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FEM-BEM coupling methods for tokamak plasma
axisymmetric free-boundary equilibrium computations

in unbounded domains

Blaise Faugeras, Holger Heumann1

CASTOR Team, INRIA Sophia-Antipolis and Université de Nice
Parc Valrose, 06108 Nice cedex 02, FR

Abstract

Incorporating boundary conditions at infinity into simulations on bounded com-
putational domains is a repeatedly occurring problem in scientific computing.
The combination of finite element methods (FEM) and boundary element meth-
ods (BEM) is the obvious instrument, and we adapt here for the first time the
two standard FEM-BEM coupling approaches to the free-boundary equilibrium
problem: the Johnson-Nédélec coupling and the Bielak-MacCamy coupling. We
recall also the classical approach for fusion applications, dubbed according to
its first appearance von-Hagenow-Lackner coupling and present the less used
alternative introduced by Albanese, Blum and de Barbieri in [2]. We show
that the von-Hagenow-Lackner coupling suffers from undesirable non-optimal
convergence properties, that suggest that other coupling schemes, in partic-
ular Johnson-Nédélec or Albanese-Blum-de Barbieri are more appropriate for
non-linear equilibrium problems. Moreover, we show that any of such coupling
methods requires Newton-like iteration schemes for solving the corresponding
non-linear discrete algebraic systems.

1. Introduction

Numerical equilibrium computation is undoubtedly of first importance in
Tokamak fusion science [40] and has been studied for a long time with already a
review article in 1991 [38]. From a Tokamak operation point of view equilibrium
codes are essential to design the geometry of new machines, to set up discharge
scenarios and to check their feasibility, or to design and validate plasma feed-
back controllers. To this end these 2D equilibrium codes can also be coupled to
1D transport codes in order to simulate the evolution of the plasma equilibrium
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at the diffusion timescale throughout the discharge [21]. More detailed mag-
netohydrodynamic simulations modeling the plasma on very short timescales
also rely on a given initial equilibrium which is the output of these equilibrium
codes. As a last example let us mention that equilibrium computation methods
are also used in equilibrium reconstruction codes which aim at identifying the
toroidal current density in the plasma from experimental measurements (e.g.
[31, 32, 7, 8, 33]).

A code which treats the quasi-static free-boundary equilibrium problem
needs to solve non-linear elliptic or parabolic problems with non-linear source
terms representing the current density profile vanishing outside the unknown free
boundary of the plasma. The computational challenges in the design of such a
code are: a problem setting in an unbounded domain with a non-linearity due
to the current density profile in the unknown plasma domain and the non-linear
magnetic permeability if the machine has ferromagnetic structures.

In this paper we focus on how the simulation on the unbounded domain can
be reduced to computations on an interior bounded domain thanks to analytical
Green’s functions [30]. The numerical solution on the interior domain is coupled
through boundary conditions to the Green’s function representation of the so-
lution in the unbounded exterior domain. This approach is used in many other
application areas such as electromagnetics [22, 41, 4] or elasticity [12, 5, 37] and
falls in the framework of boundary integral equations. The boundary integral
equations enable to reduce problems on unbounded domains to problems on
boundaries which can then be coupled to any numerical method for the interior
bounded domain. Most authors in the fusion literature deal with this question
using a method introduced by von Hagenow and Lackner [39, 30], whereas the
coupling could be also conceived in other ways. In this work, we give a succinct
but self-consistent presentation of four different such schemes and discuss their
performance and accuracy.

As aforementioned, certainly the most famous coupling in the fusion com-
munity is called in this paper the von Hagenow-Lackner coupling HL [39, 30]. A
method implementing this coupling is present in many equilibrium codes which
usually make use of a finite difference discretization method and of fixed-point
iterations to solve the non-linearities. Here we propose a variational framework
for this coupling which enables the use of a finite element method (FEM) com-
bined with a boundary element method (BEM) and Newton’s method for the
non-linearities. Surprisingly this method does not seem to be known in the
applied mathematics or scientific computing literature.

Much less known and used but nevertheless existing in the fusion literature is
the analytic uncoupling on a semi-circular domain ABB introduced by Albanese,
Blum and de Barbieri in [2]. It is the method implemented in the codes Proteus
[3], and the more recent CREATE-NL+ [1] or CEDRES++ and FEEQS.M
[19, 20]. Such an uncoupling method was also analysed for the case of the
Laplacian operator in [23] and [17].

The other two methods we will discuss in this work are very well known in
the applied mathematics literature and often referred to as the Johnson-Nédélec
coupling JN [42, 28, 35] and the Bielak-MacCamy coupling BMC [5]. From our
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point of view JN might be the most natural way to deal with the unbounded
domain problem in the framework of a finite element method. However, neither
JN nor BMC have ever been tested before in a fusion equilibrium code.

The outline of the paper is the following. In Section 2 we recall the plasma
equilibrium equations in a Tokamak and present afterwards in Section 3 the
boundary integral equations and the different coupling methods. Section 4 deals
with the Galerkin formulations leading to the FEM-BEM discretizations of the
four different coupling methods. Numerical experiments are conducted in Sec-
tion 5, where we study the approximation order, computational complexity and
the difference between Newton iterations and fixed point iterations. We con-
clude with a short summary and outlook in Section 6.

2. Equilibrium equation

We consider the magnetostatic problem

curl

(
1

µ
curl A

)
= J

of the electromagnetic vector potential A for some given current density J with
µ the permeability. Under the axisymmetry assumption it is rewritten in cylin-
drical coordinates

−∇ ·
(

1

µ0xr
∇ψ(x)

)
= J(x) · eϕ ;

ψ(x)|xr=0 = 0 ; lim
‖x‖→+∞

ψ(x) = 0 ;
(1)

where ∇ is the gradient in the two dimensional half space H := [0,∞]× [−∞,∞]
and x = (xr, xz). The primal unknown ψ is the poloidal magnetic flux ψ(x) :=
xrA(x) · eϕ, the scaled toroidal component of the vector potential A, i.e. B =
curl A and eϕ the unit vector in toroidal direction. We consider air transformer
tokamaks only, that is to say that the permeability is the constant µ0 everywhere
and the non-linearities are only due to the plasma domain and current density.

