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ABSTRACT

Recent observations from RHESSI have revealed that the number of non-thermal electrons in the coronal part of a
flaring loop can exceed the number of electrons required to explain the hard X-ray-emitting footpoints of the same
flaring loop. Such sources cannot, therefore, be interpreted on the basis of the standard collisional transport model,
in which electrons stream along the loop while losing their energy through collisions with the ambient plasma;
additional physical processes, to either trap or scatter the energetic electrons, are required. Motivated by this and
other observations that suggest that high-energy electrons are confined to the coronal region of the source, we
consider turbulent pitch-angle scattering of fast electrons off low-frequency magnetic fluctuations as a confinement
mechanism, modeled as a spatial diffusion parallel to the mean magnetic field. In general, turbulent scattering
leads to a reduction of the collisional stopping distance of non-thermal electrons along the loop, and hence to an
enhancement of the coronal hard X-ray source relative to the footpoints. The variation of source size L with electron
energy E becomes weaker than the quadratic behavior pertinent to collisional transport, with the slope of L(E)
depending directly on the mean free path λ associated with the non-collisional scattering mechanism. Comparing
the predictions of the model with observations, we find that λ ∼ (108–109) cm for ∼30 keV, less than the length of
a typical flaring loop and smaller than, or comparable to, the size of the electron acceleration region.
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1. INTRODUCTION

One of the central ingredients of a solar flare is the efficient
acceleration of electrons to suprathermal energies. These elec-
trons can be observed in situ, when they escape the Sun into
interplanetary space (see, e.g., Lin 1985; Krucker et al. 2007),
or remotely, through the gamma-rays, X-rays, and radio waves
they emit (see, e.g., Dennis et al. 2011; Holman et al. 2011;
Kontar et al. 2011a; Vilmer et al. 2011; Zharkova et al. 2011, for
recent reviews). In the commonly adopted “footpoint” flare sce-
nario (e.g., Peterson & Winckler 1958; Sturrock 1968; Arnoldy
et al. 1968; Sweet 1969; Brown 1971; Syrovatskii & Shmeleva
1972), electrons accelerated in the corona spiral along guiding
magnetic field lines, losing a relatively insignificant amount of
energy in the somewhat tenuous coronal environment. They then
reach the high plasma density regions of the lower solar atmo-
sphere, where they emit the bulk of their X-rays via electron-ion
bremsstrahlung and also lose the bulk of their energy through
electron-electron Coulomb collisions.

Recent observations from RHESSI (Lin et al. 2002) have
provided unprecedented hard X-ray (HXR) imaging spec-
troscopy data, allowing for the study of the spatial structure of
HXR-emitting regions in solar flares. Such observations usually
reveal the presence of coronal sources at energies �20 keV and
footpoint sources at higher energies �30 keV (e.g., Krucker &
Lin 2002; Emslie et al. 2003; Battaglia & Benz 2006; Piana
et al. 2007; Huang & Li 2011). Observations from RHESSI,
both alone (e.g., Aschwanden et al. 2002; Kontar et al. 2010)
and more recently in combination with Solar Dynamics Obser-
vatory data (Battaglia & Kontar 2012), support the “footpoint”
scenario outlined above, indicating not only that photons of
higher energy are emitted lower in the solar chromosphere but
also suggesting a decrease in the size of HXR sources with

depth that is consistent with the convergence of the guiding
magnetic field lines as they penetrate into the chromosphere.
Furthermore, measurements of the difference in HXR spectral
index between footpoint and coronal sources suggest that the
electron distribution spectrum in the corona is softer than that in
the footpoints (e.g., Emslie et al. 2003; Battaglia & Benz 2006).
Since the collisional energy loss rate is a decreasing function of
energy, collisions lead to a hardening of the local electron spec-
trum. Thus, the relative hardness of footpoint sources relative
to coronal sources in the same event lends additional support to
models that invoke collisional losses of the electrons in the loop
plasma.

The most intense X-ray sources are associated with a high
plasma density, and hence a high collisional loss rate. Indeed,
for a sufficiently high ambient density, a coronal X-ray source
region can be considered as a “thick target,” with the accelerated
electrons remaining mostly confined within the coronal region.
Xu et al. (2008), Kontar et al. (2011b), and Guo et al. (2012)
have shown that the extent of such sources parallel to the axis
of the coronal loop grows with photon (or electron) energy.
Since the collisional stopping distance of an electron of energy
E scales as E2, such observations are broadly consistent with
a model in which accelerated electrons stream along a loop of
roughly uniform density without being significantly scattered.

More generally, the extent of an HXR source is controlled by
the confinement properties of non-thermal particles within the
magnetized plasma in which they propagate. Recent RHESSI
analysis of HXR-producing electrons (Simões & Kontar 2013)
shows that the number of electrons above 30 keV in the coronal
source is larger than that in the footpoints by a significant factor
(between ∼2 and ∼8), suggesting a mechanism for enhanced
entrapment of electrons in the loop top, possibly through either
magnetic mirroring or turbulent pitch-angle scattering.
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Efficient pitch-angle scattering is a common requirement for
stochastic acceleration during flares (e.g., Petrosian 2012; Bian
et al. 2012, for recent reviews). Moreover, the presence of mag-
netic fluctuations in flaring loops is suggested by the increase
of loop width with energy revealed by RHESSI observations
(Kontar et al. 2011b; Bian et al. 2011). The effects of turbulent
pitch-angle scattering, which may lead to diffusive transport in
the limit of strong scattering, have been considered in the solar
flare literature (e.g., Holman et al. 1982; Bespalov et al. 1991;
Stepanov & Tsap 2002; Stepanov et al. 2007) and used in the
interpretation of solar flare observations (e.g., Jakimiec et al.
1998; Fleishman et al. 2013), but no quantitative conclusions
about the strength of pitch-angle scattering with direct obser-
vational comparisons with HXR observations have been made.
The diffusion approximation for particle transport has also been
used by many authors to explain the confinement of cosmic rays
and interpret synchrotron sources in the Galaxy (e.g., Ginsburg
& Syrovatskii 1963; Jokipii & Meyer 1968).

