
A NEW PROOF OF THE COMPETITIVE EXCLUSION

PRINCIPLE IN THE CHEMOSTAT

ALAIN RAPAPORT

MISTEA (Mathematics, Informatics and Statistics for Environmental and
Agronomic Sciences), Univ. Montpellier, INRA, Montpellier SupAgro,

Place Pierre Viala, 34060 Montpellier, France

MARIO VERUETE
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1. Introduction

The Competitive Exclusion Principle (CEP) has a long history in the sci-
entific literature. Since the thirties, the Russian botanist Gause conducted
experiments on the growth of yeasts and paramecia in mixed cultures, and
reported that the most competitive species systematically eliminated the
other [5]. In his book “The struggle for existence”, he showed that com-
petitive exclusion had indeed a more universal scope: two similar living
organisms evolving in the same environment and competing for a shared
resource cannot coexist for ever, one of them having always a slight advan-
tage over the other one, or being more adapted to the ecosystem [6]. In
the 1960s, this statement has become quite popular in ecology but also in
economics: the CEP applies to many kinds of ecosystems, and not only for
microorganisms, since there are consumers and resources [7]. It is also com-
monly taught as “Gause’s law” in theoretical ecology.
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However, it was not until the 1970s that the first statement of a math-
ematical theorem was found in the literature, along with its proof [10], for
the chemostat model. It refers to the mathematical result that establishes
conditions under which almost all solutions converge toward a steady-state
of the system having at most one species. The chemostat model is widely
used in microbiology and ecology as a mathematical representation of growth
of micro-organisms in ecosystems that are continuously fed with nutrients.
Several textbooks on the mathematical analysis of this model with one and
more species are available [17, 1, 8]. The chemostat model can be also con-
sidered as a quite general resource/consumers model [12]. The CEP has
also a long history in the literature of bio-mathematics. Hsu, Hubbell and
Waltman have proposed a first proof in 1977 for Monod’s functions as par-
ticular growth rates [10]. Hsu generalized this result in 1978 for different
removal rates [9]. These two contributions use explicit Lyapunov functions
to demonstrate the overall convergence. In 1980, Armstrong and McGehee
have given a simple proof for any monotonic growth functions but for partic-
ular initial conditions belonging to an invariant set [2]. In 1985, Butler and
Wolkowicz proposed a proof for any monotonic growth function [3]. One of
the difficulties to prove the global stability originates from the fact that the
graphs of any growth function can intersect one another at several points.
During the transients a species could dominate the competition without be-
ing the final winner of the competition on the long run. Finally, it was in
1992 that Wolkowicz and Lu proposed a proof, based on a Lyapunov func-
tion, for growth functions more general than Monod functions (but under
additional technical assumptions) and different removal rates [18]. This re-
sult has been later extended or complemented [11, 14, 13, 16, 15]. However,
the proof of global stability for any monotonic growth functions and removal
rates remains today an open mathematical problem [4].

In the present paper, we propose a new proof of the CEP for any mono-
tonic growth functions but under identical removal rates. The existing proofs
rely on relatively sophisticated tools, such as ω-limit sets [3], Lyapunov func-
tions and LaSalle Invariance Principle [10, 18] and the theory of asymptot-
ically autonomous systems (e.g. Appendix F in [17]). We show here that
it is possible to obtain a proof with elementary analysis, based on single
comparisons of solutions of ordinary differential equations. While species
are sorted in ascending break even concentrations, the key of the proof re-
lies on the observation of the time evolution of the proportions ri of the
concentration of species i over the one of species 1. Whatever is the initial
condition and how the transients could exhibit an alternation of dominance
among species or not, there always exists a finite time at the end of which
the proportion rn is decreasing exponentially for any future time. We show
that this property is due to the level of the resource that reaches in finite
time an interval which is unfavourable for the n-th species, and belongs to
this interval for ever. We show that these two properties hold for the other
species by induction on the index set {n, n − 1, · · · , 2}: this is our main
result (Proposition 2 given in Section 3.4). This proves that the only winner
of the competition is the first species.
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2. Competitive exclusion principle for the chemostat

