
HAL Id: hal-01637896
https://hal.science/hal-01637896v1

Submitted on 18 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DenseReg: Fully Convolutional Dense Shape Regression
In-the-Wild

Riza Alp Güler, George Trigeorgis, Epameinondas Antonakos, Patrick Snape,
Stefanos Zafeiriou, Iasonas Kokkinos

To cite this version:
Riza Alp Güler, George Trigeorgis, Epameinondas Antonakos, Patrick Snape, Stefanos Zafeiriou, et
al.. DenseReg: Fully Convolutional Dense Shape Regression In-the-Wild. 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), IEEE, CVF, Jul 2017, Honolulu, United States.
pp.6799-6808. �hal-01637896�

https://hal.science/hal-01637896v1
https://hal.archives-ouvertes.fr


DenseReg: Fully Convolutional Dense Shape Regression In-the-Wild
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Abstract

In this paper we propose to learn a mapping from image
pixels into a dense template grid through a fully convolu-
tional network. We formulate this task as a regression prob-
lem and train our network by leveraging upon manually an-
notated facial landmarks “in-the-wild”. We use such land-
marks to establish a dense correspondence field between
a three-dimensional object template and the input image,
which then serves as the ground-truth for training our re-
gression system. We show that we can combine ideas from
semantic segmentation with regression networks, yielding a
highly-accurate ‘quantized regression’ architecture.

Our system, called DenseReg, allows us to estimate
dense image-to-template correspondences in a fully convo-
lutional manner. As such our network can provide useful
correspondence information as a stand-alone system, while
when used as an initialization for Statistical Deformable
Models we obtain landmark localization results that largely
outperform the current state-of-the-art on the challenging
300W benchmark. We thoroughly evaluate our method on
a host of facial analysis tasks, and demonstrate its use for
other correspondence estimation tasks, such as the human
body and the human ear. DenseReg code is made available
at http://alpguler.com/DenseReg.html along
with supplementary materials.

1. Introduction
Non-planar object deformations, e.g. due to facial pose

or expression, result in challenging but also informative sig-
nal variations. Our objective in this paper is to recover this
information in a feedforward manner by employing a dis-
criminatively trained convolutional network. Motivated by
the gap between discriminatively trained systems for detec-
tion and category-level deformable models, we propose a
system that combines the merits of both.

In particular, discriminative learning-based approaches
typically pursue invariance to shape deformations, for in-
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Figure 1: We introduce a fully convolutional neural network
that regresses from the image to a “canonical”, deformation-
free parameterization of the face surface, effectively yield-
ing a dense 2D-to-3D surface correspondence field. Once
this correspondence field is available, one can effortlessly
solve many image-level problems by backward-warping
their canonical solution from the template coordinates to
the image domain for the problems of landmark localiza-
tion, semantic part segmentation, and face transfer.

stance by employing local ‘max-pooling’ operations to el-
licit responses that are invariant to local translations. As
such, these models can reliably detect patterns irrespective
of their deformations through efficient, feedforward algo-
rithms. At the same time, however, this discards useful
shape-related information and only delivers a single cate-
gorical decision per position. Several recent works in deep
learning have aimed at enriching deep networks with infor-
mation about shape by explicitly modelling the effect of
similarity transformations [33] or non-rigid deformations
[20, 18, 9]; several of these have found success in classi-
fication [33], fine-grained recognition [20], and also face
detection [9]. There are works [24, 36] that model the de-
formation via optimization procedures, whereas we obtain
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it in a feedforward manner and in a single shot. In these
works, shape is treated as a nuisance, while we treat it as the
goal in itself. Recent works on 3D surface correspondence
[31, 4] have shown the merit of CNN-based unary terms
for correspondence. In our case we tackle the much more
challenging task of establishing a 2D to 3D correspondence
in the wild by leveraging upon recent advances in semantic
segmentation [10]. To the best of our knowledge, the task of
explicitly recovering dense correspondence in the wild has
not been addressed yet in the context of deep learning.

By contrast, approaches that rely on Statistical De-
formabe Models (SDMs), such as Active Appearance Mod-
els (AAMs) or 3D Morphable Models (3DMMs) aim at
explicitly recovering dense correspondences between a
deformation-free template and the observed image, rather
than trying to discard them. This allows to both represent
shape-related information (e.g. for facial expression analy-
sis) and also to obtain invariant decisions after registration
(e.g. for identification). Explicitly representing shape can
have substantial performance benefits, as is witnessed in the
majority of facial analysis tasks requiring detailed face in-
formation e.g. landmark localisation [39], 3D pose estima-
tion, as well as 3D face reconstruction “in-the-wild” [22],
where SDMs consitute the current state of the art.