In this paper, we consider the influence of magnetic fluctua-
tions on parallel electron transport in a flaring loop and we infer
how HXR source sizes and spectra are affected by pitch-angle
scattering. Furthermore, we derive an analytic expression for
the energy-dependent source extent in the limit of strong pitch-
angle scattering when the parallel transport becomes diffusive.
We compare this expression with both the predictions of a purely
collisional transport model. We find that the RHESSI HXR ob-
servations are consistent with relatively weak parallel scatter-
ing, with an electron-scattering mean free path in the range
(108–109) cm. Models that invoke mean free paths smaller than
∼108 cm (or equivalently electron isotropization times shorter
than 10−2 s) are difficult to reconcile with the data.

2. DIFFUSIVE PARALLEL TRANSPORT OF
ENERGETIC ELECTRONS

The spatio-temporal evolution of the electron distribution
function parallel to the background magnetic field B0 in a
medium of density n (cm−3) is described by a one-dimensional
(1D) Fokker-Planck equation:

∂f

∂t
+ μv

∂f

∂z
= 2Kn(z)

m2
e

∂

∂v

(
f

v2

)

+
∂

∂μ

(
Dμμ

∂f

∂μ

)
+ S(v, μ, x, t), (1)

where f (z, μ, v, t) is the electron distribution function
(electrons cm−1 [cm s−1]−1), normalized to the electron number
density:

∫∫
f dμ dv = n, v (cm s−1) is the speed of the particle,

μ is the cosine of the particle pitch angle relative to the guiding
magnetic field (z-direction), and z (cm) is the distance from the
top of the loop. The collisional parameter K = 2πe4Λ, where
e is the electronic charge (e.s.u), Λ is the Coulomb logarithm,
and me (g) is the electron mass. Equation (1) describes the 1D
propagation of non-thermal electrons along magnetic field lines.
The first term on the right-hand side describes energy losses due
to binary collisions, while the second term on the right-hand
side of Equation (1) describes the pitch-angle scattering of elec-
trons. The last term S(v, μ, x, t) is the source term of electrons
describing the injection/acceleration of particles.

The pitch-angle diffusion coefficient is given by

Dμμ = D(C)
μμ + D(T )

μμ (2)

and in general consists of a collisional part and a turbulent part.
The collisional term is given by (e.g., Galeev & Sudan 1983;

Karney 1986)

D(C)
μμ = (1 + Z2)Kn(z)

m2
e

1

v3
(1 − μ2), (3)

where the factor (1 + Z2) takes into account both electron-
electron scattering and scattering on ions, with mean square
atomic number Z2. The presence of magnetic fluctuations inside
the loop leads to an additional turbulent contribution D(T )

μμ

(see the Appendix for an example). The mean free path λ of a
particle undergoing pitch-angle scattering is (e.g., Schlickeiser
1989)

λ ≡ 3v

8

∫ 1

−1

(1 − μ2)2

D
(T )
μμ

dμ. (4)

In general, the mean free path λ could have a complicated
dependency on speed v depending on the spectral energy density
of the turbulence. Since, for flaring plasma D(T )

μμ is essentially
unknown, we shall assume for simplicity that the mean free
path λ given by Equation (4) is a constant. Using this parameter
λ as the measure of pitch-angle scattering, we can quantify
the characteristic pitch-angle scattering timescale ∼ λ/v of
electrons with speed v, and hence determine the importance
of pitch-angle scattering in flaring loops.

When pitch-angle scattering is strong enough, in the sense
that D(T )

μμ t � 1, then pitch-angle diffusion leads to a flattening
of the distribution function in μ over time t, i.e., an isotropization
of the electron distribution so that ∂f/∂μ → 0. In this limit,
the operator describing ballistic transport becomes (on average)
a spatial diffusion parallel to the guiding field:

μv
∂f

∂z
→ Dzz

∂2f

∂z2
, (5)

and other processes (such as collisional losses) proceed at the
same (energy-dependent) rate as they would in the absence of
scattering. The spatial diffusion involves an average of the pitch-
angle diffusion over pitch angles, according to

Dzz = v2

8

1∫
−1

(1 − μ2)2

D
(T )
μμ

dμ = λv

3
(6)

and the collisional transport process can be modeled by

∂f

∂t
= 2Kn(z)

m2
e

∂

∂v

(
f

v2

)
+ Dzz

∂2f

∂z2
. (7)

Although collisional pitch-angle scattering does produce
spatial diffusion of thermal electrons and can contribute to
scattering of electrons, it rather weakly affects the spatial
transport of non-thermal electrons. The main reason is that
the collisional pitch-angle scattering time is approximately the
same as the energy loss time, as is evident from Equation (1).
A crucial point, therefore, is that for pitch-angle scattering to
be significant, it must operate on a timescale much less than the
Coulomb collision time τc � E2/(2Knv). A further condition
for the diffusive approximation of transport to be valid is that the
mean free path is small compared with the length of the loop:
λ � Lloop.
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3. ELECTRON FLUX SPECTRUM

In solar flare studies, the electron flux spectrum F (E,μ, z)
differential in energy E (electrons cm−2 s−1 keV−1) is normally
used instead of the electron phase-space distribution function
f (v, μ, z). Using the identity F (E,μ, z) dE = v f (v, μ, z) dv,
we see that these quantities are related through F (E,μ, z) =
f (v, μ, z)/me. The continuity equation for the electron flux
F (E,μ, z) thus follows simply by multiplying Equation (1) by
1/me.