The classical chemostat model for N ∈ N∗ species competing for a single
resource is given by the system of differential equations ṡ = D(Sin − s)−

N∑
i=1

µi(s)xi

ẋi = µi(s)xi −Dxi (1 ≤ i ≤ N)

, (1)

where the operating parameters D > 0, Sin > 0 are the removal rate and
the incoming density of resource (or input substrate concentration). The
variable s(t) denotes the density of resource (or substrate concentration)
at time t. For 1 ≤ i ≤ N , xi(t) represents the density of the i-th species
and µi(·) is the specific growth rate function of species i. In this writing
we have assumed, without any loss of generality, that the yield coefficients
of resource s transformed in xi are all identically equal to 1. In microbial
ecology, the growth function µi often takes the form of a Monod’s function

µ(s) = µmax
s

k + s
, but we consider here more general ecosystems without

particularizing the expression of the growth function. We make the following
assumption.

Assumption 1 (Growth function). For each 1 ≤ i ≤ N , we assume that

(1) µi ∈ C1(R+).
(2) µi(0) = 0.
(3) µi(·) is an increasing of function of s.

One can straightforwardly check that the positive orthant of RN+1 is
invariant by the dynamics (1).

As often considered in the literature, we associate to each growth function
the break-even concentration defined as follows.

Definition 1 (Break-even concentration). Under Assumption 1, for a given
number D > 0, the break-even concentration λi = λi(D) for the i-th species
is defined as the unique solution of the equation µi(s) = D, when it exists.
When there is no solution to this equation, we set λi =∞.

Assumption 2. Species have distinct break-even concentrations, and with-
out loss of generality are enumerated by indices such that

λ1 < λ2 < · · · < λN . (2)

In Figure 1, we have represented several growth functions and the removal
rate (in dashed line).

We shall see further how the particular cases when some numbers λi are
identical can be tackled, packing the corresponding species (see Section 3.5
below). We first do not consider these non generic situations for sake of
simplicity of the presentation.

We recall the statement of the Competitive Exclusion Principle.

Proposition 1 (Competitive exclusion principle). Assume one has λ1 < Sin
with Assumptions 1 and 2 fulfilled. For any non-negative initial condition
with x1(0) > 0, the solution of the system (1) converges to the equilibrium
point (λ1, Sin − λ1, 0, . . . , 0).
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Figure 1. Growth functions and their break-even concentrations.

3. Proof of Proposition 1

The proof is based on a backward inductive argument: we show that
the proportion, with respect of the total biomass, of each species goes to
0 when t tends to +∞ excepted for the species with minimal break-even
concentration.

3.1. Change of coordinates. We introduce the total biomass b and the
proportion’s vector p := (pi)1≤i≤N where:

b :=
N∑
i=1

xi and pi :=
xi
b
. (3)

Additionally, we define the function µ̄(s, p) :=
N∑
i=1

piµi(s). In those new

variables, one can easily check that the system (1) writes:
ṡ = D(Sin − s)− µ̄(s, p)b

ḃ = µ̄(s, p)b−Db
ṗi = pi(µi(s)− µ̄(s, p)) (1 ≤ i ≤ n).

(4)

3.2. Non extinction of the total biomass. We first give a necessary
and sufficient condition for the persistence of the total biomass, of interest
in itself.

Lemma 1. Consider that Assumptions 1 and 2 are fulfilled.

(1) Whatever is the initial condition of (1) , the solution verifies

lim
t→+∞

b(t) + s(t) = Sin.

(2) Any species j with λj ≥ Sin satisfies lim
t→+∞

xj(t) = 0, whatever is the

initial condition of (1).
(3) When λ1 < Sin, for any non-negative initial condition such that there

exists i ∈ {1, · · · , n} with xi(0) > 0 and λi < Sin, the variable b(t)
is bounded from below by a positive number for any t > 0.
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Proof. Consider the total mass m := b + s of the system. Then m solves
the linear differential equation ṁ = D(Sin − m), which posses an unique
equilibrium m? = Sin, that is moreover globally asymptotically stable.