However SDM-based methods are limited in two re-
spects. Firstly they require an initialization from exter-
nal systems, which can become increasingly challenging
for elaborate SDMs: both AAMs and 3DMMs require at
least a bounding box as initialization and 3DMMs may fur-
ther require position of specific facial landmarks. Further-
more, SDM fitting requires iterative, time-demanding opti-
mization algorithms, especially when the initialisation is far
from the solution. The advent of Deep Learning has made
it possible to replace the iterative optimization task with it-
erative regression problems [42], but this does not alleviate
the need for initialization and multiple iterations.

In this work we aim at bridging these two approaches,
and introduce a discriminatively trained network to obtain,
in a fully-convolutional manner, dense correspondences be-
tween an input image and a deformation-free template co-
ordinate system.

In particular, we exploit the availability of manual facial
landmark annotations “in-the-wild” in order to fit a 3D tem-
plate; this provides us with a dense correspondence field,
from the image domain to the 2-dimensional, U − V pa-
rameterization of the face surface. We then train a fully
convolutional network that densely regresses from the im-
age pixels to this U − V coordinate space.

This provides us with dense and fine-grained corre-
spondence information, as in the case of SDMs, while at
the same time being independent of any initialization pro-
cedure, as in the case of discriminatively trained ‘fully-
convolutional’ networks. We demonstrate that the perfor-

mance of certain tasks, such as facial landmark localisation
or segmantic part segmentation, is largely improved by us-
ing the proposed network.

Even though the methodology is general, this paper is
mainly concerned with human faces. The architecture for
the case of human face is described in Fig. 1.

Our approach can be seen in two complementary man-
ners: first, it provides a stand-alone, feedforward alterna-
tive to the combination of initialization with iterative fitting
typically used in SDMs. This allows us to have a feedfor-
ward system that solves both the detection and correspon-
dence problems at approximate 7 − 8 frames per second
for a 300 × 300 input image. Secondly, our approach can
also be understood as an initialization procedure for SDMs
which gets them started from a much more accurate position
than the bounding box, or landmark-based initializations
currently employed in the face analysis literature. When
taking this approach we observe substantial gains over the
current state-of-the-art systems.

We can summarize our contributions as follows:

We introduce the task of dense shape regression in the
setting of CNNs, and exploit the SDM-based notion of a
deformation-free UV-space to construct target ground-truth
signals (Sec.2).

We propose a carefully-designed fully-convolutional shape
regression system that exploits ideas from semantic seg-
mentation and dense regression networks. Our quantized
regression architecture (Sec.3) is shown to substantially
outperform simpler baselines that consider the task as a
plain regression problem.

We use dense shape regression to jointly tackle a multitude
of problems, such as landmark localization or semantic seg-
mentation. In particular, the template coordinates allow us
to ‘copy’ multiple annotations constructed on a single tem-
plate system, and thereby tackle multiple problems in a sin-
gle go.

We use the regressed shape coordinates for the initializa-
tion of SDMs; systematic evaluations on facial analysis
benchmarks show that this yields substantial performance
improvements on tasks ranging from landmark localization
to semantic segmentation.

We demonstrate the generic nature of the method by ap-
plying it to the task of estimating dense correspondence for
human bodies and ears.

2. From SDMs to Dense Shape Regression

Following the deformable template paradigm [50, 17],
we consider that object instances are obtained by deforming
a prototypical object, or ‘template’, through dense deforma-
tion fields. This makes it possible to factor object variability
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Figure 2: Ground-truth generation: (a) Annotated land-
marks. (b) Template shape morphed based on the land-
marks. (c) Deformation-free coordinates (uh and uv), ob-
tained by unwrapping the template shape, transferred to im-
age domain.

within a category into variations that are associated to defor-
mations, generally linked to the object’s 2D/3D shape, and
variations that are associated to appearance (or, ‘texture’ in
graphics), e.g. due to facial hair, skin color, or illumination.

