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ON THE LIMIT SOBOLEV REGULARITY FOR DIRICHLET AND NEUMANN

PROBLEMS ON LIPSCHITZ DOMAINS

MARTIN COSTABEL

ABSTRACT. We construct a bounded C1 domain Ω in Rn for which the H3/2 regularity for the

Dirichlet and Neumann problems for the Laplacian cannot be improved, that is, there exists f in

C∞(Ω) such that the solution of ∆u = f in Ω and either u = 0 on ∂Ω or ∂nu = 0 on ∂Ω is

contained in H3/2(Ω) but not in H3/2+ε(Ω) for any ǫ > 0. An analogous result holds for Lp

Sobolev spaces with p ∈ (1,∞).

1. INTRODUCTION

The motivation for this note comes from a question of regularity of the time-harmonic Maxwell

equations in Lipschitz domains. In the variational theory of Maxwell’s equations, basis for the

analysis of many algorithms of numerical electrodynamics, the following two function spaces are

fundamental:

XN = H(div,Ω) ∩H0(curl,Ω)

= {u ∈ L2(Ω;C3) | div u ∈ L2(Ω), curl u ∈ L2(Ω;C3), u× n = 0 on ∂Ω} (1.1)

XT = H0(div,Ω) ∩H(curl,Ω)

= {u ∈ L2(Ω;C3) | div u ∈ L2(Ω), curl u ∈ L2(Ω;C3), u · n = 0 on ∂Ω} (1.2)

Here n is the outward unit normal vector field on the boundary of the domain Ω ⊂ R
3.

If Ω is a bounded Lipschitz domain, then it has been known for a long time [14, 10] that XN

and XT are compactly embedded subspaces of L2(Ω;C3), and it has been shown more precisely

[5, 9] that they are contained in the Sobolev space H
1

2 (Ω,C3) = W
1

2
,2(Ω,C3). For large classes

of more regular domains, XN and XT are contained in H1(Ω,C3) (see [3] for C1,1 domains, [6]

for C
3

2
+ε domains, [11] for convex domains, [12] for “almost convex” domains). The regularity

is diminished by corner singularities, but one also knows [3] that for every Lipschitz polyhedron

or, more generally, piecewise smooth domain Ω that is at least C2-diffeomorphic to a polyhedron,

there exists ε > 0 such that

XN ∪XT ⊂ H
1

2
+ε(Ω;C3) . (1.3)

The additional regularity described by ε is of some use in the numerical analysis of Maxwell’s

equations (see for example [2, 1]). The parameter ε can become arbitrarily small, depending on

the corner angles of ∂Ω, but it depends only on these angles, that is, on the local Lipschitz constant

of ∂Ω. Based on this observation, one could ask the question whether for any Lipschitz domain
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2 MARTIN COSTABEL

Ω, there exists such an ε > 0 for which (1.3) holds. This question is the motivation for the present

investigation.

To the best of the author’s knowledge, the conjecture that such an ε > 0 always exists is not

incompatible with the currently available regularity results for Maxwell’s equations on Lipschitz

domains, but we shall show that it is not true. As a corollary of our constructions, we obtain a

counterexample that is even C1.

Proposition 1.1. There exists a bounded C1 domain Ω ⊂ R3, an L2(Ω) function g and an

L2(Ω;C3) function h such that the solutions u ∈ L2(Ω;C3) of the system

div u = g , curl u = h in Ω (1.4)

and either

u× n = 0 on ∂Ω (1.5)

or

u · n = 0 on ∂Ω (1.6)

do not belong to H
1

2
+ε(Ω;C3) for any ε > 0.

In the system (1.4), the field h can be chosen to be zero and g can be chosen to be continous on Ω.

As we will see in the following, analogous results are true in dimension 2 and in higher dimen-

sions, and also for non-Hilbert Sobolev spaces over Lp with p different from 2.

Non-regular solutions of the div-curl system (1.4) are typically sought as gradients of solutions of

the inhomogeneous Laplace (Poisson) equation with either Dirichlet (for (1.5)) or Neumann (for

(1.6)) boundary conditions. A non-regularity result for these Laplace boundary value problems is

the main result of this paper, see Theorem 1.2 below. It will be proved in Section 3 for dimension

d = 2 and in Section 4 for higher dimensions.

