω , ∂v ∂n = 0 on ∂Ω (1.9)
For the maximal regularity one finds a limit at s = 1 + 1 p . We summarize the main results pertaining to the question of maximal regularity (here formulated for the Dirichlet problem, see [8, Thms 1.1-1.3], where H s,p is written L p s ; the results for the Neumann problem are similar): For any bounded Lipschitz domain

Ω ⊂ R d , d ≥ 2, there exists p 0 ∈ [1, 2) such that for p 0 < p < p 0 p 0 -1 and 1 p < s < 1 + 1 p the solution v of the Dirichlet problem (1.8) with g ∈ H s-2,p (Ω) belongs to H s,p (Ω).
The following 4 points indicate the known borders of this result. 1. In general, p 0 > 1 and there are counterexamples as soon as p or s are outside of the given bounds, but when Ω is a C 1 domain, one can choose p 0 = 1, so that the result is true for any

p ∈ (1, ∞). 2. When p > 2, there are Lipschitz counterexamples with g ∈ C ∞ (Ω) and v ∈ W 1+ 1 p ,p (Ω). There is a C 1 counterexample for p = 1 with g ∈ C ∞ (Ω) and v ∈ W 2,1 (Ω).
3. In the optimal regularity-shift result for C 1 domains, the condition on s cannot be weakened, because for any p > 1 there exists a bounded C 1 domain Ω and a g ∈ H -1+ 1 p ,p (Ω) such that v ∈ H 1+ 1 p ,p (Ω). 4. On the other hand, if g is more regular, for example g ∈ H -1+ 1 p +ε,p (Ω) for some ε > 0 and p > 1, then v ∈ H 1+ 1 p ,p (Ω) follows. The latter result is obtained by subtracting from v a solution v 0 ∈ H 1+ 1 p +ε,p (Ω) of ∆v 0 = g without boundary conditions and observing that a harmonic function with trace in W 1,p (∂Ω) belongs to H 1+ 1 p ,p (Ω).

We will prove that one will have v ∈ H 1+ 1 p +ε,p (Ω) for any ε > 0, in general, even for more regular g. Because of the mutual inclusions H s+ε,p ⊂ W s,p ⊂ H s-ε,p for any ε > 0, the result is equivalently formulated in the scale of W s,p spaces. shows that the result for the Dirichlet problem holds even with ε = 0. Moreover, for p > 2 the result of Theorem 1.2 is not interesting in the class of Lipschitz domains, because singularities at conical points provide a limit of regularity that is strictly below s = 1 + 1 p . This follows from the well-known singular asymptotic behavior O(r α ) near a straight d -2 dimensional facet of the boundary (corner in dimension d = 2 or "edge" in dimension ≥ 3) of opening angle π α of generic solutions of the Dirichlet and Neumann problems with smooth right hand sides, where r is the distance to the corner or edge. Such functions are in W s,p (Ω) only for s < α + 2 p , hence not in W 1+ 1 p ,p (Ω) as soon as the opening angle exceeds p p-1 π. But for C 1 domains the result still seems to be new even for p > 2. We provide a proof that works for any p ≥ 1, because there is no extra cost with respect to the proof for p = 2. One just has to be careful to observe that the same domain Ω and the same function g give an example valid for all p and all ε.

Proposition 1.1 follows from Theorem 1.2 for p = 2, d = 3 if we take u = ∇v ("electrostatic field"). The Laplace equation for v implies the div-curl system (1.4) for u with h = 0, and the Dirichlet and Neumann conditions in (1.8) and (1.9) for v imply the vanishing of the tangential component (1.5) or of the normal component (1.6), respectively. Finally,

v ∈ W 1+ 1 p +ε,p (Ω) is equivalent to u ∈ W 1 p +ε,p (Ω; C 3 ).
The construction of our counterexample uses the ideas of Filonov in the paper [START_REF] Filonov | Principal singularities of the magnetic field component in resonators with a boundary of a given class of smoothness[END_REF], where he considers a related question for ε = 1 2 and constructs a C 3 2 domain Ω that satisfies, among other interesting properties