HXR imaging observations typically are carried out over char-
acteristic timescales of tens of seconds, which is much longer
than the electron transport time LLoop/v (e.g., Holman et al.
2011). Therefore, we can safely ignore the temporal depen-
dence ∂/∂t in Equation (1) and write the resulting stationary
transport equation in energy variables:

μ
∂F (E,μ, z)

∂z
= ∂

∂E

(
Kn(z)F (E,μ, z)

E

)

+
∂

∂μ

(
Dμμ

v

∂F (E,μ, z)

∂μ

)
+ H0(E,μ, z),

(8)

where the source term H0(E,μ, z) (electrons cm−3 s−1 keV−1)
allows for the local acceleration of electrons in the loop. The
standard simplified geometry is assumed here so that electrons
are accelerated near the apex of the loop z = 0 and then can
propagate toward the chromosphere.

3.1. Standard Model of Parallel Transport in a
Collisional Plasma

In the standard model, electrons are assumed to propagate
down the loop with collisional losses but without being scattered
at all. Moreover, in this model, the simplifying assumption is
often made that the particles’ velocities are along z, which is the
guiding field B0, meaning than the electrons are thought to be
all field aligned with zero pitch angle. The electron continuity
(Equation (8)) then becomes

∂F (E, z)

∂z
− ∂

∂E

(
Kn(z)

E
F (E, z)

)
= F0(E) S(z), (9)

where we have characterized the source of electrons by a
separable form consisting of an injected spectrum F0(E)
(electrons cm−2 s−1 keV−1), spatially distributed throughout
the source according to the form S(z) (cm−1).

To compare with spatially resolved X-ray observations, we
consider a source of energetic electrons (acceleration region)
with the (normalized) Gaussian spatial form

S(z) = 1√
2πd2

exp

(
− z2

2d2

)
, (10)

where d is the characteristic size of the acceleration region. Let
us also assume that the source injects electrons with a power-law
energy spectrum

F0(E) = Ṅ

A

(δ − 1)

E0

(
E0

E

)δ

, E > E0 (11)

where δ is the electron spectral index and E0 is the low-energy
cut off. The electron flux spectrum is normalized

Ṅ =
∫ ∞

E0

F0(E)dE (12)

to the electron injection rate Ṅ , which is the quantity that is
deduced from the observation.

Let us first consider Equation (9) with delta functions as
the source of particles in space when the particles are injected
parallel to z, i.e., μ = 1:

∂G+(E, z)

∂z
− ∂

∂E

(
Kn(z)

E
G+(E, z)

)
= F0(E) δ(z − z0) .

(13)
The solution of Equation (13) for z > z0 so that G+(E, z =
z0 + 0) = F0(E), F (E, z = z0 − 0) = 0 is

G+(E, z; z0) = E

E0
F0(E0)θ (z − z0), (14)

where E2
0(E, z; z0) = E2 + 2K

∫ z

z0
n(z′)dz′ and θ (z) is the

Heaviside step function. G+(E, z; z0) is the Green’s function,
so for an arbitrary source S(z) of electrons, we find

F+(E, z) =
∫ ∞

−∞
G+(E, z; z0)S(z0)dz0. (15)

For the electrons moving anti-parallel to z with μ = −1, for
example, one can write

− ∂G−(E, z)

∂z
− ∂

∂E

(
Kn(z)

E
G−(E, z)

)
= F0(E) δ(z − z0),

(16)
with the solution

G−(E, z; z0) = E

E0
F0(E0)θ (z0 − z). (17)

The corresponding solution becomes

F−(E, z) =
∫ +∞

−∞
G−(E, z; z0)S(z0)dz0

=
∫ +∞

−∞

E

E0
F0(E0)θ (z0 − z)S(z0)dz0, (18)

where E2
0(E, z; z0) = E2 + 2K

∫ z0

z
n(z′)dz′. The solution of

Equation (9) with electrons injected toward both footpoints (i.e.,
μ = ±1) over −∞ < z < +∞ can be written as

FC(E, z) = F− + F+

2
= E

2

∫ +∞

−∞

F0(E0[E, z; z′])
E0[E, z; z′]

S(z′) dz′,

(19)
where E2

0(E, z; z′) = E2 + 2K | ∫ z

z′ n(z′′)dz′′ |. In the solution
(Equation (19)), we have introduced a factor 1/2 to account for
the fact that the electrons propagate both ways, so the injection of
electrons is double what is expected from the continuity equation
(Equation (9)) but without a source and for the unidirectional
particle transport in 0 < z < +∞ that is often considered in
transport models for non-thermal electrons in solar flares (see,
e.g., Syrovatskii & Shmeleva 1972). The collisional stopping
distance λc(E) is thus ∝ E2, a result that can be readily seen
by simply comparing the advective and energy loss terms:
F/λc(E) ∼ KnF/E2, so that λc(E) ∼ E2/Kn.