We use the standard notation W s,p(Ω) for the Sobolev-Slobodeckij spaces on Ω ⊂ Rd, and we

recall that for 0 < s < 1 the seminorm

|u|s,p;Ω =

(
∫

Ω

∫

Ω

|u(y)− u(x)|p

|y − x|d+sp
dx dy

)
1

p

(1.7)

defines the norm ‖u‖W s,p(Ω) = ‖u‖Lp(Ω)+ |u|s,p;Ω, that W 0,p(Ω) = Lp(Ω), and that for any s there

holds

u ∈ W s+1,p(Ω) ⇐⇒ u ∈ W s,p(Ω) and ∇u ∈ W s,p(Ω;Cd) .

In order to describe known regularity results, we also need the Bessel potential spaces Hs,p(Ω),
which are different from W s,p(Ω) if p 6= 2. For the main properties of these spaces, see [13]. In

Triebel’s notation Wm,p(Ω) = Fm
p,2(Ω) for m ∈ N and

Hs,p(Ω) = F s
p,2(Ω) , and for s 6∈ Z : W s,p(Ω) = Bs

p,p(Ω) .

Note that the trace space for both W s,p(Ω) and Hs,p(Ω) on a sufficiently smooth boundary is

W s− 1

p
,p(∂Ω) if s > 1

p
.

Comprehensive regularity results in the Hs,p spaces for the Dirichlet and Neumann problems on

Lipschitz domains were given by Jerison and Kenig [8, 7]. In particular they studied the question
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for which s and p the condition g ∈ Hs−2,p(Ω) implies v ∈ Hs,p(Ω) for the solutions v of the

problems

∆v = g in Ω , v = 0 on ∂Ω (1.8)

∆v = g in Ω , ∂v
∂n

= 0 on ∂Ω (1.9)

For the maximal regularity one finds a limit at s = 1 + 1
p
. We summarize the main results

pertaining to the question of maximal regularity (here formulated for the Dirichlet problem, see

[7, Thms 1.1–1.3], where Hs,p is written Lp
s ):

For any bounded Lipschitz domain Ω ⊂ Rd, d ≥ 2, there exists p0 ≥ 1 such that for p0 < p < p0
p0−1

and 1
p
< s < 1 + 1

p
the solution v of the Dirichlet problem (1.8) with g ∈ Hs−2,p(Ω) belongs to

Hs,p(Ω). In general, p0 > 1 and there are counterexamples as soon as p or s are outside of the

given bounds, but when Ω is a C1 domain, one can choose p0 = 1. When p > 2, there are

Lipschitz counterexamples with g ∈ C∞(Ω) and v 6∈ W 1+ 1

p
,p(Ω). There is a C1 counterexample

for p = 1 with g ∈ C∞(Ω) and v 6∈ W 2,1(Ω). In the optimal regularity-shift result for C1 domains,

the condition on s cannot be weakened, because for any p > 1 there exists a bounded C1 domain

Ω and a g ∈ H−1+ 1

p
,p(Ω) such that v 6∈ H1+ 1

p
,p(Ω). On the other hand, if g is more regular,

for example g ∈ H−1+ 1

p
+ε,p(Ω) for some ε > 0 and p > 1, then v ∈ H1+ 1

p
,p(Ω) follows. The

latter result is obtained by subtracting from v a solution v0 ∈ H1+ 1

p
+ε,p(Ω) of ∆v0 = g without

boundary conditions and observing that a harmonic function with trace in W 1,p(∂Ω) belongs to

H1+ 1

p
,p(Ω).

We will prove that one cannot have v ∈ H1+ 1

p
+ε,p(Ω) for any ε > 0, in general, even for more

regular g. Because of the mutual inclusions Hs+ε,p ⊂ W s,p ⊂ Hs−ε,p for any ε > 0, the result is

equivalently formulated in the scale of W s,p spaces.

Theorem 1.2. In Rd, d ≥ 2, there exists a bounded C1 domain Ω and for both the Dirichlet

problem (1.8) and the Neumann problem (1.9) functions g ∈ L∞(Ω) such that the solutions v ∈

H1(Ω) do not belong to W 1+ 1

p
+ε,p(Ω) for any p ∈ [1,∞) and any ε > 0.