In the free boundary equilibrium problem considered here the toroidal com-
ponent of the current density is given by

J(x) · eϕ =


j(xr, ψ(x)) in P(ψ) ,

jCi in Ci i = 1, . . . n ,

0 elsewhere ,

(2)

with jCi = Ii/|Ci| is the given constant current density in the i-th poloidal field
coil Ci ⊂ H and j(xr, ψ(x)) the prescribed toroidal component of the plasma
current density, generally a non-linear function of ψ, in the plasma domain
P(ψ) ⊂ L ⊂ H with L the limiter-bounded domain that is accessible to the
plasma. The plasma domain P(ψ) is the domain bounded by the last closed
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Figure 1: The poloidal section of the Tokamaks ITER (left) and TCV (right).

poloidal flux line inside the limiter bounded domain L. Figure 1 shows the sec-
tions of two Tokamaks that illustrate the geometric setting of the free-boundary
equilibrium problem (1) and in (28) we provide an example for j(xr, ψ(x)).

Hence, the axisymmetric magnetostatic problem is a non-linear problem,
which, due to the unknown plasma domain P(ψ) is called the free-boundary
equilibrium problem. We refer to standard text books (e.g. [16, 6, 40, 18, 27])
for further details on the derivation of this model.

3. Boundary integral coupling methods

To solve problem (1) numerically we need to find a reformulation on a
bounded domain Ω, the computational domain, containing the plasma domain
P(ψ). One is tempted to choose Ω as small as possible. But the equilibrium
problem (1) is non-linear in the limiter-bounded domain L due to the righthand
side and the unknown plasma domain P, and hence, the computational domain
Ω should contain at least L. It might be even convenient to include in Ω also
some or all coils (e.g. the small coils next to the limiter in TCV, Figure 1) and
the passive structures. Moreover the shape of the limiter can be irregular (e.g.
for ITER, Figure 1), which impedes to use directly the limiter as the interface
of FEM-BEM coupling. Therefore, to stay as general as possible, we are not
assuming that the computational domain Ω contains either all or no coils. We
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introduce the two index subsets I = {i / Ci ⊂ Ω} and Ic = {i / Ci ⊂ H \ Ω} to
distinguish coils contained in the computational domain Ω and coils contained
in the complement H \ Ω.

The coupling of the solution in the computational domain Ω with the solution
on the complement H \ Ω is ensured by appropriate non-local boundary condi-
tions. The boundary conditions are given by boundary integral equations that

follow from Green’s identities for the differential operator ∆∗ := ∇ ·
(

1
µ0xr
∇·
)

,

which we recall here for an arbitrary domain D ⊂ H.

Boundary integral equations. Namely, for any domain D ⊂ H, with piece-
wise differentiable boundary and all regular enough φ and ξ it holds that (see
e.g. [36, page 1-3, eq. 1.8] or [25, page 428])∫

D

(φ(y)∆∗ξ(y)− ξ(y)∆∗φ(y))dy+∫
∂D

(∂∗n(y)φ(y)ξ(y)− ∂∗n(y)ξ(y)φ(y))ds(y) = 0 , (3)

where y = (yr, yz), n is the outward normal vector on ∂D and ∂∗nξ(x) =
1

µ0xr
∇ξ(x) · n.

Let us also introduce the fundamental solution of −∆∗ [26] which writes
explicitly as

G(x,y) =
µ0
√
xryr

2πk(x,y)

(
(2− k2(x,y))K(k(x,y))− 2E(k(x,y))

)
,

with

k2(x,y) =
4xryr

(xr + yr)2 + (xz − yz)2
,

and K(k) and E(k) are the complete elliptic integrals of the first and second
kind respectively. Hence, taking in (3) φ(y) = G(x,y) we have the integral
identity (see e.g. [36, page 89, eq. 5.2] or [25, eq. 9]) in D:

ξ(x) +

∫
∂D

∂∗n(y)G(x,y)ξ(y)ds(y)−
∫
∂D

∂∗n(y)ξ(y)G(x,y)ds(y)

= −
∫
D

G(x,y)∆∗ξ(y)dy ∀x ∈ D (4)

for all regular enough ξ. Further, it can be shown (see e.g. [36, page 137, eq.
6.20,] or [25, eq. 11]) that in the limit x ∈ ∂D the following integral identity
holds:

1

2
ξ(x) +

∫
∂D

∂∗n(y)G(x,y)ξ(y)ds(y)−
∫
∂D

∂∗n(y)ξ(y)G(x,y)ds(y)

= −
∫
D

G(x,y)∆∗ξ(y)dy x ∈ ∂D . (5)
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von Hagenow-Lackner coupling HL [39, 30]. Green’s second identity (3)
for D = H with φ = G and ξ = ψ the solution of (1), leads to a non-linear
integral equation for ψ:

ψ(x) =

∫
P(ψ)

j(yr, ψ(y))G(x,y)dy +
∑

i∈I∪Ic

∫
Ci
jCiG(x,y)dy ∀x ∈ H . (6)

In particular this provides a formula for the Dirichlet conditions of ψ on the
boundary ∂Ω of the computational domain Ω. Hence it is possible to reformu-
late the free-boundary equilibrium problem in the unbounded domain (1) as a
Dirichlet boundary value problem in the bounded domain Ω using expression
(6) as the Dirichlet boundary condition.

