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RECENT RESULTS OF QUANTUM ERGODICITY ON GRAPHS AND

FURTHER INVESTIGATION

NALINI ANANTHARAMAN AND MOSTAFA SABRI

Abstract. We outline some recent proofs of quantum ergodicity on large graphs and
give new applications in the context of irregular graphs. We also discuss some remaining
questions.

1. Introduction

Our aim in this paper is to present a comprehensive outline of the main ideas behind
some recent proofs of quantum ergodicity on large graphs [7, 10] or [23]. We hope this will
be a helpful guide for an audience with different backgrounds : spectral geometry, quantum
chaos, graph theory and Anderson localization. We also include new applications to our
main results and present some open problems.

In its original context, the quantum ergodicity theorem, also dubbed Shnirelman theo-
rem, asserts that the eigenfunctions of the Laplace-Beltrami operator on a compact mani-
fold become uniformly distributed in the large eigenvalue limit, provided the geodesic flow
is ergodic [46, 47, 24].

In the framework of combinatorial graphs, quantum ergodicity is interpreted in the
large spatial limit; that is, we consider finite graphs whose size goes to infinity. Quantum
ergodicity is a result of spatial delocalization for the eigenfunctions of the adjacency matrix
(and more generally, discrete Schrödinger operators) on a large graph. The first result of
this kind, proven by Anantharaman and Le Masson [6], asserts that if a sequence (GN ) of
finite graphs “converges” to the (q + 1)-regular tree Tq and if the graphs are expanders,
then most eigenfunctions of AGN

become uniformly distributed on GN when N gets large.
This somehow complements the phenomenon of spectral delocalization, meaning that the
ℓ2-spectrum of the adjacency matrix on the tree Tq is purely absolutely continuous.

We should clarify what we mean by the “convergence” of (GN ) to Tq. An adequate
notion is the Benjamini-Schramm or local weak convergence [16]. This is a convergence in
a distributional sense. One may define a distance on the set of rooted graphs by asserting
that two rooted graphs are close to each other if there are large isomorphic balls around
their respective roots. The local weak convergence of (GN ) is not the convergence in this
metric, but rather the weak convergence of the associated probability measures (UGN

),
defined by choosing a root uniformly at random in GN . Saying that (GN ) converges
to Tq means more precisely that in the space of probability measures on rooted graphs,
UGN

converges weakly to the Dirac mass δ[Tq,o], where o ∈ Tq is an arbitrary root. Such

convergence holds iff for any r ∈ N,
#{x∈VN :BGN

(x,r)∼=BTq (o,r)}
|VN | −→ 1 as N → ∞.

As we mentioned above, quantum ergodicity can be regarded as a spatial delocaliza-
tion phenomenon, counterpart of the fact that the ℓ2-spectrum σ(ATq) is reduced to the
absolutely continuous spectrum σac(ATq ). Suppose then more generally, that we have
a (possibly random) Schrödinger operator H on some (possibly random) tree T which
has purely absolutely continuous spectrum. Suppose that we are given a (deterministic)
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sequence of discrete Schrödinger operators on graphs (GN ), converging to (T ,H) in the
local weak sense. Does quantum ergodicity hold for the eigenfunctions of HGN

on GN

as N gets large ? This is the question we studied in [10] and to which we provided a
positive answer, if in addition the graphs are expanders. This generalized the results of
Anantharaman–Le Masson [6] to non-regular graphs, and to discrete Schrödinger opera-
tors more general than the adjacency matrix. As an important application [11], we proved
the quantum ergodicity phenomenon for the Anderson model on Tq, in the régime of weak
disorder. We recall that spectral delocalization for the Anderson model on Tq at weak
disorder was first proven by Klein [34] (with some precursor ideas by Kunz and Souillard
[35]). Our paper [11] thus completes the picture by proving spatial delocalization. This is
one of very few delocalization results for the Anderson model, the regimes of localization
(pure point spectrum, exponential decay of eigenfunctions) being rather well understood
today. Shedding some light on delocalization for models on euclidean graphs such as Zd,
d ≥ 3, remains to this day a major open problem.

Our quantum ergodicity theorems are stated for deterministic sequences of graphs, in
particular, they hold for explicitly defined families of expanders. One could also ask what
happens for “typical” (i.e. random) sequences. Very strong delocalization results have
recently been proved by Erdös, Knowles, Yau and Yin [26] for the eigenfunctions of the
adjacency matrix of Erdös–Rényi graphs, and by Bauerschmidt, Huang and Yau [13] for
random regular graphs. Note that these results hold for almost all graphs, but do not
say what happens for given deterministic examples. A more detailed comparison between
random and deterministic results is provided in our paper [10].

The paper is organized as follows. In Section 2, we give an essentially complete proof of
quantum ergodicity for the adjacency matrix on regular graphs. In Section 3 we discuss
the general case of Schrödinger operators on graphs of bounded degree. New applications
of our abstract result appear in Section 4, where we consider spacial delocalization in trees
of finite cone type. Throughout, we leave some open questions.

2. Quantum ergodicity for the adjacency matrix of regular graphs

2.1. The result. Let (GN ) be a sequence of (q + 1)-regular graphs, say GN = (VN , EN )
with |VN | = N . We assume (GN ) converges to Tq in the local weak sense. This holds iff

GN has few short cycles, more precisely,
#{x:ρGN

(x)<r}
N → 0 for any r, where ρGN

(x) is the
injectivity radius at x ∈ VN – the largest ρ such that BGN

(x, ρ) is a tree. We refer to this
assumption as (BST).

The aim is to prove that the eigenfunctions of AGN
become delocalized when N gets

large. We shall assume that (GN ) is a sequence of expanders, that is, there is β > 0 such

that the spectrum σ(
AGN

q+1 ) is contained in [−1 + β, 1 − β] ∪ {1} for all N . We call this

assumption (EXP).
Both assumptions are generic, in the sense that random sequences of (q + 1)-regular

graphs converge to Tq almost surely (as follows from Corollary 2.19 in Bollobás’s book [18]),
and they are expanders with probability tending to one; the latter fact is often attributed
to Pinsker, however, to find a full proof we refer to §6.2 in [2]. Friedman reinforced
this, proving that random regular graphs are almost Ramanujan with probability tending
to one [27]. There are also explicit sequences of (q + 1)-regular graphs satisfying both
assumptions, for instance the Ramanujan graphs constructed by Lubotzky-Phillips-Sarnak
[42], or Cayley graphs of SL(2,Z/pZ) studied by Helfgott and Bourgain-Gamburd [21, 29].
It is important to note that, for Cayley graphs (or graphs whose automorphism group
acts transitively on the vertices), our result does not convey much information if ψ is
an eigenfunction associated to a simple eigenvalue : in this case, |ψ(x)| is going to be
independent of the vertex x. Fortunately for us, in the Bourgain–Gamburd case, the
multiplicity of eigenvalues is very high. Even more fortunately, there are many regular
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graphs for which the automorphism group is trivial : in fact, this is the case for typical
(q + 1)-regular graphs [19].

We now state the theorem. Assume both (BST) and (EXP) hold for (GN ).

Theorem 2.1. Let (ψ
(N)
j )Nj=1 be an orthonormal basis of eigenfunctions of AGN

for

ℓ2(VN ), with corresponding eigenvalues (λ
(N)
j )Nj=1. Fix R ∈ N and let KN be a VN × VN

matrix satisfying KN (x, y) = 0 if d(x, y) > R and supN supx,y∈VN
|KN (x, y)| ≤ 1. Then

(2.1) lim
N→∞

1

N

N∑

j=1

∣∣∣∣〈ψ
(N)
j ,KNψ

(N)
j 〉 − 〈KN 〉

λ
(N)
j

∣∣∣∣
2

= 0 ,

where 〈K〉λ = 1
N

∑
x,y∈VN

K(x, y)Φ(λ, d(x, y)) and Φ(λ, ·) is the spherical function

(2.2) Φ(λ, r) = q−r/2

Ç
2

q + 1
Pr

( λ

2
√
q

)
+
q − 1

q + 1
Qr

( λ

2
√
q

)å
.

Here Pr(cos θ) = cos(rθ) and Qr(cos θ) =
sin(r+1)θ

sin θ are the Chebyshev polynomials.

This theorem implies that for N large enough, most 〈ψj ,Kψj〉 approach 〈K〉λj
: for

any ε > 0,

(2.3) lim
N→∞

1

N
#

ß
j ∈ [1, N ] :

∣∣∣∣〈ψ
(N)
j ,KNψ

(N)
j 〉 − 〈KN 〉

λ
(N)
j

∣∣∣∣ > ε

™
= 0 .

In the special case where R = 0, KN = aN is a function on VN and 〈ψ(N)
j ,KNψ

(N)
j 〉 =

∑
x∈VN

aN (x)|ψ(N)
j (x)|2. Also, Φ(λ, 0) = 1, so 〈aN 〉λ is simply the uniform average of aN ,

〈aN 〉λ = 1
N

∑
x∈VN

aN (x). Taking for instance aN = χΛN
, the characteristic function of a

set ΛN ⊂ VN of size αN , 0 < α < 1, this implies that for most ψj , we have ‖χΛN
ψj‖2 ≈ α.

In particular, if we consider any set containing half the vertices of VN , we will find half
the mass of ‖ψj‖2 in it, for most j.