Remark 1.3. It will follow from the proof that in dimension d = 2, there are functions g ∈ C∞(Ω)
that provide examples, even g = 1 is possible for the Dirichlet problem and a second degree

polynomial g for the Neumann problem. See also Remark 3.3. In dimension d ≥ 3, there is still

an example with g = 1 for the Dirichlet problem, and examples with g ∈ Cα(Ω), α > 0, for the

Neumann problem.

Remark 1.4. Not all of this is new: For p = 1, the counterexample from [7, Theorem 1.2(b)]

shows that the result for the Dirichlet problem holds even with ε = 0. Moreover, for p > 2 the

result of Theorem 1.2 is not interesting in the class of Lipschitz domains, because singularities at

conical points provide a limit of regularity that is strictly below s = 1+ 1
p
. But for C1 domains the

result still seems to be new even for p > 2. We provide a proof that works for any p ≥ 1, because

there is no extra cost with respect to the proof for p = 2. One just has to be careful to observe that

the same domain Ω and the same function g give an example valid for all p and all ε.

Proposition 1.1 follows from Theorem 1.2 for p = 2, d = 3 if we take u = ∇v (“electrostatic

field”). The Laplace equation for v implies the div-curl system (1.4) for u with h = 0, and the



4 MARTIN COSTABEL

Dirichlet and Neumann conditions in (1.8) and (1.9) for v imply the vanishing of the tangential

component (1.5) or of the normal component (1.6), respectively. Finally, v ∈ W 1+ 1

p
+ε,p(Ω) is

equivalent to u ∈ W
1

p
+ε,p(Ω;C3).

The construction of our counterexample uses the ideas of Filonov in the paper [6], where he

considers a related question for ε = 1
2

and constructs a C
3

2 domain Ω that satisfies, among other

interesting properties

H2(Ω) ∩H1
0 (Ω) = H2

0 (Ω) ,

that is, the homogeneous Dirichlet condition for H2 functions implies the homogeneous Neumann

condition, see also [4]. Generalizing this, the C1 domain Ω that we will construct satisfies

W 1+ 1

p
+ε,p(Ω) ∩W 1,p

0 (Ω) = W
1+ 1

p
+ε,p

0 (Ω) ∀1 ≤ p < ∞ , ε > 0 . (1.10)

2. GENERALIZING FILONOV’S SEPARATING FUNCTION

We construct a continuous real-valued function f on T = R/(2πZ) with the following property:

If a and b belong to W ε,p(T) for some ǫ > 0, p ≥ 1, and af = b, then a = b = 0.

The construction and proof are modeled after Filonov’s construction of a C
1

2 function that has the

above separation property for ε = 1
2

and p = 2. It is in the lineage of Weierstrass’ example of a

continuous nowhere differentiable function.

We define f via a lacunary Fourier series

f(x) =
∞
∑

k=1

ak sin(bkx) =
∞
∑

k=1

fk(x) (2.1)

where the sequences ak > 0 and bk ∈ N are chosen so that they satisfy
∑

ak < ∞ and bk ≥ 2,

bk+1 ≥ 2bk, k ≥ 1, and the following properties for a given small constant γ > 0 to be fixed later

on (see (2.7)):

m−1
∑

k=1

akbk ≤ γ ambm ∀m ≥ 2 (2.2)

∞
∑

k=m+1

ak ≤ γ am ∀m ≥ 1 (2.3)

∞
∑

m=1

apmb
pε
m = +∞ ∀ ε > 0, p ≥ 1 . (2.4)

We first show that for sufficiently large q ∈ N the sequences ak = q−k, bk = 2q
k

have the

properties (2.2)–(2.4), and we shall keep this choice from now on.

For (2.2), let sm = 1
ambm

∑m−1
k=1 akbk. Noting that for q ≥ 7 we have q2 21−q < 1, we show by

induction that then sm < 1
q−1

for all m ≥ 2, which implies (2.2) for q large enough. Indeed,

s2 =
a1b1
a2b2

= q 2(1−q)q < q 21−q < 1
q
< 1

q−1
,
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and if sm < 1
q−1

it follows that

sm+1 = (sm + 1) ambm
am+1bm+1

= (sm + 1) q 2(1−q)qm < (sm + 1) q 2(1−q) < ( 1
q−1

+ 1)1
q
= 1

q−1
.

For (2.3), we have
∞
∑

k=m+1

ak
am

=

∞
∑

k=1

q−k =
1

q − 1

which again is less than γ for q large enough.