In order to avoid the computation of the integral over the possible large
domain P(ψ) when evaluating (6), one then introduces a new auxiliary unknown
u satisfying the homogeneous Dirichlet boundary value problem

−∆∗u(x) = j(xr, ψ)χP(ψ)(x) +
∑
i∈I

jCiχCi(x) in Ω , u = 0 on ∂Ω , (7)

where χ is the domain indicator function. Green’s third identity (5) for D = Ω
with ξ = u leads to∫

P(ψ)

j(yr, ψ(y))G(x,y)dy +
∑
i∈I

∫
Ci
jCiG(x,y)dy

=

∫
∂Ω

∂∗n(y)u(y)G(x,y)ds(y) ∀x ∈ ∂Ω , (8)

with n(y) the inward pointing normal of Ω, showing that the integral over
plasma domain and coils in Ω in equation (6) can be replaced by an integral
over the boundary ∂Ω using the Neumann data of u, the solution to problem
(7). Hence the Dirichlet boundary condition on ∂Ω is expressed as the sum
of the boundary integral in (8) involving the new unknown u and the Green
function convolutions term of the currents flowing in H \ Ω.

Johnson-Nédélec coupling JN, direct method [42, 28]. One introduces
a supplementary unknown q ≈ ∂∗nψ for the Neumann data on ∂Ω, where n is
the inward pointing normal of Ω. Green’s third identity (5) for ξ = ψ and
D = H \ Ω gives a supplementary boundary integral equation:

1

2
ψ(x) +

∫
∂Ω

(∂∗n(y)G(x,y)ψ(y)− q(y)G(x,y))ds(y)

=
∑
i∈Ic

∫
Ci
jCiG(x,y)dy ∀x ∈ ∂Ω . (9)

So, JN amounts to couple a Neumann data boundary value problem for ψ in Ω
with the integral equation (9) that involves as well ψ and the Neumann data q.
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Bielak-MacCamy coupling BMC, indirect method [5]. One introduces
a supplementary unknown potential q on ∂Ω, and defines an auxiliary unknown
χ(x) for x ∈ H \ Ω, based on a boundary integral over the potential q

χ(x) :=

∫
∂Ω

G(x,y)q(y)ds(y) +
∑
i∈Ic

∫
Ci
jCiG(x,y)dy , (10)

and finds, again by Green’s theorem, that

−∆∗χ(x) =
∑
i∈Ic

∫
Ci
jCiG(x,y)dy in H \ Ω ,

meaning that χ(x) is a representation of the solution ψ(x) of (1) when x ∈ H \ Ω.
In the limit cases x ∈ ∂Ω we get integral representation formulas for the

Dirichlet data of χ

ξ(x) =

∫
∂Ω

G(x,y)q(y)ds(y) +
∑
i∈Ic

∫
Ci
jCiG(x,y)dy , (11)

and the Neumann data of χ

∂∗nχ(x) =
1

2
q(x) +

∫
∂Ω

∂∗n(x)G(x,y)q(y)ds(y)

+
∑
i∈Ic

∫
Ci
jCi∂

∗
n(x)G(x,y)dy x ∈ ∂Ω , (12)

which are forced to be equal to the Dirichlet and Neumann data of ψ. Here
again n is the inward pointing normal of Ω. Hence, BMC amounts to combine
the Neumann data boundary value problem for ψ in Ω, based on q-parametrized
Neumann data given by the right hand side of (12), with the integral equation
(11) that involves as well ψ (through its Dirichlet data) and the potential q.

Analytic uncoupling on a semi-circular domain ABB [2] [17]. This cou-
pling method requires a very particular shape of the computational domain. We
choose Ω to be a semi-circular domain containing the limiter-bounded domain
L and all the coils Ci. Its boundary is ∂Ω = Γ∪Γ0 where Γ is the semi-circle of
radius ρΓ and Γ0 = {x / xr = 0,−ρΓ ≤ xz ≤ ρΓ}. This particular choice enables
to find analytically, thanks to the method of images, a special Green function
G∗(x,y) which vanishes on the semi-circle Γ. Then using Green’s theorem (3)
with D = H \ Ω and φ = G∗ one obtains

ψ(x) =

∫
Γ

ψ(y)∂∗n(y)G
∗(x,y)ds(y) ∀x ∈ Γ . (13)

The normal derivative ∂∗nψ(x) can then also be computed analytically as a
boundary integral depending on ψ and reinjected in the boundary condition
term of the weak formulation for the inner problem on Ω. We refer to [19] for
a detailed exposition of this approach.
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4. Galerkin formulation

In most of the computational tools for computing axisymmetric plasma equi-
libria, the finite difference method for the strong formulation (1) of the equilib-
rium problem is combined with HL. We follow here the more general Galerkin
method, and recall that for appropriately chosen triangulations the Galerkin
method leads to the same stencils as the finite difference approach. Moreover
the Galerkin method allows more flexibility for approximating the realistic ge-
ometry of a Tokamak.

We consider problem (1) restricted to the bounded computational domain
Ω, multiply by a test function ξ and do integration by parts:∫

Ω

1

µ0xr
∇ψ(x) ·∇ξ(x) dx+

∫
∂Ω

∂∗nψ(x) ξ(x) ds(x) =

∫
Ω

J(x) ·eϕ ξ(x) dx , (14)

where n is the inward pointing normal.
We use a triangular mesh to cover the computational domain Ω and introduce

a basis of piecewise linear functions {λi}, where each λi vanishes at all mesh
vertices except one. Basis functions associated to vertices at xr = 0 are excluded
from this finite element space X(Ω), as, due to axisymmetry ψ(x)|xr=0 = 0. The
finite element space X(Ω), is the linear Lagrangian finite element space and has
the direct decomposition X(Ω) = X◦(Ω)⊕X∂(Ω), where X◦(Ω) is the space of
all finite element functions in X(Ω) that have zero Dirichlet data. The degrees
of freedom of elements of X◦(Ω) are the values at the vertices of the mesh, that
are not on the boundary ∂Ω and the degrees of freedom of elements of X∂(Ω) are
the values at the vertices on the boundary ∂Ω . Additionally we will make use
of the finite element space Q(Ω) being the span of piecewise constant functions
{χi}, where each χi vanishes everywhere except for one edge of the boundary
∂Ω.