This factorization largely simplifies the modelling task.
SDMs use it as a stepping stone for the construction of
parametric models of deformation and appearance. For
instance, in AAMs a combination of Procrustes Analysis,
Thin-Plate Spline warping and PCA is the standard pipeline
for learning a low-dimensional linear subspace that captures
category-specific shape variability [13]. Even though we
have a common starting point, rather than trying to con-
struct a linear generative model of deformations, we treat
the image-to-template correspondence as a vector field that
our network tries to regress.

In particular, we start from a template X =
[x>1 ,x

>
2 , ...x

>
m]> ∈ R, where each xj ∈ R3 is a vertex

location of the mesh in 3D space. This template could be
any 3D facial mesh, but in practice it is most useful to use
a topology that is in correspondence with a 3D statistical
shape model such as [2] or [35]. We compute a bijective
mapping ψ, from template mesh X to the 2D canonical
space U ∈ R2×m, such that

ψ(xj) 7→ uj ∈ U , ψ−1(uj) 7→ xj . (1)

The mapping ψ is obtained via the cylindrical unwrapping
described in [3]. Thanks to the cylindrical unwrapping,
we can interpret these coordinates as being the horizontal
and vertical coordinates while moving on the face surface:
uhj ∈ [0, 1] and uvj ∈ [0, 1]. Note that this semantically
meaningful parameterization has no effect on the operation
of our method.

We exploit the availability of landmark annotations “in
the wild”, to fit the template face to the image by obtain-
ing a coordinate transformation for each vertex xj . We use
the fittings provided by [52] which were fit using a modi-
fied 3DMM implementation [38]. However, for the purpose
of this paper, we require a per-pixel estimate of the loca-
tion in UV space on our template mesh and thus do not re-
quire an estimate of the projection or model parameters as
required by other 3D landmark recovery methods [22, 52].

The per-pixel UV coordinates are obtained through rasteri-
zation of the fitted mesh and non-visible vertices are culled
via z-buffering. As illustrated in fig:GT, once the transfor-
mation from the template face vertices to the morphed ver-
tices is established, the uj coordinates of each visible vertex
on the canonical face can be transferred to the image space.
This establishes the ground truth signal for our subsequent
regression task.

3. Fully Convolutional Dense Shape Regression
Having described how we establish our supervision sig-

nal, we now turn to the task of estimating it through a con-
volutional neural network (CNN). Our aim is to estimate at
any image pixel that belongs to a face region the values of
u = [uh, uv]. We need to also identify non-face pixels, e.g.
by predicting a ‘dummy’ output.

One can phrase this problem as a generic regression task
and attack it with the powerful machinery of CNNs. Un-
fortunately, the best performance that we could obtain this
way was quite underwhelming, apparently due to the task’s
complexity. Our approach is to quantize and estimate the
quantization error separately for each quantized value. In-
stead of directly regressing u, the quantized regression ap-
proach lets us solve a set of easier sub-problems, yielding
improved regression results.

In particular, instead of using a CNN as a ‘black box’
regressor, we draw inspiration from the success of recent
works on semantic part segmentation [43, 11], and land-
mark classification [5, 6]. These works have shown that
CNNs can deliver remarkably accurate predictions when
trained to predict categorical variables, indicating for in-
stance the facial part or landmark corresponding to each
pixel.

Building on these successes, we propose a hybrid
method that combines a classification with a regression
problem. Intuitively, we first identify a coarser face re-
gion that can contain each pixel, and then obtain a refined,
region-specific prediction of the pixel’s U − V field. As we
will describe below, this yields substantial gains in perfor-
mance when compared to the baseline of a generic regres-
sion system.

We identify facial regions by using a simple geometric
approach. We tesselate the template’s surface with a carte-
sian grid, by uniformly and separately quantizing the uh and
uv coordinates into K bins, where K is a design parameter.
For any image that is brought into correspondence with the
template domain, this induces a discrete labelling, which
can be recovered by training a CNN for classification.

On Fig. 4, the tesselations of different granularities are
visualized. For a sufficiently large value of K even a plain
classification result could provide a reasonable estimate of
the pixel’s correspondence field, albeit with some staircas-
ing effects. The challenge here is that as the granularity of
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Figure 3: Proposed Quantized Regression Approach for the horizontal correspondence signal: The continuous signal is
regressed by first estimating a grossly quantized (or, discretized) function through a classification branch. For each quantized
value q̂h we use a separate residual regression unit’s prediction, r̂hq̂h , effectively multiplexing the different residual predictions.
These are added to the quantized prediction, yielding a smooth and accurate correspondence field.

these discrete labels becomes increasingly large, the amount
of available training data decreases and label complexity in-
creases. A more detailed analysis on the effect of label-
space granularity to segmentation performance is provided
in supplementary materials.