For (2.4) we use that 2t ≥ t log 2 for all t > 0, so that apmb
pε
m = (2εq

m

/qm)p ≥ (ε log 2)p for all m.

Lemma 2.1. The function f defined by (2.1) is continuous on T and satisfies
∫ 2π

0

|f(y)− f(x)|p

|y − x|1+pε
dy = +∞ for all x ∈ [0, 2π], ε > 0, 1 ≤ p < ∞ . (2.5)

Proof. Noting that with our even bk we have f(2π − x) = f(x), so that it is sufficient to prove

(2.5) for x ∈ [0, π]. In this case [x, x+ 1] ⊂ [0, 2π], and therefore with Im = [ 1
bm
, 2
bm
] we have

∫ 2π

0

|f(y)− f(x)|p

|y − x|1+pε
dy ≥

∞
∑

m=1

∫

Im

|f(x+ h)− f(x)|p

|h|1+pε
dh (2.6)

Now for h ∈ Im we estimate
(

∫

Im

|f(x+ h)− f(x)|p

|h|1+pε
dh

)
1

p

≥ J1 − J2

with J1 =
(

∫

Im

|fm(x+ h)− fm(x)|
p

|h|1+pε
dh

)
1

p

and J2 =
∑

k 6=m

(

∫

Im

|fk(x+ h)− fk(x)|
p

|h|1+pε
dh

)
1

p

.

To estimate J1, we assume that 0 < ε < 1 and make the change of variables t = bmh to obtain

J1 = amb
ε
m

(

∫ 2

1

| sin(bmx+ t)− sin(bmx)|
pt−(1+pε)dt

)
1

p

≥ 5 γ amb
ε
m ,

where we defined

γ = 1
5
min
z∈T

∫ 2

1

| sin(z + t)− sin(z)|t−2dt > 0 . (2.7)

Here we used Hölder’s inequality,
∫ 2

1

| sin(z + t)− sin(z)|

t2
dt ≤

∫ 2

1

| sin(z + t)− sin(z)|

t1+ε
dt

≤
(

∫ 2

1

| sin(z + t)− sin(z)|p t−(1+pε)dt
)

1

p
(

∫ 2

1

dt

t

)1− 1

p

.

To estimate J2, we use for k ≤ m− 1

|fk(x+ h)− fk(x)| ≤ akbk|h| ≤ 2akbk
1
bm

and for k ≥ m+ 1
|fk(x+ h)− fk(x)| ≤ 2ak
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so that we obtain with (2.2)

m−1
∑

k=1

(

∫

Im

|fk(x+ h)− fk(x)|
p

|h|1+pε
dh

)
1

p

≤ 2γam

(

∫

Im

dh

|h|1+pε

)
1

p

≤ 2γamb
ε
m

and with (2.3)
∞
∑

k=m+1

(

∫

Im

|fk(x+ h)− fk(x)|
p

|h|1+pε
dh

)
1

p

≤ 2γam

(

∫

Im

dh

|h|1+pε

)
1

p

≤ 2γamb
ε
m ,

hence J2 ≤ 4γamb
ε
m .

Together, this gives
(

∫

Im

|f(x+ h)− f(x)|p

|h|1+pε
dh

)
1

p

≥ γ amb
ε
m ,

and finally with (2.6) and (2.4)
∫ 2π

0

|f(y)− f(x)|p

|y − x|1+pε
dy ≥

∞
∑

m=1

γpapmb
pε
m = +∞ .

�

Proposition 2.2. The function f defined by (2.1) has the following separation property: Let 0 <
ε < 1, p ≥ 1 and a, b ∈ W ε,p(0, 2π). If af = b, then a = b = 0.

Proof. Write the W ε,p seminorm as in (1.7)

|b|ε,p =
(

∫ 2π

0

∫ 2π

0

|b(y)− b(x)|p

|y − x|1+pε
dy dx

)
1

p

.

Using

b(y)− b(x) = (f(y)− f(x))a(x) + f(y)(a(y)− a(x))

and the triangle inequality, we find for a, b ∈ W ε,p(0, 2π)
(

∫ 2π

0

∫ 2π

0

|a(x)|p |f(y)− f(x)|p

|y − x|1+pε
dy dx

)
1

p

≤ |b|ε,p + ‖f‖L∞(T)|a|ε,p < ∞ .