In order to compare with spatially resolved HXR observa-
tions, the density-weighted mean electron flux must be calcu-
lated. Multiplying by the local density n(z) and integrating the
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solution (Equation (19)) over the emitting volume, one finds

〈nV FC(E)〉 ≡
∫

V

FC(E, z) n(z) dV

= A

∫ +∞

−∞
FC(E, z) n(z) dz

= A
E

K

∫ ∞

E

F0(E′) dE′, (20)

where A (cm2) is the cross-sectional area of the loop.
Equation (20) is a standard expression for a thick-target, density-
weighted electron flux spectrum (e.g., Brown 1971) and can be
directly inferred from X-ray data (e.g., Holman et al. 2011).

Observationally, the density-weighted mean electron flux
spectrum 〈nV F (E)〉 (e.g., Brown et al. 2003) can be readily
deduced from the spatially integrated HXR spectrum I (ε)
[photons cm−2 s−1 keV−1] observed at the Earth:

I (ε) = 1

4πR2

∫ ∞

ε

〈nV F (E)〉 σ (ε,E) dE, (21)

where R is the Sun-Earth distance and σ (ε,E) is the angle-
averaged bremsstrahlung cross section. Equations (20) and (21)
show that observations of I (ε) allow us to deduce the injection
(i.e., acceleration) rate AF0(E) (electrons s−1 keV−1). In
practice, when compared with, e.g., RHESSI HXR data, the
accelerated electron spectrum is approximated by a power-law
form F0(E0) = C0 E−δ

0 (see Equation (12)) and fitted to the data
to find the best-fit parameters (C0, δ).

3.2. Diffusive Transport in a Collisional Plasma

Let us now consider the possibility that the magnetic loop is
filled with plasma turbulence, so that as the particles propagate
downward and they experience pitch-angle scattering such that
the angular distribution of energetic electrons becomes isotropic
on a scale λ � LLoop. In this case, the collisional transport
model, Equation (9), becomes

1

v

∂

∂z

(
D(T )

zz

∂F

∂z

)
= ∂

∂E

(
Kn(z)

E
F

)
+ F0(E) S(z), (22)

where the advective term has been replaced by the diffusive
term.

Assuming a uniform density n(z) = n0, Equation (22)
can be solved analytically using a Green’s function approach.
Following Syrovatskii (1959), we first solve Equation (22)
for the electron flux spectrum G(E, z) corresponding to a
point source of monoenergetic electrons F0(E) S(z) = δ(E −
E′) δ(z − z′). Dividing by Kn0 and using the form of D(T )

zz from
Equation (6), Equation (22) reads

λ

3Kn0

∂2G

∂z2
= ∂

∂E

(
G

E

)
+

1

Kn0
δ(z − z′) δ(E − E′). (23)

This can be further simplified by changing variables ξ = E2

and B = G/E:

a
∂2B

∂z2
− ∂B

∂ξ
= 1

Kn0
δ(z − z′) δ(ξ − ξ ′), (24)

where a = λ/(6Kn0). Equation (24) is a standard diffusion
equation, which has the solution, valid in −∞ < z < ∞ and

ξ − ξ ′ > 0,

B(ξ, z; ξ ′, z′) = 1

Kn0

1√
4πa(ξ − ξ ′)

× exp

(
− (z − z′)2

4a(ξ − ξ ′)

)
θ (ξ − ξ ′), (25)

where θ (x) is the Heaviside step function, so that dθ (x)/dx =
δ(x).

Using the Green’s function solution (Equation (25)), one read-
ily finds by superposition the solution FD(E, z) of Equation (22)
for an arbitrary injection flux spectrum F0(E) and arbitrary spa-
tial injection distribution S(z):

FD(E, z) = E

Kn0

∫ ∞

−∞
dz′

∫ ∞

E

dE′ F0(E′) S(z′)√
4πa(E′2 − E2)

× exp

(
− (z − z′)2

4a(E′2 − E2)

)
. (26)

The diffusional stopping distance L ∝ a1/2E ∝
(λ/Kn0)1/2 E, as can be readily seen from the form of the
exponential term in Equation (26). This result can also be
found simply by balancing the diffusion term with the colli-
sional term in Equation (22). This leads to Dzz/vL2 ∼ Kn/E2,
so that L ∝

√
DzzE3/2/Kn0. Since Dzz ∝ λ v ∝ λ E1/2,

L ∝ (λ/Kn0)1/2 E.
Similarly to the collisional transport case, the solution

(Equation (26)) can be integrated to find the density-weighted,
spatially integrated spectrum (i.e., the mean electron flux):

〈nV FD(E)〉 =
∫

V

FD(E, z) n0 dV = An0

∫ ∞

−∞
FD(E, z) dz

= E

K

∫ ∞

E

AF0(E′) dE′, (27)

where the last equality follows from changing the order of
integration after substituting for FD(E, z) from Equation (26).
The spatially integrated mean flux 〈nV FD(E)〉 is exactly the
same as the spatially integrated flux given by the collisional
transport equation (Equation (20)). This simply reflects the fact4

that the total emitted flux in a thick target is independent of the
details of the pitch-angle evolution.