We like to interpret this theorem as an “equidistribution” result for eigenfunctions, but
one should be very cautious with the meaning of this. Note that we are measuring the dis-

tance between the uniform measure on VN and the probability measure
∑N

x=1 |ψ(N)
j (x)|2δx

in a very weak sense, by comparing the average of only one function aN , so our result is

very far from saying that |ψ(N)
j (x)|2 is uniformly close to 1

N . The set of indices j such

that 〈ψ(N)
j , aNψ

(N)
j 〉 is close to 1

N

∑
x∈VN

aN (x) depends on the test function aN . Since the

speed of convergence we can reach in (2.1) is typically of order 1
logN , we can only improve

(2.3) by allowing a logarithmic number of observables or a logarithmic error ε, and thus

we stay far from comparing |ψ(N)
j (x)|2 and 1

N at microscopic scale.

More generally, the theorem implies that if dGN
(x, y) = r, then ψj(x)ψj(y) ≈ Φ(λ,r)

N in
the same weak sense.

As we mentioned in the introduction, strong delocalization results have been proved
in [13] in the context of random graphs. In particular, [13] contains bounds of the form
‖ψj‖∞ . 1√

N
modulo logarithmic corrections, for all ψj in the bulk of the spectrum; as

well as a result of Quantum Unique Ergodicity, saying that for any given observable a,
∑

x∈VN
a(x)|ψ(N)

j (x)|2 is close to 1
N

∑
x∈VN

a(x) for all ψj , for most random regular graphs.

This is pretty much the ideal case of uniform distribution of ψj , where ψj ≈ ( 1√
N
, . . . , 1√

N
).

Does one also have the ideal behavior of eigenfunction correlation predicted by (2.1) in
this random set-up ? This extension seems far from obvious, as the method of [13] assumes
that the test functions are probabilistically independent from the random graph (GN ), and
thus cannot be generalized to test observables KN that depend on the distance between
points in (GN ).
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Problem 2.2. For a typical random regular graph (GN ), prove that for all eigenvectors

in the bulk of the spectrum of AGN
, we have ψ

(N)
j (x)ψ

(N)
j (y) ≈ Φ(λ,r)

N for all x ∈ VN and

y such that dGN
(x, y) = r.

2.2. Spaces of operators . Before we present a proof of (2.1), we introduce some nota-
tion.

Fix G = GN , G = (V,E). Let Bk be the set of non-backtracking paths (x0, . . . , xk) of
length k in G. Denote B = B1. We let Hk = C

Bk , the space of complex-valued functions
on Bk, and H≤k = ⊕k

j=0 Hj .

For elements of Bk, we use the short-hand notation (x0;xk) instead of (x0, . . . , xk), and
for K ∈ Hk we write K(x0;xk) for K(x0, . . . , xk).

Any K ∈ Hk defines an operator KG on ℓ2(V ) by

(2.4) 〈ϕ,KGψ〉ℓ2(V ) =
∑

(x0;xk)∈Bk

ϕ(x0)K(x0;xk)ψ(xk)

for ϕ,ψ ∈ ℓ2(V ). In particular, the matrix elements KG(x, y) = 〈δx,KGδy〉 are given
by KG(x, y) =

∑
(x0;xk)K(x0;xk), where the sum runs over all (x0;xk) in Bk with fixed

endpoints x0 = x and xk = y. We have KG(x, y) = 0 unless x and y can be joined by a
non-backtracking path of length k. If ρG(x) ≥ k, where ρG(x) is the injectivity radius at
x, observe that the sum defining KG(x, y) contains at most one nonzero term.

If K = (Kj) ∈ H≤k, we extend (2.4) linearly by 〈ϕ,KGψ〉 =
∑k

j=0〈ϕ, (Kj)Gψ〉.
Given K = (Kj) ∈ H≤k, we consider its normalized ℓ2-norm

(2.5) ‖K‖2H =
k∑

j=0

‖Kj‖2Hj
where ‖Kj‖2Hj

=
1

N

∑

(x0;xj)∈Bj

|K(x0;xj)|2 .

We define the Hilbert space H as the completion of ⊕+∞
j=0 Hj for that norm.

We also consider the normalized Hilbert-Schmidt norms of operators,

‖KG‖2HSN =
1

N

∑

x,y∈VN

|KG(x, y)|2 .

These two norms are not the same, but they coincide if K ∈ H≤k and if the injectivity
radius is everywhere greater than k. More generally, we see that for any K ∈ H≤k,

(2.6) ‖KG‖2HSN ≤ ‖K‖2H + ck,q
#{x ∈ V : ρG(x) < k}

N
· ‖K‖2∞ ,

where ‖K‖∞ = supx,y |K(x; y)| and ck,q = |BGN
(x, r)|2 = [1 + (q + 1)

∑k
j=1 q

j−1]2. Under
assumption (BST), the second term is ok(1)N−→∞, by which we mean that it depends on
the parameter k and goes to 0 as N → ∞.

In analogy to (2.4), any K ∈ Hk defines an operator KB on ℓ2(B) by

(2.7) 〈f,KBg〉ℓ2(B) =
∑

(x0;xk)∈Bk

f(x0, x1)K(x0;xk)g(xk−1, xk)

for f, g ∈ ℓ2(B). This extends to K ∈ H≤k. We finally define

(2.8) H o
k = {K ∈ Hk : 〈K〉 = 0} where 〈K〉 = 1

N

∑

(x0;xk)∈Bk

K(x0;xk) .

2.3. The quantum variance. Recall that the spherical function r 7→ Φ(λ, r) satisfies
Φ(λ, 0) = 1, Φ(λ, 1) = λ

q+1 and the linear recursive formula

(2.9) Φ(λ, r + 1) =
1

q
(λΦ(λ, r)− Φ(λ, r − 1))
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for r ≥ 1. This is equivalent to the fact that for any x ∈ Tq, the radial function y 7→
Φ(λ, dTq (x, y)) is an eigenfunction of ATq for the eigenvalue λ.

Define the constant function Sk = 1
(q+1)qk−1 ∈ Hk for k ≥ 1, S0 = 1 ∈ H0. Then

[(Sk)Gψ](x) =
1

(q+1)qk−1

∑
(x0;xk),x0=x ψ(xk) for k ≥ 1 and [(S0)Gψ](x) = ψ(x). Note that

we have the identity, very specific to regular graphs :

(2.10) (Sk)G = Φ(AG, k) ,

where Φ(AG, k) is defined by replacing λ by AG in Φ(λ, k), using the functional calculus
of self-adjoint operators. This is easily seen by induction on k, using (2.9).

Back to (2.1), we write

(2.11) 〈ψj ,Kψj〉 − 〈K〉λj
=

R∑

k=0

∑

x0∈VN

∑

dGN
(x0,xk)=k

K(x0, xk)

ñ
ψj(x0)ψj(xk)−

Φ(λj , k)

N

ô

for K an operator with bounded range, as in the assumptions of Theorem 2.1.
On the other hand, we can define Kk ∈ Hk by Kk(x0;xk) := K(x0, xk), and K =

(Kk) ∈ H≤R. We get
(2.12)

〈ψj ,KGψj〉 −
R∑

k=0

〈Kk〉Φ(λj , k) =
R∑

k=0

∑

(x0;xk)∈Bk

K(x0;xk)

ñ
ψj(x0)ψj(xk)−

Φ(λj , k)

N

ô

where 〈Kk〉 is defined in (2.8).
Note that (2.11) and (2.12) are almost the same, but the second expression may contain

more terms, as there may be several paths (x0;xk) with endpoints x0, xk if ρG(x0) < R.
But by assumption (BST), the vertices with ρG(x0) < R are relatively few. Thus if we
define the quantum variance

Var (K) =
1

N

N∑

j=1

|〈ψj ,KGψj〉|2

for K = (Kk) ∈ H≤k, then using (2.10), we get

1

N

N∑

j=1

∣∣∣〈ψj ,Kψj〉 − 〈K〉λj

∣∣∣
2
= Var

(
K −

R∑

k=0

〈Kk〉Sk
)
+ oR(1)N−→∞ .

By the Cauchy-Schwarz inequality

Var
(
K −

R∑

k=0

〈Kk〉Sk
)
≤ R

R∑

k=0

Var (Kk − 〈Kk〉Sk) .

Finally, note that if Kk ∈ Hk, then Kk − 〈Kk〉Sk ∈ H o
k . From this we conclude that in

order to prove (2.1) it suffices to show that Var (K) → 0 as N → ∞, for any K ∈ H o
k .

2.4. The proof. To show that Var (K) → 0 for any K ∈ H o
k , we roughly proceed as

follows. Using the eigenfunction equation, we show that the quantum variance possesses
some invariance property, of the form Var (K) ≈ Var ( 1n

∑n
r=1 CrK) for some operators Cr.

Clearly, we have Var (K) ≤ ‖KG‖2HSN . So using (2.6), we get Var (K) . ‖ 1
n

∑n
r=1 CrK‖2H .

The goal is to find terms CrK that are (almost) orthogonal as r varies, so that this reduces
to 1

n2

∑n
r=1 ‖CrK‖2H . Finally, if we have ‖CrK‖2H ≈ ‖K‖2H , the upshot will be that

Var (K) . 1
n‖K‖2H for any n, and the theorem will be proven by taking n arbitrarily

large.
To find the operators Cr, note that we have the näıve relation

〈ψjKGψj〉 =
1

λj
〈ψj ,KGAGψj〉 =

1

n

n∑

r=1

1

λrj
〈ψj ,KGAr

Gψj〉
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at least for λj 6= 0. So one could consider Cr = 1
λr
j
Ar

G as a first idea. However, since

the powers of AG involve backtracking trajectories, the orthogonality we are seeking for
the terms CrK is not achieved. An important message of [7] is to consider powers of the
non-backtracking adjacency matrix B instead, which is defined on ℓ2(B) by

(2.13) (Bf)(x0, x1) =
∑

x2∈Nx1\{x0}
f(x1, x2) .