We propose to combine powerful classification results
with a regression problem that will yield a refined corre-
spondence estimate. For this, we compute the residual be-
tween the desired and quantized U−V coordinates and add
a separate module that tries to regress it. We train a separate
regressor per facial region, and at any pixel only penalize
the regressor loss for the responsible face region. We can
interpret this form as a ‘hard’ version of a mixture of re-
gression experts [21]. This interpretation is further elabo-
rated upon in the supplementary material.

The horizontal and vertical components uh, uv of the
correspondence field are predicted separately. This results
in a substantial reduction in computational and sample com-
plexity - For K distinct U and V bins we have K2 regions;
the classification is obtained by combining 2 K-way clas-
sifiers. Similarily, the regression mapping involves K2 re-
gions, but only uses 2K one-dimensional regression units.
The pipeline for quantized face shape regression is provided
in Fig. 3.

We now detail the training and testing of this network;
for simplicity we only describe the horizontal component
of the mapping. From the ground truth construction, every
position x is associated with a scalar ground-truth value uh.

Figure 4: Horizontal and vertical tesselations obtained us-
ing K = 2, 4 and 8 bins.

Rather than trying to predict uh as is, we transform it into a
pair of discrete qh and continuous rh values, encoding the
quantization and residual respectively:

qh = bu
h

d
c, rhi =

(
uhi − qhi d

)
, (2)

where d = 1
K is the quantization step size (we consider

uh, uv coordinates to lie in [0, 1]).
Given a common CNN trunk, we use two classifica-

tion branches to predict qh, qv and two regression branches
to predict rh, rv as convolution layers with kernel size
1 × 1. As mentioned earlier, we employ separate regres-
sion functions per region, which means that at any posi-
tion we have K estimates of the horizontal residual vector,
r̂hi , i = 1, . . . ,K.

At test time, we let the network predict the discrete bin
q̂h associated with every input position, and then use the
respective regressor output r̂hq̂h to obtain an estimate of u:

ûh = q̂hd+ r̂hq̂h (3)

For the qh and qv , which are modeled as categorical dis-
tributions, we use softmax followed by the cross entropy
loss. For estimating r̂h and r̂v , we use a normalized version
of the smooth L1 loss [16]. The normalization is obtained
by dividing the loss by the number of pixels that contribute
to the loss.

Compared to plain regression of the coordinates, the pro-
posed method achieves much better results. In Fig.5 we
report results of an experiment that evaluates the contribu-
tion of the q-r branches separately for different granular-
ities. The results for the quantized branch are evaluated
by transforming the discrete horzintal/vertical label into the
center of the region corresponding to the quantized horizon-
tal/vertical value respectively. The results show the merit of
adopting the classification branch, as the finely quantized



results(K=40,60) yield better coordinate estimates with re-
spect to the non-quantized alternative (K=1). After K=40,
we observe an increase in the failure rate for the quantized
branch. The experiment reveals that the proposed quantized
regression outperforms both non-quantized and the best of
only-quantized alternatives.

K=1,   q+r  (0.748)

K=5,   q+r  (0.800)

K=10, q+r  (0.810)

K=20, q+r  (0.808)

K=5,   q      (0.319)

K=10, q     (0.560)

K=20, q     (0.713)

K=40, q     (0.772)

K=60, q     (0.779)

Figure 5: Performance of q and r, branches for various tes-
selation granularities, K. Areas under the curve(AUC) are
reported.

4. Experiments

Herein, we evaluate the performance of the proposed
method (referred to as DenseReg) on various face-related
tasks. In the following sections, we first describe the train-
ing setup (Sec. 4.1) and then present extensive quantitative
results on (i) semantic segmentation (Sec. 4.2), (ii) land-
mark localization on static images (Sec. 4.3), (iii) de-
formable tracking (Sec. 4.4), (iv) dense correspondence
on human bodies (Sec. 4.5), and (v) human ear landmark
localization (Sec. 4.6). Due to space constraints, we refer
to the supplementary material for additional qualitative re-
sults, experiments on monocular depth estimation and fur-
ther analysis of experimental results.