H 2 (Ω) ∩ H 1 0 (Ω) = H 2 0 (Ω) ,
that is, the homogeneous Dirichlet condition for H 2 functions implies the homogeneous Neumann condition, see also [START_REF] Buffa | On traces for H(curl, Ω) in Lipschitz domains[END_REF]. Generalizing this, the C 1 domain Ω that we will construct satisfies

W 1+ 1 p +ε,p (Ω) ∩ W 1,p 0 (Ω) = W 1+ 1 p +ε,p 0 (Ω) ∀1 ≤ p < ∞ , 0 < ε < 1 .
(1.10)

GENERALIZING FILONOV'S SEPARATING FUNCTION

We construct a continuous real-valued function f on T = R/(2πZ) with the following property: If a and b belong to W ε,p (T) for some ε > 0, p ≥ 1, and af = b, then a = b = 0.

The construction and proof are modeled after Filonov's construction of a C 1 2 function that has the above separation property for ε = 1 2 and p = 2. It is in the lineage of Weierstrass' example of a continuous nowhere differentiable function.

We define f via a lacunary Fourier series

f (x) = ∞ k=1 a k sin(b k x) = ∞ k=1 f k (x) (2.1)
where the sequences a k > 0 and b k ∈ N are chosen so that they satisfy

a k < ∞ and b k ≥ 2, b k+1 ≥ 2b k , k ≥ 1,
and the following properties for a given small constant γ > 0 to be fixed later on (see (2.7)):

m-1 k=1 a k b k ≤ γ a m b m ∀ m ≥ 2 (2.2) ∞ k=m+1 a k ≤ γ a m ∀ m ≥ 1 (2.3) ∞ m=1 a p m b pε m = +∞ ∀ ε > 0, p ≥ 1 . (2.4) 
We first show that for sufficiently large q ∈ N the sequences a k = q -k , b k = 2 q k have the properties (2.2)-(2.4), and we shall keep this choice from now on 1 .

For (2.2), let s m = 1 ambm m-1 k=1 a k b k .
Noting that for q ≥ 7 we have q 2 2 1-q < 1, we show by induction that then s m < 1 q-1 for all m ≥ 2, which implies (2.2) for q large enough. Indeed,

s 2 = a 1 b 1 a 2 b 2 = q 2 (1-q)q < q 2 1-q < 1 q < 1 q-1 , and if s m < 1 q-1 it follows that s m+1 = (s m + 1) ambm a m+1 b m+1 = (s m + 1) q 2 (1-q)q m < (s m + 1) q 2 (1-q) < ( 1 q-1 + 1) 1 q = 1 q-1 .
For (2.3), we have

∞ k=m+1 a k a m = ∞ k=1 q -k = 1 q -1
which again is less than γ for q large enough. For (2.4) we use that 2 t ≥ t log 2 for all t > 0, so that a p m b pε m = (2 εq m /q m ) p ≥ (ε log 2) p for all m. Lemma 2.1. The function f defined by (2.1) is continuous on T and satisfies

2π 0 |f (y) -f (x)| p |y -x| 1+pε dy = +∞ for all x ∈ [0, 2π], ε > 0, 1 ≤ p < ∞ . (2.5) 
Proof. We first note that we have f (2π -x) = -f (x), so that it is sufficient to prove (2.5) for

x ∈ [0, π]. In this case [x, x + 1] ⊂ [0, 2π], and therefore with the disjoint intervals

I m = [ 1 bm , 2 bm ] we have 2π 0 |f (y) -f (x)| p |y -x| 1+pε dy ≥ ∞ m=1 Im |f (x + h) -f (x)| p |h| 1+pε dh (2.6)
Now for h ∈ I m we estimate

Im |f (x + h) -f (x)| p |h| 1+pε dh 1 p ≥ J 1 -J 2 with J 1 = Im |f m (x + h) -f m (x)| p |h| 1+pε dh 1 p and J 2 = k =m Im |f k (x + h) -f k (x)| p |h| 1+pε dh 1 p .
1

By plotting approximate values of the integral in (2.7) against the variable z and visual inspection of the graph, one can obtain a rough numerical approximation of γ that indicates that γ ≥ 0.0154. In view of the condition 1/(q -1) < γ, this suggests that a value of q = 66 should be "sufficiently large".