Here Nx is the set of nearest neighbours of x.
For this to work, the idea is to consider some modified quantum variance in which the

invariance law involves only non-backtracking trajectories. This will be implemented in
two ways; a very simple one in this section, and a more general one in Section 3.

Define ∇ : Hk → Hk+1 by

(∇K)(x0;xk) = K(x1;xk)−K(x0;xk−1) .

Its adjoint ∇∗ : Hk+1 → Hk is given by

(∇∗K)(x0;xk) =
∑

x−1∈Nx0\{x1}
K(x−1;xk)−

∑

xk+1∈Nxk
\{xk−1}

K(x0;xk+1)

for k ≥ 1, and for k = 0, (∇∗K)(x0) =
∑

x−1∼x0
K(x−1, x0)−

∑
x1∼x0

K(x0, x1).

We now show that it suffices to control Var (∇∗K) for anyK ∈ H o
k . As we shall see, this

slight modification of the quantum variance will allow us, in the case of regular graphs, to
obtain an invariance law which may be expressed in terms of the non-backtracking random
walk (for non-regular graphs, the required modification is less simple).

First, note that if the graph is connected, the kernel of ∇ is reduced to constants, and
thus the range of ∇∗ : Hk+1 → Hk coincides with H o

k . Hence, any K ∈ H o
k may be

written in the form ∇∗K ′. The norm of K ′ in H is controlled by the spectral gap β, but
in (2.6) we are also using the ‖ · ‖∞-norm, which is not controlled by the spectral gap. For
this reason it is better to work with some explicit approximation of K ′.

Introduce the transfer operator S : Hk → Hk by

(SK)(x0;xk) =
1

q

∑

x−1∈Nx0\{x1}
K(x−1;xk−1)

for k ≥ 1, and S = AG

q+1 for k = 0. Next, define for T ∈ N
∗,

STK =
1

T

T−1∑

r=0

(T − r)SrK and S̃TK =
1

T

T∑

r=1

SrK .

Then
K = (I − S)(STK) + S̃TK .

On the other hand, if ik : Hk → Hk+1 is the operator defined by (ikK)(x0;xk+1) =
K(x0;xk), then we see that ∇∗ikK = q(S − I)K for k ≥ 1, and ∇∗i0K = (q+1)(S − I)K
for k = 0. Thus (say for k ≥ 1) we have written

(2.14) K = −1

q
∇∗ikSTK + S̃TK .

The operator −1
q ikST is precisely the approximation of ∇∗−1 we are looking for. In fact,

if K ∈ H o
k , the remainder term S̃TK can be bounded by

‖S̃TK‖2H ≤ 1

T 2

( T∑

r=1

‖SrK‖H

)2
≤
C2
k,β

T 2
‖K‖2H

with a constant Ck,β depending only on k and on the spectral gap β. This is clear for k = 0

using (EXP), since ‖ AG

q+1‖H o
0 →H o

0
≤ 1 − β. It was shown in [6] that (EXP) implies an
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analogous control on ‖Sr‖H o
k
→H o

k
for all k in case of regular graphs, and this was extended

to irregular graphs in [8]. Thus, S̃TK may be made arbitrarily small by choosing T large.
Back to (2.14), we get for K ∈ H o

k ,

(2.15) Var (K) ≤ 2q−2 Var (∇∗ikSTK) + 2Var (S̃TK)

and Var (S̃TK) . ‖S̃TK‖2H ≤ C2
k,β

T 2 ‖K‖2H . Fixing T large, we are reduced to showing that
Var (∇∗KT ) goes to 0 as N goes to +∞, for KT = ikSTK. Thus, it suffices to prove we
have limN−→+∞Var (∇∗K) = 0 for any K ∈ Hk to obtain (2.1). Note that in contrast to
the aforementioned K ′ = ∇∗−1K, we have an explicit bound ‖KT ‖∞ ≤ T ‖K‖∞, so the
error term arising from (2.6) is controlled as long as we take N → ∞ before T → ∞.

Let K ∈ Hk, k ≥ 1. Since ψj is an eigenfunction of AG, it is clear that for any j,

(2.16) 〈ψj , [AG,KG]ψj〉 = 0 ,

where [·, ·] is the commutator of operators. On the other hand, an elementary algebraic
calculation reveals that

〈AGψj ,KGψj〉 − 〈ψj ,KGAGψj〉 = 〈ψj , (∇K)Gψj〉+ 〈ψj , (∇∗K)Gψj〉 .
Define M∗ : Hk → Hk+2 by (M∗K)(x0;xk+2) = q−1K(x1;xk+1). A specificity of regular
graphs is that −∇∗M∗K = ∇K. So (2.16) may be rewritten as

(2.17) 〈ψj , (∇∗M∗K)Gψj〉 = 〈ψj , (∇∗K)Gψj〉 .
Letting

(2.18) Σn =
1

n

n∑

r=1

M∗ r ,

we get by iteration of (2.17)

(2.19) Var (∇∗ΣnK) = Var (∇∗K) .

Now note that ∇∗ΣnK = 1
n

∑n
r=1∇∗M∗ rK ∈ ⊕n

r=1 Hk+2r−1. Using (2.6),

Var (∇∗ΣnK) ≤ ‖∇∗ΣnK‖2H + cq,k,n
#{x ∈ V : ρG(x) ≤ k + 2n− 1}

N
‖∇∗ΣnK‖2∞ .

Now

(∇∗ΣnK)k+2r−1(x0;xk+2r−1) =
1

n
(∇∗M∗ rK)(x0;xk+2r−1) =

−1

nqr−1
(∇K)(xr−1;xk+r) ,

hence, ‖∇∗ΣnK‖∞ ≤ 1
n‖∇K‖∞ ≤ 2

n‖K‖∞. In the Hilbert space H the various terms
∇∗M∗ rK making up ∇∗ΣnK are orthogonal, and thus (by Pythagoras)

(2.20) ‖∇∗ΣnK‖2H =
n∑

r=1

‖∇∗ΣnK‖2Hk+2r−1
=

n∑

r=1

1

n2
‖∇K‖2Hk+1

≤ 4q

n
‖K‖2Hk

.

Recalling (2.19), we have shown that

Var (∇∗K) ≤ 4q

n
‖K‖2Hk

+ c̃q,k,n
#{x ∈ V : ρG(x) ≤ k + 2n − 1}

N
‖K‖2∞ .

Taking N → ∞ followed by n → ∞, we get limN−→+∞Var (∇∗K) = 0, completing the
proof of (2.1).

Remark 2.3. Define τ± : ℓ2(V ) → ℓ2(B) by (τ−ϕ)(x0, x1) = ϕ(x0) and (τ+ϕ)(x0, x1) =
ϕ(x1). We note that, for any ϕ,ψ ∈ ℓ2(V ), K ∈ Hk, k ≥ 1,

(2.21) 〈ϕ, (∇∗K)Gψ〉 = 〈τ+ϕ,KBτ+ψ〉 − 〈τ−ϕ,KBτ−ψ〉
where KB : ℓ2(B) −→ ℓ2(B) was defined in (2.7). Moreover,

(2.22) 〈f, (M∗K)Bg〉 = q−1〈f,BKBB g〉
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for any f, g ∈ ℓ2(B). So for any integer r, 〈f, (M∗ rK)Bg〉 = q−r〈f,BrKBBr g〉. Combining
(2.21) with (2.22), we see that the iterations ∇∗M∗ r amount to iterations of the non-
backtracking random walk B.
Remark 2.4. Assuming AGψj = λjψj , one easily checks that

B τ−ψj = qτ+ψj , B τ+ψj = λjτ+ψj − τ−ψj ,(2.23)

B∗τ−ψj = λjτ−ψj − τ+ψj and B∗τ+ψj = qτ−ψj .

These equations imply some relations between the eigenfunctions of AG and those of
B : if ǫj is one of the two roots of qǫ2−λjǫ+1 = 0, then τ+ψj− ǫjτ−ψj is an eigenfunction

of B for the eigenvalue ǫ−1
j . It is possible to write a proof of Theorem 2.1 using the

eigenfunctions of B instead of those of AG, and this is the approach we will develop in §3
for general graphs.

2.5. Conclusion. The first proof of quantum ergodicity for the adjacency matrix on reg-
ular graphs used microlocal analysis on trees [6]. The proof we presented first appeared in
[7]. We see the advantage of working with the non-backtracking random walk B : the exact
orthogonality in (2.20) comes from the fact that the operators (M∗ rK)B = q−rBrKBBr

live in orthogonal spaces Hj for different values of r.
The proof given here bears similarities with a proof by Brooks, Lindenstrauss and Le

Masson [23] in the special case where R = 0, i.e. K is a function on the vertex set VN . The
main idea there is the following : it is true that 1

λr
j
Ar

G is difficult to analyze, but perhaps

Pr(AG) is more approachable for a good polynomial Pr. The authors of [23] choose the
Chebyshev polynomial Pr(cos θ) = cos(rθ). They start by observing that for any θ ∈ [0, π]
and n ≥ 10, one has | 1n

∑n
r=1 cos(rθ)

2| ≥ 0.3. From this, they deduce that Var (K) .
100
9 ‖ 1

n

∑n
r=1 P2r(

A
2
√
q )KP2r(

A
2
√
q )‖2H . The various terms P2r(

A
2
√
q )KP2r(

A
2
√
q ), for r 6= r′,

are not exactly orthogonal, but by properly rearranging the sum, some orthogonality
property takes place and the theorem follows.