Consider first species j such that λj ≥ Sin (if it exists). Fix ε > 0. Then
η = D− µj(Sin − ε/2) is a positive number. As m(·) converges to Sin, there
exits T > 0 such that s(t) + xj(t) ≤ m(t) < Sin + ε/2 for any t > T . This
implies that the dynamics of species j satisfies

ẋj(t) ≤ (µj(Sin − xj(t) + ε/2)−D)xj(t) =: φj(xj(t))

for any t > T . The function φj has the property

xj ≥ ε ⇒ φj(xj) ≤ (µj(Sin − ε/2)−D)xj ≤ −ηε < 0.

Therefore, the variable xj(t) exits the domain {xj ≥ ε} in finite time and
stays outside for any future time, i.e. there exists T ′ > T such that xj(t) < ε
for any t > T ′. This statement is obtained for any arbitrary ε, which proves
the convergence of the xj(·) towards 0.

Let k be the maximal index such that λk < Sin (which exists by Assump-
tion 2) and denote b0 := x1 + · · · + xk. For any i ≤ k, notice that one
has

µi(s)xi ≥ min
1≤j≤k

µj(s)xi

for any s and xi, and by simple addition,

k∑
i=1

µi(s)xi ≥ min
1≤j≤k

µj(s)
( k∑
i=1

xi

)
= min

1≤j≤k
µj(s)b0. (5)

The dynamics of b0 writes

ḃ0 =
k∑
i=1

ẋi =
k∑
i=1

µi(s)xi −D
k∑
i=1

xi

and by inequality (5), one has ḃ0(t) ≥ Ψ(t, b0(t)) for any t > 0, where Ψ is
defined as follows

Ψ(t, b0) :=
(

min
1≤i≤k

µi(s(t))−D
)
b0. (6)

As the inequality µi(Sin) > D is fulfilled for any i ≤ k, and the functions µi
are continuous, there exists ε > 0 and η > 0 such that

min
1≤i≤k

µi(σ)−D > ε for any σ > Sin − η. (7)

Since m(t) converges to Sin and xj(t) converges to 0 for any j > k, there is
a time T ? ≥ 0 such that

s(t) = m(t)− b0(t)−
∑
j≥k

xj(t) > Sin − b0(t)−
η

2
for any t > T ?.

Then, by inequality (7), the function Ψ defined in (6) fulfills the following
property.{

t > T ?, b0 <
η
2

}
⇒ Ψ(t, b0) ≥

(
min
1≤i≤k

µi(Sin − η)−D
)
b0 ≥ ε b0.

As one has b0(0) > 0 by hypothesis, b0(t) is strictly positive for any t > T ?

and it follows that b0 can not stay or enter into the interval [0, η2 ] for times
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larger than T ?. Then the total biomass b(t) ≥ b0(t) is bounded from below
by η

2 in finite time. �

3.3. Frame on the substrate’s dynamics. By Assumption 2, growth
functions are ordered on each interval [λi, λi+1] (see Figure 1) i.e. for all
i ∈ {1 · · ·n− 1}, one has

µi(s) > µj(s), ∀j > i, ∀s ∈ [λi, λi+1].

By continuity of µi(·), there are numbers ν > 0, s−i < λi and s+i > λi+1

such that
µi(s) > µj(s) + ν, ∀s ∈ [s−i , s

+
i ], ∀j > i. (8)

By monotonicity of µi, we have µi(s
−
i ) < D and µi(s

+
i ) > D. Moreover,

one has

j < i ⇒ µj(s
+
i ) > µj(λi) > µj(λj) = D

s+i > λi+1 ⇒ µi+1(s
+
i ) > D

Therefore, the numbers{
γ− := D − µ1(s−1 )
γ+ := min

2≤i≤n
min
j<i

µj(s
+
i−1)−D (9)

are positive. We define also the following numbers.