To define the different Galerkin formulations of HL, JN, BMC and ABB
let us introduce the following notations for operators related to the Galerkin
method on Ω:

a(ψ, ξ) :=

∫
Ω

1

µ0xr
∇ψ(x) · ∇ξ(x)dx ,

jp(ψ, ξ) :=

∫
P(ψ)

j(xr, ψ(x))ξ(x)dx
(15)

and

`(ξ) :=
∑
i∈I

jCi

∫
Ci
ξ(x)dx . (16)

The implementation of these operators relies on quadrature rules for integrals
over the triangular elements of the mesh. The approximation of the non-linear
jp(ψ, ξ) is non-standard due to the integration domain depending on ψ and
details can be found in [20].
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Moreover we will make also use of boundary integral operators and introduce

V (q)(x) :=

∫
∂Ω

G(x,y)q(y)ds(y) , x ∈ ∂Ω ,

K(ψ)(x) :=

∫
∂Ω

∂∗n(y)G(x,y)ψ(y)ds(y) , x ∈ ∂Ω ,

K ′(ψ)(x) :=

∫
∂Ω

∂∗n(x)G(x,y)ψ(y)ds(y) , x ∈ ∂Ω ,

(17)

and domain integral operators

L(x) :=
∑
i∈Ic

jCi

∫
Ci
G(x,y)dy , x ∈ Ω ,

L′(x) =
∑
i∈Ic

jCi

∫
Ci
∂∗n(x)G(x,y)dy , x ∈ Ω .

(18)

In the subsequent Galerkin formulations we will frequently integrate products of
integral operators and test functions over the boundary, hence it is convenient
to introduce also

〈ψ, ξ〉∂Ω :=

∫
∂Ω

ψ(x) ξ(x)ds(x) . (19)

In the case where ψ is one of the boundary integral operator in (17) the ap-
proximation of such inner products is non-trivial and goes beyond the standard
quadrature formulas. Nevertheless, this task is well understood, and we refer
to [11] for the technical details recalling also the asymptotic formulas for the
fundamental solution G(x,y) when ‖x− y‖ → 0 derived in [24].

Here and in what follows, we will use the symbol ΩH# to distinguish the com-
putational domain that verifies the assumptions for ABB from the more general
computational domain Ω. While ΩH# is a semi-circular domain containing the
limiter-bounded domain L and all the coils Ci, the domain Ω only requires to
contain L. In particular it is not required that Ω is a connected domain.

HL with Ω. Dirichlet boundary conditions g are imposed in (14) and computed
using equations (6), (7) and (8). This leads to the introduction of the following
Galerkin formulation: find (ψ, g, u) ∈ X◦(Ω)×X∂(Ω)×X◦(Ω), such that

a(ψ, ξ) + a(g, ξ)− jp(ψ, ξ) = `(ξ) , ∀ξ ∈ X◦(Ω) ,

〈g, f〉∂Ω − 〈V (∂∗nu), f〉∂Ω = 〈L, f〉∂Ω , ∀f ∈ X∂(Ω) ,

a(u, v)− jp(ψ, v) = `(v) , ∀v ∈ X◦(Ω) .

(20)

JN with Ω. We supplement equation (14) for ψ on Ω with boundary integral
equation (9) for q, the auxiliary variable for the Neumann data, and obtain the
following Galerkin formulation: find (ψ, q) ∈ X(Ω)×Q(Ω), such that

a(ψ, ξ)− jp(ψ, ξ) + 〈q, ξ〉∂Ω = `(ξ) , ∀ξ ∈ X(Ω) ,

〈1
2
ψ +K(ψ), p〉∂Ω − 〈V (q), p〉∂Ω = 〈L, p〉∂Ω , ∀p ∈ Q(Ω) .

(21)
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BMC with Ω. We supplement equation (14) for ψ on Ω with boundary integral
equation (11), use (12) for the Neumann data and obtain the following Galerkin
formulation: find (ψ, q) ∈ X(Ω)×Q(Ω), such that

a(ψ, ξ)− jp(ψ, ξ) + 〈1
2
q +K ′(q), ξ〉∂Ω = `(ξ)− 〈L′, ξ〉∂Ω , ∀ξ ∈ X(Ω) ,

〈ψ, p〉∂Ω − 〈V (q), p〉∂Ω = 〈L, p〉∂Ω , ∀p ∈ Q(Ω) .
(22)

ABB with ΩH#. The Galerkin formulation for this method is given in [6, 20].
We briefly recall it here for completeness: Find ψ ∈ X(ΩH#) such that

a(ψ, ξ)− jp(ψ, ξ) + c(ψ, ξ) = `(ξ) ∀ξ ∈ X(ΩH#) . (23)

The bilinear form c(·, ·) derives from (13) as detailed in [19]. It is defined as
follows

c(ψ, ξ) :=
1

µ0

∫
Γ

ψ(x)N(x)ξ(x)ds(x)

+
1

2µ0

∫
Γ

∫
Γ

(ψ(x)− ψ(y))M(x,y)(ξ(x)− ξ(y))ds(x)ds(y) ,

(24)

with

M(x,y) =
k(x,y)

2π(xryr)
3
2

(
2− k(x,y)2

2− 2k(x,y)2
E(k(x,y))−K(k(x,y))