4. SPATIAL DISTRIBUTION OF ENERGETIC
ELECTRONS AND HXR EMISSION IN A DIFFUSIVE

TRANSPORT MODEL

The spatial distribution of energetic electrons along the
magnetic loop can be found from Equations (26) and (10):

FD(E, z) = E

Kn0

∫ ∞

E

dE′ F0(E′)√
4πa(E′2 − E2) + 2d2

× exp

(
− z2

4a(E′2 − E2) + 2d2

)
. (28)

4 If F (E, z) → 0 at z → ±∞, i.e., the particles lose their energy within finite
distance, then the transport terms ∂F/∂z in Equation (19) or the diffusive
transport term ∂2F/∂z2 in Equation (22) becomes zero at z → ±∞ and the
spatially integrated flux spectrum is independent of the form of the spatial and
pitch-angle evolution of the electrons. Therefore, the integration always leads
to the expression (27).
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Figure 1. Spatial distribution of energetic electrons A Δz F (E, z) at 20 keV, for
a density n0 = 1010 cm−3 and an injection (acceleration) rate Ṅ = 1036 s−1

above E0 = 10 keV, with A Δz = 1026 cm−3 and δ = 4, d = 2 Mm. The
standard transport case is shown by a black solid line and the diffusive transport
cases are shown for λ = 109 cm (blue dotted line), λ = 108 cm (green dashed
line), and λ = 107 cm (orange dot-dashed line).

(A color version of this figure is available in the online journal.)

For comparison, we can also write the solution for the standard
collisional transport case using Equations (10) and (12)

FC(E, z) = E

2

∫ +∞

−∞

F0(E0[E, z; z′])
E0[E, z; z′]

1√
2πd2

× exp

(
− z′2

2d2

)
dz′, (29)

where E2
0[E, z; z′] = E2 + 2Kn0 | z − z′ |.

The solutions for the diffusive (Equation (28)) and streaming
(Equation (29)) cases are compared for typical flare parameters
in Figure 1. Pitch-angle scattering causes electrons to escape the
acceleration region more slowly, which results in an enhanced
electron number in the coronal source (Figure 4). As an
example, for a loop density n0 = 1010 cm−3 and a mean free
path λ = 106 cm, the electron flux FD(E, z) is greater than
that for the standard transport case FC(E, z) by a factor of
∼20. The shorter the mean free path due to non-collisional
scattering, the stronger the enhancement. As the mean free path
λ → 0, the coronal source effectively becomes a “thick-target”
source. Although the density is not high enough to collisionally
stop the electrons, the efficient scattering of electrons leads to
effective electron trapping, so that the electrons lose most of
their energy within the coronal part of the loop.

We can compare the intensities of emission from the footpoint
and coronal sources. We define the coronal emission as

〈nV FCS(E)〉 = An0

∫ +HWFM

−HWFM
F (E, z) dz, (30)

where HWHM = √
2 ln 2 d is the half width at half maximum.

Similarly, the footpoint emission is defined as

〈nV F FP(E)〉 = 2An0

∫ ∞

HWHM
F (E, z) dz. (31)

The sum of the two sources (Equations (30) and (31)) is, of
course,

〈nV F FP(E)〉 + 〈nV FCS(E)〉 = E

K

∫ ∞

E

AF0(E′) dE′, (32)

the spatially integrated flux spectrum. The solutions presented
in Figure 2 for three typical plasma densities (and for an electron
spectral index δ = 4) allow comparison with RHESSI imaging-
spectroscopy observations.

The influence of pitch-angle scattering is revealed by stronger
coronal emission and weaker footpoint emission than in the
standard case due to the increase of the residence time of
electrons high up in the corona. Turbulent pitch-angle scattering
also leads to a change in the HXR spectral index, forming
a broken power-law spectrum, a feature noted by Bespalov
et al. (1991). For collisional transport in a medium of density
n0 = 1 × 1010 cm−3 (see the top panel of Figure 2), the
coronal source has a spectrum 〈nV FCS(E)〉 ∝ E−4 and
the footpoint spectrum 〈nV F FP(E)〉 ∝ E−2. In the diffusive
cases, the coronal emission becomes stronger and the spectrum
progressively flatter, with decreasing λ, while the footpoint
spectrum develops a break and becomes weaker at energies
in the low tens of keV. The effect of enhanced electron density
in the coronal part of the loop is stronger at low energies, despite
the fact that the pitch-angle scattering rate grows with speed
according to D(T )

μμ ∝ v/λ. This is related to the fact that the
solution FD(E, z) given by Equation (28) depends on the ratio
λ/λc(E), where λc(E) = E2/2Kn0 is the collisional stopping
depth of electrons of energy E. For large energies, λ/λc(E) is
smaller, so the electrons with E2 > 2Kn0λ (i.e., λ/λc < 1) can
reach the footpoints.

Recent RHESSI observations by Simões & Kontar (2013)
of four well-resolved flares with both coronal and footpoint
sources suggest (see Figure 3) that the number of electrons in the
coronal part of the loop is larger by a significant factor (between
∼2 and ∼8) than what is required to explain the thick-target
footpoint emission. The likely source of this discrepancy is the
trapping of energetic electrons in the solar corona, probably in
the acceleration region itself. Figure 4 shows the enhancement
of flux spectrum in the coronal source for various plasma
densities and scattering mean free paths λ. For example, in
the flare of 2011 February 24, the flaring loop density was n0 ∼
5×1010 cm−3 and the electron spectral index δ = 4, as deduced
from RHESSI observations. To obtain the intersection between
the coronal 〈nV FCS(E)〉 and footpoint 〈nVFFP(E)〉 spectra near
20 keV, as required by RHESSI observations (Figure 3), the
non-collisional mean free path λ should not be less than a few
thousand kilometers. The green lines (both solid and dashed)
in the middle panel of Figure 2 show that for λ = 108 cm
the coronal source will dominate up to around 50 keV, which
is inconsistent with the observations. Analysis of other events
analyzed by Simões & Kontar (2013) and presented in Figure 3
suggests that the scattering mean free path λ must be of the order
of (108–109) cm. We notice that smaller λ (i.e., λ < 108 cm) will
noticeably reduce the footpoint HXR emission (see Figure 2) to
an extent that the ratio of intensities of the coronal and footpoint
sources would be inconsistent with the RHESSI data.