To estimate J 1 , we assume that 0 < ε < 1 and make the change of variables t = b m h to obtain

J 1 = a m b ε m 2 1 | sin(b m x + t) -sin(b m x)| p t -(1+pε) dt 1 p ≥ 5 γ a m b ε m ,
where we defined

γ = 1 5 min z∈T 2 1 | sin(z + t) -sin(z)|t -2 dt > 0 . (2.7)
Here we used Hölder's inequality,

2 1 | sin(z + t) -sin(z)| t 2 dt ≤ 2 1 | sin(z + t) -sin(z)| t 1+ε dt ≤ 2 1 | sin(z + t) -sin(z)| p t -(1+pε) dt 1 p 2 1 dt t 1-1 p .
To estimate J 2 , we use for k ≤ m -1

|f k (x + h) -f k (x)| ≤ a k b k |h| ≤ 2a k b k 1 bm and for k ≥ m + 1 |f k (x + h) -f k (x)| ≤ 2a k so that we obtain with (2.2) m-1 k=1 Im |f k (x + h) -f k (x)| p |h| 1+pε dh 1 p ≤ 2γa m Im dh |h| 1+pε 1 p ≤ 2γa m b ε m and with (2.3) ∞ k=m+1 Im |f k (x + h) -f k (x)| p |h| 1+pε dh 1 p ≤ 2γa m Im dh |h| 1+pε 1 p ≤ 2γa m b ε m , hence J 2 ≤ 4γa m b ε m . Together, this gives Im |f (x + h) -f (x)| p |h| 1+pε dh 1 p ≥ γ a m b ε m ,
and finally with (2.6) and (2.4) and the triangle inequality, we find for a, b ∈ W ε,p (0, 2π)

2π 0 |f (y) -f (x)| p |y -x| 1+pε dy ≥ ∞ m=1 γ p a p m b pε m = +∞ .
2π 0 2π 0 |a(x)| p |f (y) -f (x)| p |y -x| 1+pε dy dx 1 p ≤ |b| ε,p + f L ∞ (T) |a| ε,p < ∞ .
Because of (2.5) from Lemma 2.1, this implies a(x) = 0 for almost all x ∈ T and then b = af = 0.

2D DOMAIN WITH LIMITED REGULARITY

Let

F (x) = 1 + x 0 f (t)dt. Then F ∈ C 1 (T), F ′ = f , and 1 2 < F (x) < 3 2 .
The latter estimate follows easily from

|F (x) -1| = | ∞ k=1 a k 1-cos(b k x) b k | ≤ 2 -q ∞ k=1 2 q -k = 2 1-q 1 q-1 ≤ 1 2 .
We define now the C 1 domain ω ⊂ R 2 using polar coordinates (r, θ)

ω = {(r, θ) | r < F (θ)} . Proposition 3.1. Let p ≥ 1, ε > 0 and u ∈ W 1 p +ε,p (ω 
; C 2 ) be such that its normal trace n • u vanishes on ∂ω. Then u = 0 on ∂ω. The same conclusion is valid when the tangential trace n × u vanishes on ∂ω.