)
,

N(x) =
1

xr

(
1

δ+
+

1

δ−
− 1

ρΓ

)
and δ± =

√
x2
r + (ρΓ ± xz)2 ,

where ρΓ is the radius of the circle defining ΩH#.
Each of the four Galerkin formulations corresponds to a finite dimensional

non-linear system F(U) = 0, where we provide the different dimensions in Table
1. In general we can say that N◦ = dim(X◦(Ω)), the number of vertices not on
the boundary, is orders of magnitude larger than N∂ = dim(X∂(Ω)) the number
of vertices on the boundary and Nedges = dim(Q(Ω)) the number of edges on
the boundary. Hence, in summary the non-linear algebraic system for HL will
be roughly twice as large as the non-linear algebraic system for JN and BMC.
Moreover, comparing HL, JN and BMC with ABB, the requirement of ABB of
ΩH# to be a half circle seems to lead to an undesirable increase of unknowns for
ABB.

On the other hand, the ultimate performance of all the four methods is
only indirectly linked to the dimension. Due to the non-linearity, we need to
employ iteration schemes, and so the performance is more linked to the number
of iterations needed to achieve convergence and also to the computational time
that is required to update from iteration n to iteration n+ 1.

To keep the number of iterations small Newton type methods with their fast
superlinear or even quadratic convergence are highly recommended. Newton
type methods for ABB are advocated in the numerous contributions, starting
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with [9], since the early eighties. Without any additional technicality it is also
possible to use Newton’s method for the other three different formulations. The
only non-trivial term in the derivative of each F, corresponds to the derivative
of jp(ψ, ξ), that can be found in [20], where it was introduced for the coupling
approach ABB. All the codes that implement HL so far are using Picard type
iterations that avoid the derivative of jp(ψ, ξ). The original approach [30] reads
as: Given (ψn, gn) ∈ X◦(Ω)×X∂(Ω) find (ψn+1, gn+1, un+1) ∈ X◦(Ω)×X∂(Ω)×
X◦(Ω) such that

a(ψn+1, ξ) + a(gn, ξ)− jp(ψn, ξ) = `(ξ) , ∀ξ ∈ X◦(Ω) ,

〈gn+1, f〉∂Ω − 〈V (∂∗nu
n+1), f〉∂Ω = 〈L, f〉∂Ω , ∀f ∈ X∂(Ω) ,

a(un+1, v)− jp(ψn+1, v) = `(v) , ∀v ∈ X◦(Ω) ,

(25)

which has the advantage that one needs to solve in each iteration only two
Dirichlet problems for the linear operator −∆∗. It is possible to derive highly
efficient algorithms for this task combining finite differences and fast Fourier
transform. Nevertheless, it is reported that such iteration schemes suffer from
serious convergence problems [30, 27] and in [6] it was shown that Picard type
iterations for ABB can lead to non-converging schemes.

In efficient implementations of either Newton or Picard type schemes for
HL, JN, BMC or ABB the most time consuming part of each update will be the
inversion of large linear systems. Here it is a priori not clear whether a Newton
type scheme for JN and BMC is superior to a Newton type scheme for ABB: the
linear systems of JN and BMC are considerably smaller than the linear systems
for ABB, but the integral equations in JN and BMC lead to dense entries in the
linear system, which can demand large resources for the inversion.

Newton-type iterations are known to converge super-linearly, once the iterate
is sufficiently close to the solution. But as it is not easy to quantify ”sufficiently
close”, one generally needs to invoke so called globalization strategies. For
the moment, we exclude such globalization strategies from our discussions, but
assume that we have a sufficiently good initial guess. This is indeed the case
in many applications, e.g. equilibrium reconstructions, where the equilibrium
at the previous timestep is a good initial guess, or scenario development, where
the formulation of inverse problems allows to find coil currents that correspond
to a prescribed equilibrium.

5. Numerical experiments

All the subsequent simulations and numerical experiments were performed
on a MacBook Pro with the 2,8 GHz Intel Core i7 processor and 16 GB 1600 MHz
DDR3 memory. The implementation is basically an extension of FEEQS.M2,
which is a MATLAB implementation of the methods for axisymmetric free
boundary plasma equilibria that are described in [20]. Concerning the details

2http://www-sop.inria.fr/members/Holger.Heumann/Software.html
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method dimension leading order
HL 2N◦ +N∂ O(2N◦)
JN N◦ +N∂ +Nedges O(N◦)

BMC N◦ +N∂ +Nedges O(N◦)

ABB NH#
◦ +NH#

∂ O(NH#
◦ )

Table 1: The dimensions of the finite dimensional non-linear system F(U) = 0 for the four

different methods. N◦ = dim(X◦(Ω)) and NH#
◦ = dim(X◦(ΩH#)) is the number of vertices not

on the boundary, N∂ = dim(X∂(Ω)) and NH#
∂ = dim(X∂(ΩH#)) is the number of vertices on

the boundary and Nedges = dim(Q) is the number of edges on the boundary. We use the

superscript H# to recall that ABB requires the computational domain to be a half circle ΩH#.
In general N◦ � N∂ .

of the implementation, e.g. quadrature rules and the accurate linearizations of
various terms in the Galerkin formulations (20), (21), (22) and (23), we refer to
[20] and [11]. The code utilizes in large parts vectorization, and therefore, the
running time is comparable to C/C++ implementations (see [29, 10] and [13]
for a review and earlier references). FEEQS.M is publicly available and a forth-
coming release will contain the here introduced coupling methods for plasma
equilibrium calculations.

5.1. Convergence

We solve a simple magnetostatic problem in axial symmetry, which corre-
sponds to a constant current carrying coil with poloidal section C1 = [0.5, 1.5]×
[−1.5,−0.5]:

−∇ ·
(

1

µ0xr
∇ψ
)

=

{
1 in C1
0 elsewhere

,

ψ(x)|xr=0= 0 ; lim
‖x‖→+∞

ψ(x) = 0 .