4.1. Dependence of Coronal Source Size on Energy

Spatially resolved observations of HXR loops at various
energies provide additional constraints on the poorly known
level of magnetic fluctuations in solar flare loops and allow us
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Figure 2. Mean electron flux spectrum 〈nV F (E)〉 for three plasma densities
n0 = 1 × 1010 cm−3 (top panel), n0 = 5 × 1010 cm−3 (middle panel), and
n0 = 1 × 1011 cm−3 (bottom panel). The dashed lines show the spectrum of
the coronal source 〈nV FCS (E)〉 and the solid black lines show the spectrum of
the footpoints 〈nV F FP(E)〉. Four transport cases are shown: scatter-free (black
lines), diffusive with λ = 109 cm (blue lines), diffusive with λ = 108 cm (green
lines), and diffusive with λ = 107 cm (orange lines).

(A color version of this figure is available in the online journal.)

to derive the pitch-angle scattering length. Recent observations
(Xu et al. 2008; Kontar et al. 2011b; Guo et al. 2012) suggest
that the length of HXR coronal sources is energy dependent,
with the full width at half maximum (FWHM) length of the
loop growing as L � L0 + αE2, where L0 is the characteristic

length of the acceleration (injection) region and α is a coefficient
that is generally consistent with collisional transport, i.e., α �
1/(2Kn). In addition, the FWHM width of coronal loops grows
slowly with energy (Kontar et al. 2011b), which is consistent
with electron transport in a fluctuating magnetic field. The form
L � L0 + E2/(2Kn) directly follows from collisional transport
without scattering (i.e., from Equation (29)). However, in the
diffusive transport model,

L(E) − L0 ∝ λ1/2E, (33)

i.e., the source size grows linearly with energy, with a slope
proportional to λ1/2 (see Equation (26) and remarks thereafter).
In the limit of strong diffusion (λ → 0), the source size will
be essentially independent of energy. The diffusive solution
(Equation (28)) therefore allows us estimate the range of λ
values that could be consistent with the observations.

As an example, we consider the well-studied 2002 April 15
flare, previously analyzed by Xu et al. (2008), Kontar et al.
(2011b), and Guo et al. (2012). This flare is characterized by
a high plasma density around n0 = 2 × 1011 cm−3, so that
X-ray-producing electrons up to around 30 keV are collisionally
stopped within the coronal part of the loop.

Figure 5 shows the FWHM length of the electron source and
the E2 dependence of source length with energy appropriate for
the standard transport case. This E2 dependence becomes the
linear dependence λ1/2E predicted by a diffusive model (33) for
λ = 109 cm and by λ = 107 cm, the length is essentially
energy independent. Preliminary analysis suggests that the
uncertainties in the RHESSI observations do support a linear
relationship between L and E (with an appropriately large value
of λ) and we intend to perform a more detailed observational
test of the predictions of the diffusive transport model in a future
work. However, we can nevertheless conclude from the fact that
there is a significant variation of L with E that very strong pitch-
angle scattering, e.g., λ � 108 cm, is not consistent with the
observations (Guo et al. 2012).

5. SUMMARY AND DISCUSSION

We have considered the evolution of the electron flux spec-
trum F(E,z) in a collisional plasma that contains a homoge-
neous distribution of magnetic fluctuations. The presence of
these magnetic fluctuations leads to pitch-angle scattering of
the HXR-producing electrons. In the approximation of strong
pitch-angle scattering over the size of the loop, this manifests
itself as a diffusion parallel to the guiding magnetic field. We
have derived simple analytical solutions that allow us to com-
pare RHESSI observations with this model in order to deduce
limits on the mean free path associated with the scattering.

One of the interesting aspects of diffusive transport is the
reduction of the direct current associated with the precipitating
particles. The current density in case of scatter-free propagation
is jC � eṄ , while the presence of pitch-angle scattering will
reduce this value to jD � eṄλ/(3Lloop), so that

jD

jC

� λ

3Lloop
. (34)

As the return current (e.g., Emslie 1980; Zharkova &
Gordovskyy 2006) and associated ohmic losses are related to the
direct current, these will be reduced due to the non-collisional
pitch-angle scattering.

The non-collisional pitch-angle scattering of electrons in the
presence of collisional losses makes the electron spectrum of

6
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Figure 3. Coronal source (dashed line) and footpoint (solid line) mean electron fluxes 〈nV F (E)〉 for four flares analyzed by Simões & Kontar (2013). The figure
shows power-law fits to imaging spectroscopy results. The typical uncertainties on the spectral index are ±0.2 and on the mean electron flux ±20%. As RHESSI has
limited dynamic range, the most reliable range of energies is where the fluxes are comparable.

the coronal source harder at low energies. In general, for typical
solar parameters, the coronal and footpoint spectra will no
longer be single power laws, but broken power laws (see also
Bespalov et al. 1991). Thus, single power-law fits to the coronal
and footpoint sources could lead to spectral index differences
not equal to 2. We note that for the standard transport model,
the spectral index difference between the coronal source and
footpoints is expected to be 2. Thus, the consideration of non-
collisional pitch-angle scattering can explain the spread of
the spectral index differences in spectral indices between the
coronal and footpoint sources observed in solar flares (e.g.,
Emslie et al. 2003; Battaglia & Benz 2006). While in this paper
the scattering centers are assumed to be distributed uniformly
throughout the source, this may not be the case in an actual flare
and such an inhomogeneity could contribute to the asymmetry
of footpoint spectral indices (Saint-Hilaire et al. 2008).