A variant would be to replace the Chebyshev polynomial Pr by the spherical function
Φ(·, r) (2.2) – so that Φ(AG, r) is a renormalized averaging operator over spheres of radius
r – or by Ψr, where Ψr is chosen so that Ψr(AG) is an averaging operator over balls
of radius r. This is the path followed by Le Masson–Sahlsten [38] to prove a quantum
ergodicity result similar to Theorem 2.1 for sequences of hyperbolic surfaces with genus
going to +∞.

3. The general case

3.1. The result. We now turn to the general case of Schrödinger operators on arbitrary
graphs of bounded degrees. Let GN = (VN , EN ) be a graph with |VN | = N vertices and
degree bounded by D. Consider a Schrödinger operator of the form HGN

= AGN
+WN

where AGN
is the adjacency operator, and WN : VN → R is a real-valued “potential”. For

simplicity, we assume that there exists A such thatWN (x) ∈ [−A,A] for all x, for all N . It
will be convenient to regard (GN ,WN ) as a “coloured graph”, the mapWN : VN → [−A,A]
is viewed as a colour.

The theory of local weak convergence extends to this framework of coloured graphs
without difficulty [4]. By choosing a root x ∈ VN uniformly at random, the deterministic
coloured graph (GN ,WN ) is turned into a random rooted coloured graph (GN , x,WN ).
The local weak convergence of (GN ,WN ) means that the random rooted coloured graph
(GN , x,WN ) converges in law. We denote by [T , o,W] the limiting random variable, and
P its law. Thus, T is a random graph with a random root o ∈ T and a “random potential”
W : T −→ [−A,A]. In particular, the definition implies that the value distribution of WN

converges to the law of the random variable W(o).
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Our general result may be roughly summarized as follows : if the “limit” Schrödinger
operator has purely absolutely-continuous spectrum (P-almost surely), then quantum er-
godicity holds for any sequence converging to it.

This holds under some additional assumptions to be detailed below.
First, we assume that T is P-almost surely a tree. This is equivalent to assumption

(BST) in the previous section, namely that GN has “few short loops”. In case of (q+1)-
regular graphs, assumption (BST) implied the limit measure P was concentrated on a
single tree Tq, here we assume more generally that P is concentrated on the set of coloured
rooted trees.

Next, we assume we have absolutely continuous (AC) spectrum at the limit. More
specifically, we assume the imaginary part of the limit Green function has inverse moments.
To state this precisely, we introduce some notation.

Given a coloured tree [T , o,W], define the Schrödinger operator H = A+W on ℓ2(T ).
Note that it is random if [T , o,W] is so. We denote its Green function by Gγ(v,w) =
〈δv, (H − γ)−1δw〉ℓ2(T ). For v,w ∈ T such that v ∼ w, denote by T (v|w) the tree obtained

from T by removing the branch emerging from v that passes through w. Let H(v|w)

be the restricted operator H(v|w)(u, u′) = H(u, u′) if u, u′ ∈ T (v|w) and zero otherwise.

The corresponding Green function is denoted by G(v|w)(·, ·; γ). We then put ζ̂γw(v) =

−G(v|w)(v, v; γ) and assume :

There is a non-empty open set I1 such that for all s > 0,

(3.1) sup
λ∈I1,η0∈(0,1)

E

(
∑

o′: o′∼o

| Im ζ̂λ+iη0
o (o′)|−s

)
<∞ .

We refer to this condition as (Green). Here, E is integration with respect to P, so
we integrate over the coloured rooted trees [T , o,W]. It can be shown that condition
(Green) implies that for P-a.e. [T , o,W], the limiting Schrödinger operator H has pure
AC spectrum in I1.

Remark 3.1. In the case of regular graphs treated in the previous section, [T , o] is
deterministic, equal to the regular tree [Tq, o] with an arbitrary root, and W = 0. For

γ 6∈ R, it can be shown that ζ̂γw(v) is independent of (v,w), equal to one of the roots of

qζ2 − γζ + 1 = 0,

more precisely, the root with negative imaginary part if Im γ > 0 (see (3.4)). For γ
approaching the real axis, we see that the two roots become real if |γ| ≥ 2

√
q, and purely

imaginary if |γ| < 2
√
q. Condition (3.1) will hold where Im ζγ stays away from zero, that

is, for any open interval I1 such that Ī1 ⊂ (−2
√
q, 2

√
q).

As in Section 2, we assume we have a sequence of expanders. For irregular graphs, this
is formulated as the existence of a spectral gap for the generator of the simple random
walk : define PN : CVN → C

VN by (PNψ)(x) = 1
dN (x)

∑
y∼x ψ(y), where dN (x) is the

degree of x ∈ VN . Then PN is self-adjoint in ℓ2(VN , dN ) (the reference measure now
assigns weight dN (x) to a vertex x). Being expanders means that the eigenvalue 1 of PN

is simple (so GN is connected) and that the spectrum of PN in ℓ2(VN , dN ) is contained in
[−1 + β, 1− β] ∪ {1}. We refer to this assumption as (EXP).

We may now state the result. Let (GN ,WN ) be a sequence of finite coloured graphs as
above, and assume that conditions (BST), (Green) and (EXP) are satisfied.

Theorem 3.2. Let (ψ
(N)
j )Nj=1 be an orthonormal basis of eigenfunctions of HGN

for ℓ2(VN )

with eigenvalues (λ
(N)
j )Nj=1. Fix R ∈ N and let KN : VN × VN → C satisfy KN (x, y) = 0

if d(x, y) > R and supN supx,y∈VN
|KN (x, y)| ≤ 1.
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Then1 for any interval I with I ⊂ I1,

(3.2) lim
η0↓0

lim
N→∞

1

N

∑

λ
(N)
j

∈I

∣∣∣∣〈ψ
(N)
j ,KNψ

(N)
j 〉 − 〈KN 〉

λ
(N)
j

+iη0

∣∣∣∣ = 0 ,

where 〈K〉γ =
∑

x,y∈VN
K(x, y)ΦN

γ (x, y).

As detailed below, the weight function ΦN
γ (x̃, ỹ) is expressed in terms of the Green

function on the universal cover ‹GN of GN . It is well-defined for γ in the upper-half plane,
which is the reason for the presence of the additional limit limη0↓0 (on a regular graph,
one can directly take η0 = 0, as the Green function on Tq stays finite on the real axis).

Let ‹GN = (‹VN , ‹EN ) be the universal cover of GN (so ‹GN = Tq in case the graphs

are (q + 1)-regular). Let ‹HN = ‹AN + W̃N on ℓ2(‹VN ), where ‹AN is the adjacency matrix

of ‹GN , and W̃N is the lift of WN . We denote the corresponding Green function by

g̃γN (x, y) = 〈δx, (‹HN − γ)−1δy〉ℓ2(ṼN )
. Then

ΦN
γ (x, y) =

Im g̃γN (x̃, ỹ)
∑

x∈VN
Im g̃γN (x̃, x̃)

,

where x̃, ỹ ∈ ‹VN are lifts of x, y ∈ VN satisfying d
G̃N

(x̃, ỹ) = dGN
(x, y).

In the very special case of an adjacency matrix over regular graphs, this reduces to

ΦN
γ (x, y) = 1

N
ImGγ(x̃,ỹ)
ImGγ(x̃,x̃) , and this quotient of Green functions is just another expression

for the spherical function (2.2). Note that for regular graphs, ΦN
γ (x, x) = 1

N is the uni-
form measure; as we have seen, the result implies that for any given aN : VN −→ C,
∑

x∈VN
aN (x)|ψ(N)

j (x)|2 is close to the uniform average 1
N

∑
x∈VN

aN (x) for most j. For
non-regular graphs, or in the presence of a potential WN , it no longer holds true that
ΦN
γ (x, x) = 1

N . But for aN = χΛN
, the characteristic function of a set ΛN ⊂ VN of

size ≥ αN , 0 < α ≤ 1, we can nevertheless show that
∑

x∈ΛN
ΦN
γ (x, x) will always be

bounded below by some cα > 0, with cα depending only on α. This implies that for most

j,
∑

x∈ΛN
|ψ(N)

j (x)|2 is also bounded below by cα/2. So our result can truly be inter-

preted as a delocalization result of eigenfunctions, saying that the mass of |ψ(N)
j (x)|2 on a

macroscopic set is bounded below.

3.2. Discussion of assumptions. An assumption about the spectral gap (equivalently,
the strong connectedness of the graphs), such as (EXP), seems a reasonable replacement
for the ergodicity assumption in the Shnirelman theorem. Obviously, quantum ergodicity
does not hold for disconnected graphs. One also sees easily that our results do not hold
for discrete tori, having a spectral gap decaying polynomially with N . On the other hand,
assuming that the spectral gap is fixed is certainly too strong, a careful study of the proof
reveals that one may allow the spectral gap to decay very slowly.

As we have said, (Green) implies, in a very strong manner, that the spectrum of the
infinite Schrödinger operator H = A +W on ℓ2(T ) is purely AC in the interval I1. This
is very reasonable, as AC spectrum is usually interpreted as meaning “delocalization”.
Our result is indeed a delocalization result : it says that, if a sequence of finite systems
converges to an infinite one having purely AC spectrum, then the eigenfunctions of the
finite systems are delocalized, in the sense that |ψ|2 is comparable to the uniform measure.