Proof. (Following Filonov [7, §5]) The unit normal n on ∂ω has the Cartesian components

n 1 = (F 2 + f 2 ) -1 2 (F cos θ + f sin θ), n 2 = (F 2 + f 2 ) -1 2 (F sin θ -f cos θ) .
Therefore the condition

n 1 u 1 + n 2 u 2 = 0 implies af = b if we define a = u 2 cos θ -u 1 sin θ , b = (u 1 cos θ + u 2 sin θ)F
Now, since the traces u j on ∂ω, understood as functions θ → u j (F (θ), θ) on T, belong to W ε,p (T), we also have a, b ∈ W ε,p (T). According to Proposition 2.2 we find a = b = 0, which implies u 1 = u 2 = 0 on ∂ω. The result using vanishing tangential trace follows by a rotation by π/2.

Corollary 3.2. (i) There exists

g ∈ C ∞ (ω) such that the solution v D ∈ H 1 0 (ω) of the Dirichlet problem ∆v D = g in ω ; v D = 0 on ∂ω does not belong to W 1+ 1 p +ε,p (ω) for any ε > 0, p ≥ 1. (i) There exists g ∈ C ∞ (ω) such that any solution v N ∈ H 1 (ω) of the Neumann problem ∆v N = g in ω ; ∂ n v N = 0 on ∂ω does not belong to W 1+ 1 p +ε,p (ω) for any ε > 0, p ≥ 1.
Proof. For v D one can take g = 1. Set u = ∇v D . If v D ∈ W 1+ 1 p +ε,p (ω), then u satisfies the hypotheses of Proposition 3.1 with vanishing tangential trace. Hence also the normal trace of u vanishes, i.e. ∂ n v D = 0 on ∂ω. Then Green's formula implies ω g = 0, which is not the case.

For v N ∈ W 1+ 1 p +ε,p (ω) one obtains similarly that the tangential derivative on the boundary vanishes, hence the trace of v N on ∂ω is constant, without loss of generality equal to zero. Thus v N is also solution of the Dirichlet problem. That there exists g ∈ L 2 (ω) for which this is impossible can be seen as follows:

Let g be a non-zero harmonic polynomial such that ω g = 0, for example g(

x 1 , x 2 ) = αx 1 x 2 + β(x 2 1 -x 2 
2 ) with suitably chosen coefficients α, β ∈ R. Then v N exists, and Green's formula gives the contradiction

0 = ∂ω (∂ n v N g -v N ∂ n g)ds = ω (∆v N g -v N ∆g)dx = ω g 2 dx .
Remark 3.3. No eigenfunction of the Laplacian with Dirichlet conditions on ω can belong to W 1+ 1 p +ε,p (ω) with ε > 0, because it would also have vanishing normal derivative. Its extension by zero outside ω would then be a Dirichlet eigenfunction with the same eigenvalue on any domain containing ω. This contradicts for example the well known behavior of Dirichlet eigenvalues on disks or squares with varying size. It contradicts also the well known interior analyticity of Dirichlet eigenfunctions.

EXAMPLE IN HIGHER DIMENSIONS

From ω ⊂ R 2 one can construct Ω ⊂ R d as follows (see [START_REF] Filonov | Principal singularities of the magnetic field component in resonators with a boundary of a given class of smoothness[END_REF], for n = 3 also [4, §6]). In cylindrical coordinates (r, θ, z), z ∈ R d-2 :

Ω = {(r, θ, z) | r 2 F (θ) 2 + |z| 2 < 1}
The intersection with the plane z = z 0 gives for |z 0 | < 1 the scaled domain 1 -|z 0 | 2 ω. One can still prove that for this domain Ω and 0 < ε < 1 there holds

W 1+ 1 p +ε,p (Ω) ∩ W 1,p 0 (Ω) = W 1+ 1 p +ε,p 0 (Ω) , (4.1) 
that is, for functions in W 1+ 1 p +ε,p (Ω) the vanishing of the boundary trace implies that also the normal derivative is zero on the boundary. Indeed, suppose that v ∈ W 1+ 1 p +ε,p (Ω), v = 0 on ∂Ω and let u = ∇v. Then the tangential components of u are zero on the boundary, and we have to show that the normal component of u vanishes, too, on ∂Ω. Define