The analysis of spatially resolved mean electron flux spectra
in flares (Simões & Kontar 2013) also suggests the presence of
some trapping or pitch-angle scattering in the coronal part of
the loop, where the electrons are likely to be accelerated. The
number of energetic electrons in the coronal source exceeds the
number required to explain footpoint emission. This can be seen
from the graphs of mean electron spectra (Figure 3); the flatter
footpoint spectra tend to intersect with steeper coronal source
spectra at higher energies than predicted by purely collisional
transport (Figure 2). Comparing Figures 2 and 3, one sees that
the typical energies of intersection are better explained with

λ in the range ∼108–109 cm, which is shorter than the length of
the loop.

For high loop densities (e.g., Guo et al. 2012), the variation
of the FWHM of the X-ray source length with electron energy
E can be explained by collisional transport along the field lines.
However, it can also be explained by our collisional-diffusive
model if the equivalent mean free path is comparable to the
observed extent of the source. However, the mean free path
cannot be smaller than about ∼109 cm, otherwise the predicted
energy dependence of the source length would be too weak to
be consistent with observations.

The inferred values of λ are less than the typical length
of a loop ∼2 × 109 cm, yet are comparable with the typical
size of a coronal source ∼5 × 108 cm. These findings put
constraints on the likely acceleration scenario inside a flaring
loop. A scattering mean free path as large as the acceleration
region requires that the acceleration itself does not rely on strong
pitch-angle scattering of deka-keV electrons.

The accumulation of electrons in the coronal source could
also, in principle, be achieved via magnetic mirror trapping;
however, the mirroring points must be inside the coronal sources
in order to be consistent with the observations. This is a rather
atypical scenario for a simple loop geometry, in which the
magnetic reflection points are normally near/at the footpoints,
where the magnetic field strength significantly increases. We
further note that in a simple mirroring model the magnetic
mirror points are determined only by the electron pitch angle

7
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Figure 4. Ratio of the mean electron fluxes 〈nV FD(E)〉/〈nV FC (E)〉 in
the coronal source defined by Equation (30) for plasma densities: n0 =
1 × 1010 cm−3 (top), n0 = 5 × 1010 cm−3 (middle), and n0 = 1 × 1011 cm−3

(bottom). Three characteristic energies are considered: 20 keV (solid black line),
30 keV (orange dashed line), and 40 keV (red dashed line).

(A color version of this figure is available in the online journal.)

and are thus energy independent, while the observations of high-
density loops strongly suggest sizes that are energy dependent.
Therefore, in order for magnetic mirroring to be the chief
trapping mechanism, one needs additional assumptions about

Figure 5. Predicted FWHM length of the source as a function of energy in a
loop with density n0 = 2 × 1011 cm−3. The electron spectral index δ = 7 and
the acceleration/injection region FWHM = 2d

√
2 ln 2 � 2.35 d � 14.5 Mm

(=20 arcsec), so that d = 6.2 Mm, similar to the values in Xu et al. (2008),
Kontar et al. (2011b), and Guo et al. (2012). The collisional transport case
is shown by the black solid line (Equation (29)). Diffusive transport cases
(calculated using Equation (28)) with λ = 109 cm (blue line), λ = 108 cm
(green line), and λ = 107 cm (orange line) are also shown.

(A color version of this figure is available in the online journal.)

the relation between the energy and pitch-angle distributions
of the accelerated electrons, so that the higher energy ones
could mirror back further from the injection/acceleration site.
While such a scenario cannot be ruled out completely, it does
require further detailed numerical modeling to make quantitative
statements.

The presented analysis of these flares suggests that the non-
collisional pitch angle is likely to be present in solar flare loops,
however, the characteristic mean free path against this turbulent
scattering is longer than 108–109 cm (with some variation from
flare to flare) and the characteristic timescale is longer than
∼ λ/v = 10−2–10−1 s for ∼30 keV (e.g., v = 1010 cm s−1)
electrons.

This work is supported by the STFC grant (E.P.K. and
N.H.B.). Financial support by the European Commission
through the FP7 HESPE network (FP7-2010-SPACE-263086)
is gratefully acknowledged. A.G.E. was supported by NASA
grant NNX10AT78J. The authors are thankful to N. Jeffrey for
helping to improve the text of the paper.

APPENDIX

MEAN FREE PATH FOR COMBINED COLLISIONAL
AND NON-COLLISIONAL SCATTERING

To obtain the form of D(T )
μμ , consider the equation of motion

for electrons in the magnetostatic approximation:

ṗ = e

c
[ v × (B0 z + δB) ] , (A1)

where the magnetic field B comprises a background field B0 ẑ,
and a fluctuating perpendicular part δB.