On a more technical level, we actually need (Green) only for all 0 < s ≤ s0, for some
finite s0 which in principle could be made explicit. In addition, we believe that our results

1Technically, the theorem holds if ψ
(N)
j are real-valued. This assumption is not necessary if R = 0. If

R > 0, we need more precisely that ψ
(N)
j (x)ψ

(N)
j (y) ∈ R for any (x, y) ∈ B.
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continue to hold under the following weaker variant of (Green) : for all s > 0, we have

supη0∈(0,1)
∫
I1
E(
∑

o′∼o | Im ζ̂λ+iη0
o (o′)|−s) dλ <∞.

Assumption (BST), according to which our graphs have few short loops, seems to be
of a merely technical nature, and we would like to work without it. However it is crucial
in estimates such as (2.6), to show that the last term is negligible.

Finally, we mention that both assumptions (EXP) and (BST) are “generic” if GN is
an N -lift of G0. See § 4.4 for details.

3.3. The proof. If we try to mimic the proof we gave in § 2.4 for the adjacency matrix on
a regular graph, we note that for an irregular graph, q becomes a function q(x) = d(x)−1,
and the degrees mismatch, so that (2.17) is no longer true. Analogous problems arise if
the graph is regular but WN 6= 0. As noted in Remarks 2.3 and 2.4, in the proof of the
regular case, we indirectly considered powers of the non-backtracking operator (2.13). We

now build on this idea and try to convert the eigenfunctions (ψ
(N)
j )Nj=1 into eigenfunctions

of some non-backtracking operator. The idea of considering a non-backtracking quantum
variance first appeared in [7]. Note that the idea of replacing simple random walks by
non-backtracking ones is also useful to solve many other problems [27, 20, 17, 1, 40].

Let us try to find a transformation ψj  fj = τ+ψj−ζjτ−ψj (where ζj is now a function
on B instead of being a constant) such that Bfj is proportional to fj. While this appears
to be impossible if we require Bfj/fj to be a constant function, we find that if ζj satisfies
the system of |B| algebraic equations

(3.3) λj =WN (v) +
∑

u∈Nv\{w}
ζ(v, u) +

1

ζ(w, v)

for all (w, v) ∈ B then Bfj = ζ−1
j fj. Thus we want to examinate the existence of solutions

for these algebraic equations, but also their behaviour as N −→ +∞.

We recognize in (3.3) the resolvent identity for the Schrödinger operator ‹HN on the

universal cover ‹GN . More precisely, for γ ∈ C \ R (or outside the spectrum of ‹HN), let

ζγ(y, x) = −〈δx̃, (‹H(x̃|ỹ)
N − γ)−1δx̃〉. As is well-known, it satisfies the recursion relation

(3.4) γ = W̃N (v) +
∑

u∈Nv\{w}
ζγ(v, u) +

1

ζγ(w, v)

which is exactly the one we need in (3.3). As we do not know if ζγ(y, x) has a finite limit
as γ approaches the real axis, we let γj = λj+ iη0 for some fixed (arbitrarily small) η0 > 0.
We henceforth denote ζγy (x) := ζγ(y, x) and let

(3.5) fj(x0, x1) = ψj(x1)− ζ
γj
x0(x1)ψj(x0) , f∗j (x0, x1) = ψj(x0)− ζ

γj
x1(x0)ψj(x1) .

These functions satisfy ζγjBfj = fj − iη0τ+ψj and ιζγjB∗f∗j = f∗j − iη0τ−ψj , where

ιζγ(x0, x1) = ζγx1
(x0). As we let η0 ↓ 0 at the end of the proof, the terms proportional

to η0 may be considered as negligible, and we omit them in this sketch of proof (in the
regular case, we can take η0 = 0 from the start, since ζγ is known to have a finite limit
when γ approaches the real axis, see Remark 3.1).

Unlike the case of regular graphs, the functions ζγj now depend on N (although this is
absent from our notation) and we need to control their behaviour as N −→ +∞. More
precisely we need to control the large and small values. Under assumption (BST), the

values of ζγ converge in distribution to ζ̂γ . The moment assumption (Green) (3.1) is
precisely what will allow us to control the extreme values of ζγ .

We are now ready to define the “non-backtracking” quantum variance, defined directly
in terms of the functions fj. Like in §2.2, instead of matrices we consider elements K of



12 NALINI ANANTHARAMAN AND MOSTAFA SABRI

Hk, and we let2

VarInb(K) =
1

N

∑

λj∈I

∣∣∣〈f∗j ,KBfj〉
∣∣∣ ,

where KB is defined in (2.7). As in § 2.4, we use the eigenfunction equation to show
that the quantum variance is invariant under certain transformations. Namely, neglecting
errors proportional to η0, we have ζγjBfj = fj and ιζγjB∗f∗j = f∗j . This implies that

〈f∗j ,KBfj〉 = 〈f∗j , (Bζγj )kKB(ζ
γjB)ℓfj〉

for any integers k, ℓ, which replaces (2.17). Hoping as in (2.19) to have decay of correlations
between the various terms, we write for any integer T ,

VarInb(K) =
1

N

∑

λj∈I

∣∣∣∣∣∣

〈
f∗j ,

1

T

T−1∑

k=0

(Bζγj)T−1−kKB(ζ
γjB)kfj

〉∣∣∣∣∣∣
.

The rest of the proof is substantially more involved than the one in § 2.4. We roughly
describe the main ideas.

The upper bound in terms of a Hilbert-Schmidt norm was previously very simple :
we combined the easy bound Var (K) ≤ ‖KG‖2HSN with inequality (2.6). Here, we have
two difficulties. First, the family (fj) is not an orthonormal basis of ℓ2(B). In fact,
‖fj‖ is not even necessarily bounded for each j as η0 ↓ 0 (nevertheless, our assumptions

imply that the mean 1
N

∑
λj∈I ‖fj‖2 stays bounded). The second difficulty is the fact that

(Bζγj)T−1−kKB(ζ
γjB)k depends on the eigenvalue λj. As a starting point to face these

problems, we use the holomorphic functional calculus of operators to extend the operator
fj 7→ (Bζγj)T−1−kKB(ζ

γjB)kfj to the whole of ℓ2(B).
Omitting technicalities, we are able to obtain an upper bound of the form

VarInb(K)2 .

∫

Re γ∈I,Im γ=η0

∥∥∥∥∥∥
1

T

T−1∑

k=0

(Bζγ)T−1−kKB(ζ
γB)k

∥∥∥∥∥∥

2

γ

dγ

for some γ-dependent HS norm ‖ · ‖γ . While in § 2.4, the terms in (2.20) were orthogonal
to each other and we used Pythagoras, this won’t be the case here, but the contribution
of the off-diagonal terms will decay exponentially in |k − k′|.

Decomposing the norm, we find that

(3.6) VarInb(K)2 .

∫

Re γ∈I,Im γ=η0

1

T 2

Ç ∑

k′≤k≤T−1

〈(Sγe
iθγ )k−k′CγK,CγK〉ℓ2(Bk ,νγ)

+
∑

k<k′≤T−1

〈CγK, (Sγe
iθγ )k

′−kCγK〉ℓ2(Bk,νγ)

å
dγ ,

where Sγ is the transfer operator CBk −→ C
Bk , defined by

(SγK)(x0;xk) =
|ζγx1

(x0)|2
| Im ζγx1(x0)|

∑

x−1∈Nx0\{x1}
| Im ζγx0

(x−1)|K(x−1;xk−1)

and the function eiθγ is a function of modulus 1, defined by

eiθγ (x0, . . . , xk) = ζγx0(x1)
−1
ζγx0

(x1) .

Finally Cγ(x0, . . . , xk) = − 1
2g̃γ

N
(x0,xk)

is the inverse of the Green function on ‹GN .

2The word “variance” is perhaps unfortunate here as we have removed the square from the terms in
the sum for technical reasons.
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The operator Sγ is sub-stochastic; in fact, it is exactly stochastic if we take η0 = 0, as
follows from the relation

(3.7)
∑

u∈Nv\{w}
| Im ζγv (u)| =

| Im ζγw(v)|
|ζγw(v)|2

− η0

which is a direct consequence of (3.4). In (3.6), the measure νγ is the invariant probability
measure for the Markov chain on Bk defined by Sγ .

It is known by Wielandt’s theorem that adding phases to a matrix with positive entries
strictly diminishes its spectral radius, unless θγ is cohomologous to a constant; so it should

be expected that Sγe
iθγ decorrelates faster than Sγ . We do not apply directly Wielandt’s

theorem, because we are interested in operator norms, instead of spectral radii. Roughly
speaking, using assumption (Green) to control the extreme values of ζγ , and (EXP) to
control spectral gaps, what we prove is that

• Sγ has norm 1 (as it is stochastic) and has a spectral gap on the orthogonal of
constants

• typically, the presence of the phase eiθγ will strictly diminish the norm of the fourth
power (Sγe

iθγ )4, so each inner product in (3.6) decays exponentially in k − k′

• for non-typical situations, we do not control individual terms, but show instead
that the phase eiθγ induces cancellations between those terms, so that the mean
sum of inner products decays with T , except when the potential W = E0 is de-
terministic and γ approaches E0 (in that case, we discard that isolated value from
our analysis).