(26)

With this simple linear test problem we can easily assess numerically the ap-
proximation quality of the four different approaches. The solution ψ(x( of (26)
and its gradient ∇ψ(x) for x ∈ H \ C1 are give as

ψ(x) =

∫
C1
G(x,y)dy , ∇ψ(x) =

∫
C1
∇xG(x,y)dy . (27)

To study the convergence behavior of the different coupling approaches we in-
troduce a second square L = [1, 2]×[0.5, 1.5]. The approaches HL, JN and BMC
for solving (26) are based either on the computational domain Ω = L or on the
computational domain Ω = C1∪L for the finite element discretization. The first
choice corresponds to the case when no source terms are in the computational
domain Ω, while the second choice is more relevant for the equilibrium problem,
as it corresponds to the case when source terms, such as the plasma are in the
computational domain Ω. For ABB we choose ΩH# to be the half circle of radius
3 centered at (0, 0) that contains both L and C1 (see Figure 2 of an illustration).
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Figure 2: Center: The domain C1 (green) and the domain L (yellow). Left: Example of the
meshes used in the coupling methods HL, JN and BMC. Right: Example of the meshes used
for the coupling method ABB.

As we consider here the linear problem the term jp(ψ, ·) vanishes in all four
Galerkin formulations (20), (21), (22) and (23). Moreover, in the case of no
sources in the computational domain, Ω = L, we have that `(·) vanishes while
in the case of Ω = C1 ∪ L both L(x) and L′(x) vanish.

Then we compute the numerical solutions ψHL
h , ψJN

h , ψBMC
h and ψABB

h with
either of the four methods on a sequence of refined meshes and monitor the
error in the domain L measured in the L2-norm and the H1-semi-norm:

errM0 =

√∫
L

(ψM
h (x)− ψ(x))2dx , errM1 =

√∫
L
|∇ψM

h (x)−∇ψ(x)|2dx ,

where M runs through JN, HL, BMC and ABB and we use high precision
quadrature for the convolution formulas in (27) to approximate ψ(x) and∇ψ(x).
The results are shown in Figures 3 and 4.

First (see Figure 3, left), we look at the case when there are no sources in the
computational domain. The numerical experiments confirm theoretical conver-
gence assertions [28, 11] for the coupling methods JN and BMC: as we are using
piecewise affine finite elements we observe second and first order convergence
for JN in the L2-norm and the H1 semi-norm respectively. We are loosing one
order of convergence for BMC in L2, which is due to a loss of regularity of the
auxiliary variable q due to the corners of Ω. This is a known [34, p. 149] disad-
vantage of indirect boundary integral methods such as BMC and we therefore
exclude BMC from the subsequent discussion.
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Figure 3: Left: Without sources in the computational domain, Ω = L (not possible for ABB).

Right: With sources in the computational domain, Ω = C1 ∪L for HL and JN and ΩH# a half
circle for ABB.
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Figure 4: Left: The suboptimal convergence rate for ψHL in L2 can be improved if we use
quadratic finite elements (LFE-QFE) instead the linear finite elements (LFE-LFE) in (20) for
the auxiliary variable u. Right: The computational domain Ω and the coarsest mesh, with the
subdomains L (yellow), the domain where we evaluate the error and the domain C1 (green)
the support of the source term.
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Figure 5: The ITER geometry (center) and the mesh for the domain ΩH# (left) and the domain
Ω (right). The coils are not included in Ω.

To our knowledge there is no theoretical convergence analysis available for
HL. While we see (see Figure 3, left) with Ω = L as well first order convergence
in the H1-semi-norm, and second order convergence in the L2-norm, we observe
a loss of convergence for the case that sources are in the computational domain
(see Figure 3, right). This is inherent to the method and a severe disadvantage
of HL. A closer inspection of the last line of (20) shows, that HL replaces the
missing Dirichlet data for ψ by a convolution term with the Neumann data
of the auxiliary variable u. Hence, the consistency error of this approximated
Dirichlet data is of the same order as the consistency error for gradients of u
and ψ and one order lower than the consistency error for u and ψ. By a refined
version of standard duality techniques in numerical analysis it can be shown
that in Dirichlet problems with approximated Dirichlet data such a deteriorated
consistency error leads to the non-optimal convergence, that we observe in our
experiment [15, p. 91-93]. To cure this defect we would have to discretize the
auxiliary variable u with at least quadratic finite elements (see Figure 4), which
then leads to an increase in the number of unknowns.

In the relevant case of sources in the computational domain, we observe a
very similar convergence behavior of ABB and JN (see Figure 3, left).

In the following subsection we monitor the characteristic running times for
each of the three approaches for a realistic equilibrium problem.

5.2. Running time

In the following we consider an example for ITER geometry (see Figure 5,
center) with the coil currents indicated in the table in Figure 6. The current
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Figure 6: Case A: The currents in the coils (center) and contour plots of numerical solutions
using ABB (left) and HL (right).

profile is the parametric profile

j(xr, ψ(x)) = λ(β
xr
r0

+ (1− β)
r0

xr
)(1− ψN(x)α)γ (28)

with r0 = 6.2m the major radius of the vacuum chamber and α = 2.0, β =
0.5978, γ = 1.395 and λ = 1.365461e+ 6. ψN the normalized poloidal flux

ψN(x) =
ψ(x)− ψax(ψ)

ψbd(ψ)− ψax(ψ)
,

where ψax and ψbd are the flux values at the magnetic axis and the plasma
boundary ∂P(ψ). Exemplary meshes for ABB and HL/JN are shown in Figure
5. HL and JN are based on a mesh that covers the domain bounded by the outer
vacuum vessel wall. The initial guesses are solutions to equilibrium problems
with fixed, prescribed plasma current, and then the Newton iterations converge
to a residual smaller then 10−12 in less then 10 iterations. The difference between
the numerical solutions of ABB, HL and JN is negligible (see Figure 6 left and
right), so we can focus on the runtime. As all the three methods are implemented
in the same environment, this is a fair test to assess the performance of each
approach. A more sophisticated implementation that allows to improve the
performance of one method, will also improve the performance of the two other
methods.