D− := D − γ−

2
, D+ := D +

γ+

2
. (10)

Lemma 2. Assume one has λ1 < Sin with Assumptions 1 and 2. For any
non-negative initial condition with x1(0) > 0, there exists T > 0 such that
ṡ(t) ∈ [Φ−(t, s(t)),Φ+(t, s(t))] for any t > T , where{

Φ−(t, s) := [D− − µ̄(s, p(t))] b(t)
Φ+(t, s) := [D+ − µ̄(s, p(t))] b(t).

(11)

Proof. From Lemma 1, we know that b(·) is bounded from below by a posi-
tive number. Consider the function

z :=
Sin − s

b
= 1 +

Sin −m
b

.

Since m(·) converges to Sin and b(·) is bounded form below, z(t) converges
to 1 when t tends to +∞. Furthermore, for t > T with T large enough, one
has Dz(t) ∈ [D−, D+]. Remark that the substrate dynamics can be written
as follows

ṡ = Φ(t, s) := b(t) [Dz(t)− µ̄(s, p(t))] ,

and one then obtains the inequalities Φ−(t, s) ≤ Φ(t, s) ≤ Φ+(t, s) for any
t > T . �

3.4. Extinction of the species by induction.

Proposition 2. Assume one has λ1 < Sin with Assumptions 1 and 2. Con-
sider a solution of system (1) with x1(0) > 0. Then the property

(Pi) :

{
i. There exists Ti > 0 s.t. s(t) ∈ Ii := [s−1 , s

+
i ], ∀t > Ti

ii. lim
t→+∞

pj(t) = 0, ∀j > i.

holds for all i ∈ {1, . . . , n− 1}.
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Figure 2 illustrates the sets Ii considered in the backward induction of
the proof.

ℐ1

ℐi-1

ℐi

ℐ-2

ℐ-1

1

- λ1 2

- λ2 1

+ i

- λi i-1

+ i+1

- λi+1 i

+ -1

- λ-1 -2

+ 
- λ -1

+
s

Figure 2. Illustration of the intervals Ii (i = 1 · · ·n− 1)

Proof. As x1(0) > 0, the variable x1 stays positive for any time and one can
consider variables ri := xi

x1
for i ∈ {2, · · · , n}, whose dynamics is

ṙi = [µi(s(t))− µ1(s(t))]ri. (12)

By monotonicity of functions µi(·) and property (8), we can write

s < s−1 ⇒ max
i
µi(s) < max

i
µi(s

−
1 ) = µ1(s

−
1 ) ≤ D− − γ−

2
(13)

where γ−, D− are defined in (9), (10). Similarly, one has

s > s+n−1 ⇒ min
i
µi(s) > min

i
µi(s

+
n−1) ≥ D

+ +
γ+

2
(14)

where γ+, D+ are defined in (9), (10).
Consider a number T > 0 given by Lemma 2. From Lemma 1, there

exists a number η > 0 such that b(t) ≥ η
2 for any t > T . It then follows

from (13) and (14) that the functions Φ± defined in (11) fulfill the following
inequalities.

s < s−1 , t > T ⇒ Φ−(t, s) ≥ b(t)
(
D− −max

i
µi(s)

)
>
η γ−

4
> 0

s > s+n−1, t > T ⇒ Φ+(t, s) ≤ b(t)
(
D+ −min

i
µi(s)

)
< −η γ

+

4
< 0.

Therefore the variable s enters the interval In−1 in a finite time Tn−1 > T
and belongs to it for any future time. Furthermore, the inequalities (8)
ensure to have µn(s)− µ1(s) < −ν for any s in the interval In−1, and then
the dynamics of rn satisfies ṙn ≤ −νrn for t > Tn−1. Thus rn converges to
0, and xn converges as well. Property Pn−1 is then satisfied.