Hence in any case, we finally establish a bound of the form

(3.8) VarInb(K)2 .
C(β)

Tα
‖K‖2∞ + oT (1)N−→+∞ ‖K‖2∞

for some α ∈ (0, 1).
The proof is almost complete. Summarizing, we have shown that VarInb(K) → 0 as

N → ∞, for any K ∈ Hk. What remains to be done is to connect this with the main result
(3.2) via the formulas (3.5) that relate the original eigenfunctions to the non-backtracking
ones. For instance, in the special case of the adjacency matrix on regular graphs, our
argument in this step is essentially to show that if VarInb(K) → 0, then VarI(∇∗K) → 0,
which implies the theorem by (2.15).

One may wonder if there is a more direct proof of quantum ergodicity for non-regular
graphs, which does not involve the non-backtracking quantum variance, but a generalized
version of VarI(∇∗K) instead.

3.4. Conclusion. We have shown that if a (random) Schrödinger operator H on a (ran-
dom) tree T has pure AC spectrum, then his eigenvectors are delocalized, in the sense that
if we consider a sequence of finite graphs (GN ) converging to it, then the eigenfunctions
of the finite model become uniformly distributed as N → ∞ (in a weak sense).

A different approach would be to study directly the generalized eigenfunctions of H
on T . If the spectrum is purely AC, then the corresponding eigenfunctions are not in
ℓ2(T ). This is a weak, immediate delocalization property for such eigenfunctions. Can one
obtain more ? That is, do the generalized eigenfunctions of H on T inherit more specific
delocalization properties, due to the fact that the eigenfunctions on the converging finite
graphs are quantum ergodic ?

One should not imagine that the generalized eigenfunctions of H will be uniformly
distributed on T . In fact consider H = ATq on Tq, for which we proved a quantum
ergodicity theorem in Section 2. Fix any o ∈ Tq and consider the Poisson kernel Pγ,ξ on Tq

defined as follows : given an infinite path ξ = (o, v1, v2, . . . ) in Tq, let Pγ,ξ(v) =
Gγ(v∧ξ,v)
Gγ(o,v∧ξ) ,

where v∧ξ is the vertex of maximal length in [o, v]∩ [o, ξ]. Here [o, v] is the path from o to
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v and [o, ξ] = (o, v1, v2, . . . ). Then Pγ,ξ is a generalized eigenfunction of ATq . In fact, such
eigenfunctions form a “basis” for the set of generalized eigenfunctions of ATq . However,
as the Green function Gγ of ATq is explicit, by simple calculation one sees that for any

λ ∈ (−2
√
q, 2

√
q), |Pλ+i0,ξ(v)|2 grows exponentially as v moves on the path (o, v1, v2, . . . ),

and decays exponentially as v moves away from it.

4. Trees of finite cone type and their stochastic perturbations

So far we derived a very general “black box” result asserting that if a sequence of
Schrödinger operators on finite graphs converges to a Schrödinger operator on a tree with
pure AC spectrum, then quantum ergodicity holds. We need to find examples other than
the one already covered by Theorem 2.1.

4.1. Anderson model on the regular tree. Let Tq be the (q+1)-regular tree. Consider
a random Schrödinger operatorHǫ = A+ǫW on Tq, whereW(v) are i.i.d random variables.

Under very weak assumptions on the law of W(v) (existence of a second moment is
enough), it was shown by Klein [34] that, given 0 < E0 < 2

√
q, the spectrum of Hǫ in

[−E0, E0] is a.s. purely AC, for all ǫ small enough. This can be strengthened to obtain
condition (Green) if we put stronger assumptions on the law of W(v) :

(POT) The (W(v))v∈Tq are i.i.d. with common distribution ν which has a compact
support supp ν ⊆ [−A,A], and is Hölder continuous, i.e. there exist Cν > 0 and b ∈ (0, 1]
such that for any bounded interval J ⊂ R, ν(J) ≤ Cν · |J |b.

Under this assumption, an argument from [3] shows that the (Green) bound (3.1)
holds on [−E0, E0], if E is the expectation with respect to the random potential on Tq and
ǫ > 0 is small enough. Thus, Theorem 3.2 applies on the interval I = [−E0, E0], for any
sequence (GN , ǫWN ) of finite coloured graphs such that

– the graphs (GN ) satisfy assumptions (BST) and (EXP),
– (GN , ǫWN ) converges to [Tq, o, ǫW], in the sense of Benjamini-Schramm,
– the law of (W(v))v∈Tq satisfies (POT), and ǫ is small.

For example if we choose WN = (WN (x))x∈GN
i.i.d. random variables of law ν, which are

independent for different N , it is shown in [11] that the second condition is satisfied for
almost every realization of (WN ). Moreover, if KN is deterministic, or probabilistically

independent of WN , the average 〈KN 〉γ can be replaced by a simplified expression. In
particular, if KN = aN is a function, 〈aN 〉γ can be replaced by 〈aN 〉, the uniform average.

4.2. Trees of finite cone type. In the previous subsection we used Theorem 3.2 to
prove an aspect of spatial delocalization for the Anderson model on Tq. We now show
that Theorem 3.2 can also be used to study delocalization on some irregular trees T . We
focus here on the simpler case of the adjacency matrix on T . The Anderson model on
irregular trees is deferred to § 4.5.

Trees of finite cone type [43, 33] are rooted trees (T , o) satisfying the following condition.
Given v ∈ T , define the cone C (v) = {w ∈ T : v ∈ [o,w]}, where [o,w] is the unique path
from o to w. So C (v) is the forward subtree emanating from v (and C (o) = T is seen as
a cone from o). We say that (T , o) is of finite cone type if the number of non-isomorphic
cones is finite. Such trees are sometimes called periodic trees [39], and emerge when
considering spanning trees of regular tessellations of the hyperbolic plane.

One can show that every finite directed graph (G,x0) has a cover (T , x0) which is a
tree of finite cone type, and conversely, every tree of finite cone type (T , o) covers a finite
directed graph (G,x0). Universal covers of finite undirected graphs (sometimes called
uniform trees or quasi-homogeneous trees) are also of finite cone type; see [43].

We may state the following particular case of Theorem 3.2 :
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Corollary 4.1. Let (GN ) be a sequence of graphs of degree bounded by D, converging to

a tree T of finite cone type in the local weak sense. Assume the adjacency matrix on T
satisfies (Green) on some open set I, and assume the (GN ) satisfy (EXP). Then for

any orthonormal basis (ψ
(N)
j ) of eigenfunctions of AGN

, quantum ergodicity holds in I,

that is, (3.2) holds true.

More precisely, we mean that (GN ) has a Benjamini-Schramm limit P which is con-
centrated on {[T , v]}v∈T (where T is fixed and each (T , v) is of finite cone type), and
(Green) is considered with respect to this measure P.

To show that the previous result is non-void, we dedicate § 4.3 and § 4.4 to show that
there exist trees T of finite cone type (other than Tq) satisfying (Green) in large regions
of the spectrum, and sequences (GN ) which satisfy (EXP) and converge to T in the local
weak sense.

4.3. Assumption (Green) for trees of finite cone type . There are already some
results in the literature which consider the problem of spectral delocalization on irregular
trees. In [12], conditions are given to exclude point spectrum in uniform trees. The paper
[31] studies a different class of trees of finite cone type, and achieves a good control on the
Green function of AT , which suggests that assumption (Green) holds true through most
of σ(AT ). However, it seems that the trees of [31] are never unimodular3. If the reader
is not familiar with this notion, we just mention that the assumptions of Corollary 4.1
imply that the tree T must be unimodular. So our aim in what follows is to prove that
assumption (Green) holds true on large regions of the spectrum of trees of finite cone
type, under less restrictive assumptions than in the paper [31]. Concrete examples which
fit the framework of Corollary 4.1 will then be provided.

Consider a finite set of labels A = {1, . . . ,m} and a matrix M = (Mj,k)j,k∈A, where
Mj,k ∈ N. A tree T(M, j) is constructed by asserting that the root has the label j, and
that each vertex with label k has Mk,l children of label l. Such trees have m cone types,
and any tree of finite cone type arises in this fashion.

We shall make the following assumption :

(C1) We have M1,1 = 0 (and M1,k > 0 for at least one k). Moreover, for any k, l ∈
{2, . . . ,m}, there is n = n(k, l) such that (Mn)k,l ≥ 1.

We could also consider the variant where M1,1 is arbitrary while the condition holds on
the full set k, l ∈ {1, . . . ,m}. This is called (M2) in [31].

Assumption (C1) says that all cone types arise at some point as offspring of a given
cone, except for the cone with label 1 which plays a special role and may not reappear.
In practice, this condition happens for the cone at the root, and has been introduced to
allow for the example of the regular tree Tq. It has two cone types : the cone at the origin
has (q + 1) children while any other cone has q children. Another such example is the
(p+ 1, q + 1)-biregular tree Tp,q. More examples will be given later.

A tree of finite cone type (T, 1) with associated m×m matrix M = (Mj,k) gives rise to
the following system of polynomial equations

(4.1)
m∑

k=1

Mj,khkhj − γhj + 1 = 0 , j = 1, . . . ,m

where (h1, . . . , hm) ∈ C
m and γ ∈ C is fixed; cf. [31]. If Im γ > 0, one of the solutions

of the system is (ζγ1 , . . . , ζ
γ
m), where ζγ1 = −Gγ(u, u) if u has label 1, and for j ≥ 2,

ζγj = ζγv (v+) if v+ has label j. We now show that

3We say that a (fixed, deterministic) tree T is unimodular if there exists a unimodular measure P which
is concentrated on {[T , v]}v∈T
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Proposition 4.2. (1) There is a discrete set D ⊂ R such that, for all j = 1, . . . ,m, the

solutions hj(λ + iη) = ζλ+iη
j of (4.1) have a finite limit as η ↓ 0 for all λ ∈ R \ D.