The pseudo-code for Newton-type schemes can be found in Figure 7. In our
first test, we look at the timing of the pre-processing, line 1 in the pseudo-code,
and time per Newton iteration, the update step in lines 3 and 4 in the pseudo-
code (see Figure 7). The pre-processing steps consists mainly of the assembling
of all stiffness matrices that do not change during the Newton iterations. This
involves in particular the assembling of all boundary integral terms, that has in
general quadratic complexity due to the convolution terms. The main effort in
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Pseudo-code:

Newton’s method to find U with
F(U) = 0

1: Compute F(U), DF(U);
2: while not converged do
3: Set U← U−DF(U)−1F(U);
4: Update F(U), DF(U);
5: end while

Figure 7: Timing of the pre-processing (preproc.), i.e. line 1 in Newton’s method, and time
per Newton Iteration (update step), i.e. lines 3 and 4 in Newton’s method, for the different
coupling methods.

the update step is due to the inversion of the Newton matrix and the update
of the plasma domain and its corresponding terms, i.e. jp(ψ, ξ) in the Galerkin
formulations. We show in Figure 7 characteristic timings of the pre-processing
step and the update step as functions of the number triangles that cover the
domain accessible by the plasma (orange in Figure 5), as this number is identical
for both type of meshes. Saying this, it is obvious that the pre-processing
time for JN is the largest, as it contains more boundary integral terms with
convolutions than ABB and HL. It is a bit surprising that there is not a huge
difference in the timing of the update step itself, even though the total number
of unknowns for JN, ABB and HL are quite different (see Table 2). The total
number of unknowns of HL is roughly twice as large as the total number of
unknowns of JN, which is also obvious from the Galerkin formulations (20)
and (21). And the number of unknowns of ABB is considerably larger than the
number of unknowns of HL. Updating the plasma domain and the corresponding
terms (line 4 in the pseudo-code) is very similar in all three methods. A closer
inspection of the timings of lines 3 and 4 in the pseudo-code (see column 4-9
in Table 2) uncovers that the inversion of the Newton matrix DF(U) is the
most time consuming part of the update steps. Moreover the timing of the
solution step for HL and ABB is comparable to the timing for JN even though
the number of unknowns are much larger. After all this is not very surprising,
if one looks at the structure, e.g. the sparsity pattern (see Figure 8), of the
different Newton matrices. Due to the integral equations the matrices for HL
and JN contain relatively large dense blocks, while ABB overall remains a sparse
matrix. This difference explains the observed timings. It might be possible to
design problem adapted linear solvers that speed up the inversion of the Newton
matrix for HL or JN, but as we are relying here on high-performance software
(MATLAB’s proprietary interface to UMFPACK [14]), it will be difficult to do
better.
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Figure 8: The sparsity pattern for the Newton matrix DF (see Fig 7) for HL, JN and ABB
(from left to right, top to down). The matrix DF for ABB is the largest but has the least
number of nonzero entries.
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number of unknowns time per iteration [ms] time per solve [ms]

HL JN ABB HL JN ABB HL JN ABB

3.1e+3 1.9e+3 5.0e+3 4.4e+1 5.2e+1 4.3e+1 3.4e+1 4.2e+1 2.8e+1
4.5e+3 2.6e+3 8.8e+3 6.6e+1 5.5e+1 7.0e+1 5.1e+1 4.4e+1 4.6e+1
7.7e+3 4.2e+3 1.7e+4 1.2e+2 1.0e+2 1.5e+2 8.8e+1 7.5e+1 1.1e+2
1.5e+4 7.7e+3 3.3e+4 2.2e+2 1.6e+2 3.1e+2 1.8e+2 1.2e+2 2.3e+2
2.9e+4 1.5e+4 6.6e+4 5.4e+2 3.1e+2 6.8e+2 4.4e+2 2.4e+2 5.0e+2
5.7e+4 2.9e+4 1.3e+5 1.2e+3 8.9e+2 1.5e+3 1.0e+3 7.6e+2 1.1e+3

Table 2: Timing results for the coupling methods HL, JN and ABB. One ”iteration” corre-
sponds to line 3 and 4 from Newton’s method in Fig. 7, whereas ”solve” corresponds to line
3 alone.

5.3. Fixed point vs Newton Iteration

It is well known [30, 27] that plain fixed point iterations for solving the
non-linear Galerkin formulations (20), (21), (22) and (23) suffer from sever
convergence problems. It is also known, but far less widespread, that Newton-
type methods avoid such convergence problems. In [6, Section IV 1.5.1] for
example it was shown, in the simplified setting of the TFR tokamak, that one can
find solutions of the equilibrium problem using Newton type methods, that can
not be found with fixed point iterations. The subsequent numerical experiments
underpin this observation.