The position of the electrons along the loop is determined
by the three coordinates (z, μ, φ), with φ being the gyrophase;
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from Equation (A1), these coordinates evolve according to

dz

dt
= μv, (A2)

dφ

dt
= Ωce

[
1 − μ√

1 − μ2

(
cos φ

δBx(z)

B0
+ sin φ

δBy(z)

B0

)]
,

(A3)
and

dμ

dt
=

√
1 − μ2 Ωce

(
cos φ

δBx(z)

B0
− sin φ

δBy(z)

B0

)
, (A4)

where Ωce = eB0/mec is the electron gyrofrequency. The pitch-
angle diffusion coefficient is defined as

D(T )
μμ =

∞∫
0

dt 〈 μ̇(0)μ̇(t) 〉. (A5)

In the quasilinear approximation, the Lagrangian correlation
function CL(t) = 〈 μ̇(0)μ̇(t) 〉 is computed from the unperturbed
orbits of the particles. This yields

CL(t) = 〈 μ̇(0)μ̇(t) 〉
=

∫
dz dφ 〈 μ̇(0, 0) μ̇(z, φ) δ(z − z(t)) δ(φ − φ(t)) 〉

= 2 Ω2
ce

B2
0

∫
dz dφ (1 − μ2) 〈 cos φ δB(0) δB(z)

× δ(z − z(t)) δ(φ − φ(t)) 〉. (A6)

Substituting the unperturbed (δB = 0) values of z and φ, i.e.,
z(t) = μv t, φ(t) = Ωce t , we obtain

CL(t) = 2 Ω2
ce

B2
0

(1 − μ2) 〈 δB(0) δB(μvt) 〉 cos Ωcet . (A7)

Defining the Eulerian correlation function of the magnetic
perturbations as

C(z) = 〈δB(0) δB(z)〉, (A8)

we see from Equations (A5) and (A7) that the diffusion
coefficient in pitch-angle space can be written as

D(T )
μμ = 2Ω2

ce

B2
0

∞∫
0

dt (1 − μ2) cos (Ωcet) C(μvt). (A9)

The standard quasilinear result for slab turbulence (Jokipii
1966; Kennel & Petschek 1966; Skilling 1975) for an arbitrary
spectrum of turbulence W (k‖) has the form (Lee 1982)

D(T )
μμ = π

2
(1 − μ2) Ωce

k‖W (k‖)

B2
0

∣∣∣∣
k‖=Ωce/v|μ|

, (A10)

where W (k‖) is the spectral energy density of magnetic fluctua-
tions, normalized so that the total energy density of fluctuations

is
∞∫

−∞
W (k‖) dk‖ = (δB)2.

The pitch-angle scattering coefficient D(T )
μμ is thus dependent

on the spectrum of magnetic fluctuations W (k‖) or, equivalently,

on the form of the correlation function C(z). In interplanetary
space, the spectrum of magnetic fluctuations is normally approx-
imated as a power law. For solar wind conditions, the quasilinear
result given by Equation (A10) tends to overestimate the scat-
tering of particles for the parameters of turbulence in the solar
wind and a number of theories have been put forward to improve
the expression for D(T )

μμ and explain the discrepancies (Palmer
1982; Bieber et al. 1994; Dröge 2000).

It must be noted that the spectrum of magnetic fluctuations
W (k‖) or the correlation function C(z) are generally unknown
in solar flares. However, as an example, let us assume an
exponential correlation function C(z) ∝ exp (−z/λB), where λB

is the parallel correlation length for magnetic field fluctuations.
The corresponding spectrum of magnetic field fluctuations has
the Lorentzian form

W (k‖) = (δB)2

π

(1/λB)

(1/λB)2 + k2
‖
, (A11)

and the corresponding diffusion coefficient in pitch-angle space
becomes

D(T )
μμ = 1

2
(1 − μ2) Ω2

ce

(
δB

B0

)2 |μ|v/λB

Ω2
ce + (μv/λB)2 . (A12)

In the high-magnetic field limit v � ΩceλB , this can be further
simplified to

D(T )
μμ = |μ|

2
(1 − μ2)

(
δB

B0

)2
v

λB

. (A13)

Substitution of Equation (A13) into Equation (4) yields an
infinite mean free path λ due to the logarithmic divergence of
the integral at the origin; this is a well-known artifact of the
approximations employed (e.g., Tautz et al. 2008). However,
λ becomes finite when the magnetic fluctuations have non-
zero velocity (Fedorenko 1983; Schlickeiser 1989) or when
the Lagrangian correlation function CL(t) = 〈 μ̇(0)μ̇(t) 〉 is
computed from the perturbed orbits of the particles or when
the resonance between particles and magnetic fluctuations is
broadened (Palmer 1982; Bieber et al. 1994; Dröge 2000; Bian
et al. 2012). Here, we also note that for binary collisions,
D(T )

μμ |μ=0 �= 0, and hence a finite λ is obtained.
The mean free path of a particle undergoing pitch-angle scat-

tering due to both binary collisions and magnetic fluctuations is

λ = 3v

8

∫ 1

−1

(1 − μ2)2

D
(T )
μμ + D

(C)
μμ

dμ. (A14)

Using the pitch-angle scattering coefficients (Equations (3)
and (A13)), one finds

λ ≡ 3v

4

∫ 1

0

(1 − μ2)

a + bμ
dμ, (A15)

where

a = (1 + Z2)Kn(z)

m2
e v3

and

b = 1

2

(
δB

B0

)2
v

λB

.

9
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Performing the integration over μ in Equation (A14),

λ = 3v

8

(
2

b

[
1 − a2

b2

]
ln

[
a + b

a

]
− b − 2a

b2

)
. (A16)

In the case of strong non-collisional scattering b � a (i.e., non-
collisional scattering operates on shorter scales than collisions
do), Equation (A16) can be simplified to yield

λ � 3v

8

1

b

(
2 ln

[
b

a

]
− 1

)

= 3λB

4

(
B0

δB

)2
(

2 ln

[
m2

e v4

2 (1 + Z2) KnλB

(
δB

B0

)2
]

− 1

)
.

(A17)

In the opposite limit, b � a, λ → ∞ due to the zero of D(T )
μμ at

μ = 0.
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