The map λ 7→ ζλ+i0
j is continuous on R \D, and there is a discrete set D′ such that

it is analytic on R \ (D ∪D′).
(2) If moreover (T, 1) satisfies (C1), then

(i) For any j ≥ 1, the map λ ∈ σ(AT) \D 7→ | Im ζλ+i0
j | has finitely many zeroes.

(ii) σ(AT) is a finite union of closed intervals and points, ∪ℓ
r=1Ir ∪ F. Moreover, the

limit ζλ+i0
j exists on the interior I̊r and satisfies | Im ζλ+i0

j | > 0 for all j ≥ 1.

As a consequence of part (2), for any 0 < c < C < +∞, the set of λ ∈ σ(AT) such that

c < | Im ζλ+i0
j | < C for all j is of the form σ(AT) \ Ic,C where Ic,C is a finite union of open

intervals, that shrinks to a finite set when c −→ 0 and C −→ +∞. As we will see in the
examples, (after defining the probability measure P) (Green) holds on σ(AT) \ Ic,C .

Proof. To prove (1), it is sufficient to show that in a neighbourhood of any λ0 ∈ R, the
function hj(γ) = ζγj has a convergent Puiseux expansion, that is, an expansion of the form

(4.2) hj(γ) =
∑

n≥m

an(γ − λ0)
n/d

for some m ∈ Z and some integer d, where the entire series
∑

n≥0 anz
n has a positive

radius of convergence. The fact that ζγj possess such expansions is announced without

explanation in a paper by Aomoto [12]; we give the full argument below.
Proposition VIII.5.3 in [36] teaches us the following : if K is a field and if (h1, . . . , hm) is

a solution, in some extensionK ′ ofK, of a system of polynomial equations P1(h1, . . . , hm) =
0, . . . , Pm(h1, . . . , hm) = 0 where Pj ∈ K[X1, . . . ,Xm], and if the determinant of the Jaco-

bian matrix det(
∂Pj

∂hj
(h)) 6= 0, then each hj is algebraic over K.

We apply this with Pj(h1, . . . , hm) =
∑m

k=1Mj,khkhj − γhj + 1. Clearly, we have Pj ∈
K[h1, . . . , hm], where K = Kλ0 is the field of functions f(γ) possessing a convergent
Laurent series f(γ) =

∑∞
j=−n0

aj(λ0)(γ − λ0)
j in some neighbourhood Nλ0 ⊂ C of λ0.

Let K ′ = Jλ0 be the field of functions f which are meromorphic on Nλ0 ∩C
+ for some

neighbourhood Nλ0 of λ0. Then K
′ is an extension of K, and we know that ζγj belong to

K ′ and satisfy Pj(ζ
γ
1 , . . . , ζ

γ
m) = 0. Calculating J(h) = det(

∂Pj

∂hj
(h)) and using that ζγj ∼ 1

γ

as Im γ → ∞, we see that J(ζγ) := J(ζγ1 , . . . , ζ
γ
m) 6= 0 for any γ with a large enough

imaginary part. Since γ 7→ J(ζγ) is holomorphic on C
+, it follows that it cannot vanish

identically on any neighbourhood Nλ0 ∩C
+. Hence, J(ζγ) is not the zero element of K ′.

It follows that each ζγj is algebraic overK. By the Newton-Puiseux theorem (see e.g. [45,

Theorem 3.5.2]), each ζγj thus has an expansion of the form (4.2) in some neighbourhood

Nλ0 of λ0. In particular, it is analytic near any λ ∈ Nλ0 \ {λ0}. The set D corresponds
to those λ0 for which m < 0 in the Newton-Puiseux expansion at λ0, and the set D′

corresponds to those λ0 for which d > 1.
We now turn to (2). Denote ζλj := ζλ+i0

j for λ /∈ D.

Given λ0 ∈ σ(A), we expand λ 7→ Im ζλj in a disc N ǫ
λ0

= {|γ − λ0| < ǫ} using the

Newton-Puiseux expansion (4.2). We take ǫ small enough so the expansion holds for all
j ≥ 1 and ζλj is well-defined except perhaps at λ0. Note that ζλj 6= 0, due to the recursive

relation ζλj = −1∑m

k=1
Mj,kζ

λ
k
−λ

.

Now Im ζλj =
∑

n≥m cn(λ − λ0)
n/d, where cn = Iman for λ ∈ (λ0, λ0 + ǫ), and cn =

Im(ane
iπn/d) for λ ∈ (λ0 − ǫ, λ0). It follows that if Im ζλj = 0 for some λ ∈ (λ0 − ǫ, λ0 +

ǫ) \ {λ0}, then one of the following situations must occur :

– either Im ζλj = 0 on Oλ0 = (λ0 − ǫ, λ0 − ǫ) \ {λ0};
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– or Im ζλj = 0 on O′
λ0

= (λ0, λ0 + ǫ) and is nonzero in some (λ0 − ǫ′, λ0);
– or Im ζλj = 0 on O′

λ0
= (λ0 − ǫ, λ0) and is nonzero in some (λ0, λ0 + ǫ′);

– or λ0 is isolated from the zeroes of Im ζλj .

Suppose case 1 occurs for some Im ζλj , j ≥ 2. Using (C1) and the argument in

[31, Lemma 4], it follows that Im ζλk = 0 on Oλ0 for all k ≥ 1. This in turn im-

plies that ImGλ(v, v) = 0 on Oλ0 for all v ∈ T by [31, Proposition 3]. Hence, ei-
ther λ0 /∈ σ(A), or λ0 is an isolated eigenvalue. If case 1 occurs for Im ζλ1 , we use
| Im ζλ1 | = (

∑m
k=2M1,k| Im ζλk |)|ζλ1 |2 to reach the same conclusion.

The same analysis shows that if case 2 or 3 occurs for some Im ζλj , j ≥ 1, then λ0 must

be a boundary point of σ(A), which is isolated from the zeroes inside σ(A).
We thus showed that the zeroes of Im ζλj , j ≥ 1, do not accumulate near any λ0 ∈ σ(A).

This proves (2.i). For (2.ii), we use again the argument in Lemma 4 of [31] and their
Proposition 3 to see that under (C1), we have {λ ∈ R \ D : ImGλ(v, v) > 0} = {λ ∈
R \D : | Im ζλj | > 0}, where all sets coincide for arbitrary v ∈ T and j ≥ 1. On the other

hand, {λ ∈ σ(A)\D : | Im ζλj | > 0} is a finite union of intervals ∪ℓ
r=1Jr by the continuity of

R\D ∋ λ 7→ Im ζλj and (2.i). Hence, if Fv = {λ ∈ D∩σ(A) : lim infη↓0 ImGλ+iη(v, v) > 0},
and if F is the finite set F = ∪vFv ⊂ D ∩ σ(A), we get (2.ii). �

As mentioned in the beginning of this section, the assumptions of Corollary 4 imply
that the tree T must be unimodular. So let us conclude this section by giving examples
of trees of this type.

Uniform trees (universal covers of finite undirected graphs) are unimodular [4, Example
9.3]. In fact, these appear to be the only unimodular trees of finite cone type [5]. As an
example of a unimodular measure, one can take the uniform measure P = 1

|G|
∑

x∈G δ[G̃,x]
,

where G is the finite graph and (‹G,x) its universal cover at x ∈ G. One may check by

hand if (C1) (or its variant (M2)) hold on (‹G,x).
Another way of generating unimodular trees without explicit reference to covers is

as follows. Consider a matrix AN =

ñ
a b
c d

ô
with entries in N. We construct a tree

with two colours of vertices •, ◦, according to the rule : • has a neighbours of type •
and b neighbours of type ◦, while ◦ has c neighbours of type • and d neighbours of
type ◦. Such trees are unimodular if the root is chosen according to the probability
measure P = c

b+cδ[T,•] +
b

b+cδ[T,◦]. They can also be represented by cone matrices. For

example, if all entries of AN are nonzero, then (T, •) corresponds to the cone matrix M =à
0 a 0 b 0
0 a′ 0 b 0
0 a 0 b′ 0
0 0 c′ 0 d
0 0 c 0 d′

í

, where e′ = e− 1 for e = a, b, c, d. Here, ζγ1 = −Gγ(•, •) while the

ζγj for j = 2, . . . , 5 correspond to ζγ• (•), ζγ◦ (•), ζγ• (◦) and ζγ◦ (◦), respectively. Hence, (3.1)

reads E(
∑

y∼o | Im ζγo (y)|−s) = c
b+c [a | Im ζγ• (•)|−s + b | Im ζγ• (◦)|−s] + b

b+c [c | Im ζγ◦ (•)|−s +

d | Im ζγ◦ (◦)|−s]. One checks that M satisfies (C1) (with n(k, l) = 2) if min(a, b, c, d) ≥ 2.
So applying Proposition 4.2, we see (Green) holds on T endowed with P, on the set
σ(AT) \ Ic,C . One could also consider the same example with d = 0 and min(a, b, c) ≥ 2
and obtain analogous results.