Because of (2.5) from Lemma 2.1, this implies a(x) = 0 for almost all x ∈ T and then b = af = 0.

�

3. 2D DOMAIN WITH LIMITED REGULARITY

Let F (x) = 1 +
∫ x

0
f(t)dt. Then F ∈ C1(T), F ′ = f , and 1

2
< F (x) < 3

2
.

The latter estimate follows easily from

|F (x)− 1| = |
∞
∑

k=1

ak
1−cos(bkx)

bk
| ≤ 2−q

∞
∑

k=1

2 q−k = 21−q 1
q−1

≤
1

2
.

We define now the C1 domain ω ⊂ R
2 using polar coordinates (r, θ)

ω = {(r, θ) | r < F (θ)} .
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Proposition 3.1. Let p ≥ 1, ε > 0 and u ∈ W
1

p
+ε,p(ω;C2) be such that its normal trace n · u

vanishes on ∂ω. Then u = 0 on ∂ω. The same conclusion is valid when the tangential trace n×u
vanishes on ∂ω.

Proof. (Following Filonov [6, §5]) The unit normal n on ∂ω has the Cartesian components

n1 = (F 2 + f 2)−
1

2 (F cos θ + f sin θ), n2 = (F 2 + f 2)−
1

2 (F sin θ − f cos θ) .

Therefore the condition n1u1 + n2u2 = 0 implies af = b if we define

a = u2 cos θ − u1 sin θ , b = (u1 cos θ + u2 sin θ)F

Now, since the traces uj on ∂ω, understood as functions θ 7→ uj(F (θ), θ) on T, belong to W ε,p(T),
we also have a, b ∈ W ε,p(T). According to Proposition 2.2 we find a = b = 0, which implies

u1 = u2 = 0 on ∂ω. The result using vanishing tangential trace follows by a rotation by π/2. �

Corollary 3.2. (i) There exists g ∈ C∞(ω) such that the solution vD ∈ H1
0(ω) of the Dirichlet

problem

∆vD = g in ω ; vD = 0 on ∂ω

does not belong to W 1+ 1

p
+ε,p(ω) for any ǫ > 0, p ≥ 1.

(i) There exists g ∈ C∞(ω) such that any solution vN ∈ H1(ω) of the Neumann problem

∆vN = g in ω ; ∂nvN = 0 on ∂ω

does not belong to W 1+ 1

p
+ε,p(ω) for any ε > 0, p ≥ 1.

Proof. For vD one can take g = 1. Set u = ∇vD. If vD ∈ W 1+ 1

p
+ε,p(ω), then u satisfies the

hypotheses of Proposition 3.1 with vanishing tangential trace. Hence also the normal trace of u
vanishes, i.e. ∂nvD = 0 on ∂ω. Then Green’s formula implies

∫

ω
g = 0, which is not the case.

For vN ∈ W 1+ 1

p
+ε,p(ω) one obtains similarly that the tangential derivative on the boundary van-

ishes, hence the trace of vN on ∂ω is constant, without loss of generality equal to zero. Thus vN
is also solution of the Dirichlet problem. That there exists g ∈ L2(ω) for which this is impossible

can be seen as follows:

Let g be a non-zero harmonic polynomial such that
∫

ω
g = 0, for example g(x1, x2) = αx1x2 +

β(x2
1−x2

2) with suitably chosen coefficients α, β ∈ R. Then vN exists, and Green’s formula gives

the contradiction

0 =

∫

∂ω

(∂nvN g − vN∂ng)ds =

∫

ω

(∆vN g − vN∆g)dx =

∫

ω

g2dx .

�

Remark 3.3. No eigenfunction of the Laplacian with Dirichlet conditions on ω can belong to

W 1+ 1

p
+ε,p(ω) with ε > 0, because it would also have vanishing normal derivative. Its extension by

zero outside ω would then be a Dirichlet eigenfunction with the same eigenvalue on any domain

containing ω. This contradicts for example the well known behavior of Dirichlet eigenvalues

on disks or squares with varying size. It contradicts also the well known interior analyticity of

Dirichlet eigenfunctions.
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4. EXAMPLE IN HIGHER DIMENSIONS

From ω ⊂ R2 one can construct Ω ⊂ Rd as follows (see [6], for n = 3 also [4, §6]). In cylindrical

coordinates (r, θ, z), z ∈ R
d−2:

Ω = {(r, θ, z) |
r2

F (θ)2
+ |z|2 < 1}

The intersection with the plane z = z0 gives for |z0| < 1 the scaled domain
√

1− |z0|2 ω. One

can still prove that for this domain Ω and 0 < ǫ < 1 there holds

W 1+ 1

p
+ε,p(Ω) ∩W 1,p

0 (Ω) = W
1+ 1

p
+ε,p

0 (Ω) . (4.1)

Indeed, suppose that v ∈ W 1+ 1

p
+ε,p(Ω), v = 0 on ∂Ω and let u = ∇v. Then the tangential

components of u are zero on the boundary, and we have to show that the normal component of u
vanishes, too, on ∂Ω. Define

ũ(r, θ, z) = u(
√

1− |z|2 r, θ, z) .

Then ũ is defined on the product domain

Ω̃ = ω ×B1 = {(r, θ, z) | (r, θ) ∈ ω, |z| < 1} .

For any δ ∈ (0, 1), let Ω̃δ = ω × Bδ. Then ũ restricted to Ω̃δ belongs to

W
1

p
+ε,p(Ω̃δ;C

d) ⊂ Lp
(

Bδ;W
1

p
+ε,p(ω;Cd)

)

,

and for almost every z0 ∈ Bδ, the restrictionwz0 of ũ to the plane z = z0 belongs toW
1

p
+ε,p(ω,Cd).

The vanishing of the tangential components of u on ∂Ω implies that the component of wz0 that

is parallel to the plane z = 0 and tangential to ∂ω vanishes on ∂ω. Then Proposition 3.1 tells

us that the component of wz0 that is parallel to the plane z = 0 and normal to ∂ω vanishes on

∂ω, too. This means that at such a point (r, θ, z) ∈ ∂Ω with (
√

1− |z|2 r, θ) ∈ ∂ω, z = z0, in

addition to the tangential components a component of u vanishes that is not tangential, and hence

all components of u vanish there. Since this is true for almost all z0 satisfying |z0| < δ and for all

0 < δ < 1, we see that the trace of u on ∂Ω is zero, which proves (4.1).

The non-regularity result of Theorem 1.2 for the Dirichlet problem in Ω then follows in the same

way as in the two-dimensional case. In particular, one can take g = 1 for the counterexample.

For the Neumann problem, a slightly different variant of adding d − 2 variables works, and this

variant could also be used for the Dirichlet problem, giving a counterexample with a somewhat

less regular right hand side g. For this variant, (4.1) still holds. We redefine the domain Ω so that

it contains a cylindrical part (see also [6, §5.2]). This is done by modifying the function 1 − |z|2

in the previous example. Choose a decreasing C∞ function µ on R+ satisfying

µ(t) = 1 for t ≤ 1 ; µ(t) ≤ 0 for t ≥ 4 ; µ′(t) < 0 for t ≥ 2 .

and define

Ω = {(r, θ, z) | r2 < µ(|z|2)F (θ)2} . (4.2)

It is not hard to see that Ω has a C1 boundary.
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We now use the two-dimensional example presented in the previous section and denote by v0 the

function found there that satisfies the Neumann problem on ω with right hand side g0 ∈ C∞(ω)

and that does not belong to any W 1+ 1

p
+ε,p(ω) for ε > 0, p ≥ 1. In addition, we choose a function

χ ∈ C∞
0 (R+) satisfying χ(t) = 1 for t < 1

2
, χ(t) = 0 for t ≥ 1. Then we define

v(x, z) = v0(x)χ(|z|); g(x, z) = g0(x)χ(|z|) + v0(x)∆zχ(|z|); (x ∈ ω, |z| < 1) .

Initially, v and g are defined on the cylinder ω ×B1 ⊂ Ω, and we extend them by zero on the rest

of Ω.

One easily verifies that v satisfies

∆v = g in Ω ; ∂nv = 0 on ∂Ω .

Noting that both χ(|z|) and ∆zχ(|z|) define C∞(Ω) functions and using the regularity of v0 ∈

W 1+ 1

p
,p(ω) for all p > 1, so that v0 is Hölder continuous onω, one finds that g is Hölder continuous

on Ω. Finally the non-regularity of v0 implies clearly that also v 6∈W 1+ 1

p
+ε,p(Ω) for ε > 0, p ≥ 1.

This concludes the proof of Theorem 1.2.
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