Additionally to the equilibrium from the previous section (case A, see Figure
6) we consider two equilibria with circular boundary that have a contact point
with the left (case B), respectively the right (case C) side of the limiter (see
Figures 9 and 10). We used an inverse problem formulation with prescribed
desired boundary [20, Section 2.2] to identify currents (see the tables in Figures
9 and 10). Again as in the case A, the Newton methods for ABB and HL
converge also for the case B and C in less than 10 iterations, where here we
took for simplicity random perturbations of the numerical solution as initial
guess. As we do not focus on global convergence this is reasonable. But it is
important to understand the behavior of fixed point iterations for such random
perturbation. In figure 11 we present the convergence history of fixed-point
iterations for ABB and HL for the three different test cases. We observe that
the fixed point iterations for ABB and HL do not converge for the test cases A
and B and that the convergence for the test case C is extremely slow. Fixed
point iterations can fail both for elongated as well as circular equilibria. To show
that this observation it not related to our choice of perturbation, we recall that
the convergence of fixed point iterations is determined by the spectral radius
ρDG(U) (maximum among the absolute values of the eigenvalues of DG(U)),
where DG(U) is the Jacobian of the function G(U) that defines the fixed point
iteration:

Uk+1 = G(Uk) . (29)

We have convergence of the sequence Uk to the fixed point U∗, with U∗ =
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Figure 9: Case B: The currents in the coils (center) and contour plots of numerical solutions
using ABB (left) and HL (right).

G(U∗) if the spectral radius ρDG(U∗) is smaller than one. Since we are able to
compute the derivatives required for Newton-type iterations, we are also able to
compute the derivatives of the functions G that define the fixed point iterations
for ABB and HL. The power iteration method in turn allows to compute the
spectral radius. Computing the spectral radius, the convergence indicator, for
the example from Figure 11, we find that indeed its value is larger than one in
the cases where we don’t observe convergence (see legend of Figure 11 for the
numbers). Moreover, in case C where we see convergence, the spectral radius is
smaller than one. Nevertheless, its values are still fairly large, which explains
the extremely slow speed of convergence.

Ultimately, we would like to stress that the size of the spectral radius, hence
the success of fixed point iterations is not related to the discretization parameter.
In table 3 we show the values of the spectral radius of fixed point iterations (29)
for ABB and HL for the three different test cases for sequence of finer and finer
meshes. Newton’s method converges to the same equilibrium as indicated by
the numbers in the columns with header vol. giving the total plasma volume,
but the values of the spectral radius remain almost constant.

6. Conclusion

We presented a systematic discussion of four different approaches to the
approximation of free-boundary equilibrium problems which are consistent with
the boundary condition at infinity. All four methods utilize boundary integral
equations. HL, the most common method for such kind of applications, uses
a boundary integral equation to derive non-local Dirichlet conditions on the
boundary of the computational domain, while the other three approaches are
rather based on non-local Neumann conditions. ABB, introduced in [2], requires

20



14.8

13.8 12.8

11.8

10.8

9.7

8.7

7.7

6.7

coil current [A]
1 −6.705e+ 05
2 1.373e+ 04
3 2.133e+ 06
4 1.432e+ 06
5 −3.774e+ 05
6 −6.172e+ 05
7 −1.885e+ 06
8 −2.359e+ 06
9 −2.124e+ 06
10 −1.836e+ 06
11 −3.491e+ 06
12 −2.040e+ 06

14.8213.8 12.82

11.82

10.82

9.82

8.82

7.82

6.82

Figure 10: Case C: The currents in the coils (center) and contour plots of numerical solutions
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Case A Case B Case C

h vol. [m3] ρDG vol. [m3] ρDG vol. [m3] ρDG

ABB HL ABB HL ABB HL

0.22 845.13 1.29 1.25 490.88 1.47 1.47 489.84 0.95 0.95
0.16 834.72 1.24 1.24 486.81 1.46 1.45 486.34 0.96 0.96
0.11 832.26 1.23 1.23 484.56 1.43 1.43 486.22 0.96 0.96
0.08 831.04 1.25 1.24 484.88 1.45 1.45 485.75 0.96 0.96
0.06 830.24 1.25 1.24 484.62 1.45 1.46 485.41 0.96 0.96
0.04 830.52 1.24 1.24 484.38 1.45 1.46 485.07 0.96 0.96

Table 3: The spectral radius of fixed point iterations for ABB and HL on a sequence of refined
meshes.

the computational domain to be a semi-circle, which can lead to a relatively large
number of unknowns. The two standard methods JN and BMC were never used
before in free-boundary equilibrium problems.

We have shown, for the first time, that HL suffers from non-optimal con-
vergence, compared to ABB and JN. This problem can be cured (see Figure
4) using higher order approximations for the auxiliary variable, but only at the
cost of increased computational complexity. We do not recommend BMC for
equilibrium calculations as this approach will be non-optimal in computational
domains with corners [34, p. 149]. ABB is used in a family of equilibrium codes
such as Proteus [3], CREATE-NL+ [1] or CEDRES++ and FEEQS.M [19, 20],
but the relatively large computational domain is often considered to be a main
drawback. We have shown, that nevertheless the method can be competitive,
as it avoids integral equations that lead to dense linear algebraic systems. Our
numerical examples show that the computation time of ABB is comparable to
HL or JN even though the number of degrees of freedom is much larger. If one
prefers to stay with smaller computational domains, then JN is a better choice
than HL, but has not yet appeared in equilibrium codes. For a very long time
HL was promoted for its combination of two Dirichlet problems, that could be
solved efficiently with standard iterative solvers. Today’s powerful direct solvers
make this argument obsolete for many applications.

Moreover, our experiments give again evidence that it is inevitable to use
Newton-type iterations in order to solve the non-linear discrete problems. The
observation is similar to the one in [6] for the case of radial instabilities. Knowing
that most of today’s equilibrium codes follow the spirit and ideas of von Hagenow
and Lackner [39, 30], and employ some sort of HL combined with fixed point
iterations, it is important to make aware the limits of such an approach. We
strongly advocate Newton type methods to circumvent the convergence prob-
lems for physically unstable equilibria. Augmenting an existing code based on a
fixed-point solver with a Newton-type solver is, at first glance, fairly technical.
But then, a closer look, shows that this is only slightly more complicated than
the computation of the plasma domain itself and details can be found in the
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existing literature [20].
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