One may also use a larger number of colours. For example, with three colours, a
3 × 3 matrix AN = [aij ] with analogous rule gives rise to a unimodular tree as long as
a31a23a12 = a32a13a21. Note that if we construct an n-coloured tree following a “neighbour
matrix” AN of size n×n, then for any choice of the root the associated “cone matrix” M
appearing in (C1) is of size at most (n2 + 1)× (n2 + 1).
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4.4. About assumptions (EXP) and (BST). It is known that any unimodular mea-
sure concentrated on (coloured) rooted trees is sofic [25, 15]. So once we have a random
unimodular tree T , we may always assume there is a sequence (GN ) which converges to
T . In which cases can we ensure, in addition, that (GN ) are expanders ?

Let G0 be a given connected graph. If GN is a random N -covering of G0, it is known
that asymptotically almost surely (a.a.s.), (GN ) satisfies (EXP). This is a standard com-
binatorial argument, see [2, §6.2] for a counting argument of a same flavor in the case of
random regular graphs. Substantially stronger arguments [28, 44] give explicit bounds on

the spectral gap of GN in terms of the spectral radius ρP of the universal cover ‹G0. Here
ρP is more precisely the spectral radius of the Laplacian (Pf)(x) = 1

d(x)

∑
y∼x f(y) on

ℓ2(‹G0, d). A simple argument [41] yields ρP ≤ 2
√
D−1
d , where D and d are the maximal

and minimal degrees, respectively, which is optimal in the regular case where d = D. This
combined with [28, 44] gives an explicit bound on the spectral gap, holding a.a.s.

It is also easy to see that a random N -lift has few short cycles a.a.s., cf. [28], and

thus converges to the tree ‹G0. More precisely, (GN ) converges to the uniform measure
P = 1

|G0|
∑

x∈G0
δ
[G̃0,x]

.

Summarizing, we have shown that if T is any uniform tree satisfying (C1), then by §4.3
it satisfies (Green) on the large set σ(AT)\Ic,C , and by §4.4, there exists a sequence (GN )
satisfying both (EXP) and (BST) which converges to T. Corollary 4.1 thus applies to
this nontrivial context. As a bonus, we have shown that GN can be chosen as N -lifts
of the finite graph which T covers, and that a random N -lift will do the job with high
probability.

4.5. Condition (Green) on random trees. As we mentioned in § 4.1 in case of the
Anderson model on Tq, if the random variables (W(v))v∈Tq satisfy condition (POT), then
assumption (Green) holds true for Hǫ = A + ǫW on any closed subset of (−2

√
q, 2

√
q),

provided ǫ is small. Note that for ǫ = 0 (Green) holds precisely on (−2
√
q, 2

√
q). This

suggests the following open question

Problem 4.3. Is Assumption (Green) stable under small perturbations ? That is, if
a coloured random rooted tree (T , o,W) satisfies (Green) and we add a small random
perturbation to W, will (Green) still hold ?

One can also consider assumption (Green) for different models :

Problem 4.4. Does assumption (Green) hold for small enough ǫ in the following models
?

(a) The Anderson model where the random potential only takes the values 0 and 1 with
probability 1− ǫ and ǫ, respectively.

(b) A Galton-Watson tree where the number of children is either q1 or q2 with probability
1− ǫ and ǫ, respectively, and the unimodular variant of this model.

In both models, we make a strong perturbation (varying W from 0 to 1 or changing the
tree configuration), but with small probability. In contrast, in § 4.1 we studied the effect
of adding a uniformly small perturbation.

The argument given by Klein [34] can be adapted to the first model to derive positive
moment bounds on the Green function. It seems this argument can also be adapted to
the second model to derive similar bounds; see also [30] for related results. However, we
do not know if (Green) holds for these models, that is, if (3.1) also holds. Indeed, for the
first model, the (W(v)) do not satisfy (POT), since they follow the Bernoulli distribution
νǫ = (1− ǫ)δ0 + ǫδ1.

For the remaining of this section, we give a positive answer to Problem 4.3 for a special
class of (unimodular) trees of finite cone type.
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Let T be a tree of finite cone type with labels A = {1, . . . ,m} and cone matrix M =
(Mj,k). Consider a Schrödinger operator Hǫ = A + ǫW on T, where W(v) are random
variables satisfying Assumption (POT).

We denote ζγj,ǫ = ζγv (v+) if v+ has label j. Though the function ζγv (v+) depends on both
vertices v, v+, its distribution only depends on the type of v+, which justifies the notation.

We assume that the minimal degree is at least 3. We also denote P = ⊗v∈T ν and E
the corresponding expectation.

Fix δ ∈ (0, 1). We introduce

(4.3) σǫac(δ) = {λ ∈ R : P(| Im ζλ+iη
j,ǫ | > δ) > δ ∀j = 1, . . . ,m, ∀η ∈ (0, 1)} .

Following the strategy in [3, Section D], one may prove the following result :

Assume (POT) holds and let s ≥ 1. Then for any bounded I ⊆ σǫac(δ), we have

(4.4) sup
λ∈I

sup
η∈(0,1)

max
j=1,...,m

E
Ä
| Im ζλ+iη

j,ǫ |−s
ä
≤ CI,δ,s <∞ .

This statement essentially means that (Green) holds over σǫac(δ). However, it is not
known in general if σǫac(δ) is a large set, so we now explore it further for specific trees.

Following [32], we let

Σ =
⋃¶

U ⊂ R open : ∀ j = 1, . . . ,m, γ 7→ −ζγj,0 from C
+ → C

+ can be extended

to a unique continuous function C
+ ∪ U → C

+
©
.

By Proposition 4.2, if T satisfies (C1), then Σ ⊇ σ(AT) \ Ic,C .
We introduce an additional assumption on T :

(C2) for each k ∈ A, there is k′ with Mk,k′ ≥ 1 such that for any l ∈ A : Mk,l ≥ 1 implies
Mk′,l ≥ 1.

According to the results of Keller, Lenz and Warzel [32], if conditions (C1) and (C2) hold,
then for any compact I ⊂ Σ and p > 1, we have limǫ−→0 supγ∈I+i(0,1] E(|ζγj,ǫ − ζγj,0|p) = 0

for any j. Combined with the argument in our paper [11, Proposition 2.2], this implies
that I ⊆ σǫac(δ) for some δ > 0 if ǫ > 0 is small enough. Summarizing, we have the
following.

Assume T satisfies conditions (C1) and (C2). Consider the random Schrödinger op-

erator Hǫ = A + ǫW, with the law of W satisfying (POT). Then for any compact

I ⊂ σ(A) \ Ic,C , the moment bounds (4.4) hold on I if ǫ > 0 is small enough.

As an example, consider the tree T defined by the neighbour matrix AN =

ñ
a b
c d

ô
with

all entries non-zero. Then (T, •) corresponds to the 5× 5 matrix given at the end of § 4.3,
which satisfies (C1) and (C2) if min(a, b, c, d) ≥ 2.

5. Concluding remark

To complement Theorem 3.2, it would be nice to have some geometric information on
the quantity 〈K〉γ =

∑
x,y∈VN

K(x, y)ΦN
γ (x, y). How do the weights ΦN

γ (x, y) depend on

γ, x, y ? For instance, if R = 0 and K(x, x) = a(x), we have 〈a〉γ =
∑

x∈VN
a(x)ΦN

γ (x, x)

where ΦN
γ (x, x) is a probability measure on VN . For regular graphs, ΦN

γ (x, x) is the
uniform measure on VN , so it does not depend on γ nor on x. For irregular graphs, does
this probability measure favour vertices with high degree, on on the opposite, low degree ?
Does the answer depend on γ ?

Although a general answer seems far from hand, we can make explicit calculations
for the biregular tree Tp,q. Note that Tp,q corresponds to the neighbour matrix AN =
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ñ
0 p+ 1

q + 1 0

ô
. Let (GN ) be a sequence of (p + 1, q + 1) biregular graphs converging to

Tp,q. Note that Tp,q is the universal cover of GN for each N .
For simplicity, we only consider R ≤ 1, that is, K(x, y) is supported on the diagonal

or on nearest neighbours. For λ in the spectrum, one computes that ImGλ+i0(•,•)
ImGλ+i0(◦,◦) = p+1

q+1 ,

ImGλ+i0(•,•)
ImGλ+i0(•,◦) =

p+1
λ and ImGλ+i0(◦,◦)

ImGλ+i0(•,◦) =
q+1
λ .

Recall that 〈K〉λ+iη0 =
∑

x,y∈GN
K(x, y)

Im g̃
λ+iη0
N

(x,y)∑
x∈GN

Im g̃
λ+iη0
N

(x,x)
, where g̃γN is a “lifted”

Green function. Here, it coincides with the limiting Green function Gγ of Tp,q. In partic-

ular,
∑

x∈GN
Im g̃γN (x, x) = q+1

p+q+2N ImGλ+i0(•, •) + p+1
p+q+2N ImGλ+i0(◦, ◦). Thus,

(5.1) 〈K〉λ+i0 =
p+ q + 2

2N

·

 1

q + 1

∑

•∈GN

K(•, •) + 1

p+ 1

∑

◦∈GN

K(◦, ◦) + λ

(p+ 1)(q + 1)

∑

x∈GN ,y∼x

K(x, y)


 .

For R = 0, the last term is absent, and we note that 〈K〉λ+i0 does not depend on λ.
From the explicit expression above, we see that the probability measure ΦN

λ+i0(x, x) gives

weight p+q+2
2N(p+1) to each vertex of valency q+1, and weight p+q+2

2N(q+1) to each vertex of valency

p + 1. The total measure of vertices of valency p + 1 goes to 1/2 as N −→ +∞, and so
does the total mass of vertices of valency q + 1.

We see the influence of λ on the term corresponding to R = 1.
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