ũ(r, θ, z) = u( 1 -|z| 2 r, θ, z) .
Then ũ is defined on the product domain

Ω = ω × B 1 = {(r, θ, z) | (r, θ) ∈ ω, |z| < 1} .
For any δ ∈ (0, 1), let Ωδ = ω × B δ . On this product domain, there holds the inclusion

W s,p ( Ωδ ) ⊂ L p B δ ; W s,p (ω) ,
as can be seen first for integer s directly from the definition of the Sobolev space W s,p and then for all s ≥ 0 by interpolation. Thus u ∈ W The vanishing of the tangential components of u on ∂Ω implies that the component of w z 0 that is parallel to the plane z = 0 and tangential to ∂ω vanishes on ∂ω. Then Proposition 3.1 tells us that the component of w z 0 that is parallel to the plane z = 0 and normal to ∂ω vanishes on ∂ω, too. This means that at such a point (r, θ, z) ∈ ∂Ω with ( 1 -|z| 2 r, θ) ∈ ∂ω, z = z 0 , in addition to the tangential components a component of u vanishes that is not tangential, and hence all components of u vanish there. Since this is true for almost all z 0 satisfying |z 0 | < δ and for all 0 < δ < 1, we see that the trace of u on ∂Ω is zero, which proves (4.1).

The non-regularity result of Theorem 1.2 for the Dirichlet problem in Ω then follows in the same way as in the two-dimensional case. In particular, one can take g = 1 for the counterexample.

For the Neumann problem, a slightly different variant of adding d -2 variables works, and this variant could also be used for the Dirichlet problem, giving a counterexample with a somewhat less regular right hand side g. For this variant, (4.1) still holds. We redefine the domain Ω so that it contains a cylindrical part (see also [7, §5.2]). This is done by modifying the function 1 -|z| 2 in the previous example. Choose a decreasing C ∞ function µ on R + satisfying µ(t) = 1 for t ≤ 1 ; µ(t) ≤ 0 for t ≥ 4 ; µ ′ (t) < 0 for t ≥ 2 , and define

Ω = {(r, θ, z) | r 2 < µ(|z| 2 ) F (θ) 2 } . (4.
2) It is not hard to see that Ω has a C 1 boundary.

We now use the two-dimensional example presented in the previous section and denote by v 0 the function found there that satisfies the Neumann problem on ω with right hand side g 0 ∈ C ∞ (ω) and that does not belong to any W 1+ 1 p +ε,p (ω) for ε > 0, p ≥ 1. In addition, we choose a function χ ∈ C ∞ 0 (R + ) satisfying χ(t) = 1 for t < 1 2 , χ(t) = 0 for t ≥ 1. Then we define v(x, z) = v 0 (x) χ(|z|); g(x, z) = g 0 (x) χ(|z|) + v 0 (x)∆ z χ(|z|); (x ∈ ω, |z| < 1) .

Initially, v and g are defined on the cylinder ω × B 1 ⊂ Ω, and we extend them by zero on the rest of Ω.

One easily verifies that v satisfies ∆v = g in Ω ;

∂ n v = 0 on ∂Ω .

Noting that both χ(|z|) and ∆ z χ(|z|) define C ∞ (Ω) functions and using the regularity of v 0 ∈ W 1+ 1 p ,p (ω) for all p > 1, so that v 0 is Hölder continuous on ω, one finds that g is Hölder continuous on Ω. Finally the non-regularity of v 0 implies clearly that also v ∈W 1+ 1 p +ε,p (Ω) for ε > 0, p ≥ 1.

This concludes the proof of Theorem 1.2.
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 111 +ε,p (Ω; C d ) implies that ũ restricted to Ωδ belongs to L p B δ ; W +ε,p (ω; C d ) , and for almost every z 0 ∈ B δ , the restriction w z 0 of ũ to the plane z = z 0 belongs to W +ε,p (ω, C d ).