Assume that Pi is satisfied for an index i ∈ {2, · · · , n−1} and let us show
that Pi−1 is fulfilled. Since the functions pj converge to 0 for all j > i, there
is T ′ > Ti such that∑

j>i

pj(t) < ε :=
γ+/4

D+ + γ+/2
, ∀t > T ′.
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Then, for s > s+i−1 and t > T ′, the following inequality holds

µ̄(s, p(t)) ≥
∑
j≤i

µj(s)pj(t)

≥ min
j≤i

µj(s
+
i−1)(1− ε)

≥ (D+ + γ+

2 )(1− ε) = D+ +
γ+

4

which provides the property of the function Φ+:

s > s+i−1, t > T ′ ⇒ Φ+(t, s) ≤ −η γ
+

8
< 0.

Thus, in a finite time Ti−1 > T ′, s enters into the interval Ii−1 and stays
inside it for any future time. Furthermore, inequalities (8) lead to write
ṙi ≤ −νri for t > Ti−1, which shows that xi converges to zero. Property
Pi−1 is then satisfied. �

3.5. The case of identical break-even concentration. We relax As-
sumption 2 allowing some λi with i > 1 to be identical and show that
Proposition 1 is also satisfied.

If there exist i and ` > 1 such that λ1 < λi−`(D) = · · · = λi(D) < Sin, at
step i in the induction of the proof, we replace species i by the sum of species
i− `, . . . , i and show property Pi, that is lim

t→+∞
pj(t) = 0 for all j > i− `+ 1.

This can be done considering ri :=
i∑

j=i−`
rj instead of ri, and remark that

we have also s+i−1 = · · · = s+i−1−`. Then, one has

ṙi =

 i∑
j=i−`

αj(t)µj(s(t))− µ1(s(t))

 ri
where αj(t) =

rj(t)

ri(t)
> 0 with

i∑
j=i−1

αj(t) = 1. By (8), we have

i∑
j=i−1

αj(t)µj(s) < µ1(s)− ν, ∀s ∈ [s−1 , s
+
i ]

an then ṙi(t) < −ηri(t). Thus ṙi ≤ η ri for t > T which shows that ri
converges to zero as well as every xj with i ≤ j ≤ i + `. The rest of the
proof is identical.

3.6. Conclusion. Now that we know that the variables xj converge to 0
for any j > 1, we can easily show that s tends to λ1 as follows.

By Lemma 1 and Proposition 2, b(t) + s(t) tends to Sin and the variables
b and s are bounded from below by positive numbers. Thus there exists
numbers ζ > 0 and T1 > 0 such that s(t) ∈ [ζ, Sin − ζ] for any t > T1, and
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accordingly to Proposition 2, we can require to have λ1 ∈ (ζ, Sin − ζ). We
then consider the variable

r(t) =
µ̄(s(t), p(t))b(t)

µ1(s(t))(Sin − s(t))
, t > T1

which tends to 1 when t tends to +∞, and write the dynamics of s as

ṡ = Γ(t, s) := (Sin − s)(D − µ1(s)r(t)) (15)

Take any ε > 0 sufficiently small to have [λ1 − ε, λ1 + ε] ⊂ [ζ, Sin − ζ]. The
function µ1(·) being assumed to be of class C1(R+), increasing and with
µ1(λ1) = D, there exists T2 > T1 and η > 0 such that

t > T2, s > λ1 + ε⇒ µ1(s)r(t) > D + η
t > T2, s < λ1 − ε⇒ µ1(s)r(t) < D − η

Then, the function Γ fulfills the following properties

t > T2, s ∈ [λ1 + ε, Sin − ζ]⇒ Γ(t, s) < −ηζ < 0
t > T2, s ∈ [ζ, λ1 − ε]⇒ Γ(t, s) > η(Sin − ζ) > 0

which allows to conclude that the variable s converges to the interval [λ1 −
ε, λ1 + ε], and this can be obtained for any arbitrarily small ε > 0.
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