4.1. Training Setup

Training Databases. We train our system using the
3DDFA data of [52]. The 3DDFA data provides projection
and 3DMM model parameters for the Basel [35] + Face-
Warehouse [7] model for each image of the 300W database.
We use the topology defined by this model to define our UV
space and rasterize the images to obtain per-pixel ground
truth UV coordinates. Our training set consists of the LFPW
trainset, Helen trainset and AFW, thus 3148 images that are
captured under completely unconstrained conditions and
exhibit large variations in pose, expression, illumination,
age, etc. Many of these images contain multiple faces, some
of which are not annotated. We deal with this issue by em-
ploying the out-of-the-box DPM face detector of Mathias et
al. [32] to obtain the regions that contain a face for all of the
images. The detected regions that do not overlap with the
ground truth landmarks do not contribute to the loss. For

training and testing, we have rescaled the images such that
their largest side is 800 pixels.

CNN Training. For the dense regression network, we
adopt a ResNet101 [19] architecture with dilated convolu-
tions (atrous) [10, 29], such that the stride of the CNN is
8. We use bilinear interpolation to upscale both the q̂ and
r̂ branches before the losses. The losses are applied at the
input image scale and back-propagated through interpola-
tion. We apply a weight to the smooth L1 loss layers to bal-
ance their contribution. In our experiments, we have used
a weight of 40 for quantized (d = 0.1) and a weight of
70 for non-quantized regression, which are determined by a
coarse cross validation. We initialize the training with a net-
work pre-trained for the MS COCO segmentation task [27].
The new layers are initialized with random weights drawn
from Gaussian distributions. Large weights of the regres-
sion losses can be problematic at initialization even with
moderate learning rates. To cope with this, we use initial
training with a lower learning rate for a warm start for a few
iterations. We then use a base learning rate of 0.001 with
a polynomial decay policy for 20k iterations with a batch
size of 10 images. During training, each sample is ran-
domly scaled with one of the ratios [0.5, 0.75, 1, 1.25, 1.5]
and cropped to form a fixed 321× 321 input image.

4.2. Semantic Segmentation

As discussed in Sec. 2, any labelling function defined
on the template shape can be transferred to the image do-
main using the regressed coordinates. One application that
can be naturally represented on the template shape is se-
mantic segmentation of facial parts. To this end, we man-
ually defined a segmentation mask of 8 classes (right/left
eye, right/left eyebrow, upper/lower lip, nose, other) on the
template shape, as shown in Fig. 1.

GT Dense
Reg

Deep
Labv2 GT Dense

Reg
Deep
Labv2

Figure 6: Exemplar semantic segmentation results.

We compare against a state-of-the-art semantic part seg-
mentation system (DeepLab-v2) [11] which is based on the
same ResNet-101 architecture as our proposed DenseReg.
We train DeepLab-v2 on the same training images (i.e.
LFPW trainset, Helen trainset and AFW). We generate the
ground-truth segmentation labels for both training and test-
ing images by transferring the segmentation mask using
the ground-truth deformation-free coordinates explained in
Sec. 2. We employ the Helen testset [26] for the evaluation.



Table 1 reports evaluation results using the intersection-
over-union (IoU) ratio. Additionally, Fig. 6 shows some
qualitative results for both methods, along with the ground-
truth segmentation labels. The results indicate that the
DenseReg outperforms DeepLab-v2. The reported im-
provement is substantial for several parts, such as eyebrows
and lips. We believe that this result is significant given that
DenseReg is not optimized for the specific task-at-hand,
as opposed to DeepLab-v2 which was trained for seman-
tic segmentation. This performance difference can be justi-
fied by the fact that DenseReg was exposed to a richer label
structure during training, which reflects the underlying vari-
ability and structure of the problem.

Class
Methods

DenseReg Deeplab-v2
Left Eyebrow 48.35 40.57
Right Eyebrow 46.89 41.85
Left Eye 75.06 73.65
Right Eye 73.53 73.67
Upper Lip 69.52 62.04
Lower Lip 75.18 70.71
Nose 87.71 86.76
Other 99.44 99.37
Average 71.96 68.58

Table 1: Semantic segmentation accuracy on Helen testset
measured using intersection-over-union (IoU) ratio.

4.3. Landmark Localization on Static Images

DenseReg can be readily used for the task of facial land-
mark localization on static images. Given the landmarks’
locations on the template shape, it is straightforward to esti-
mate the closest points in the deformation-free coordinates
on the images. The local minima of the Euclidean distance
between the estimated coordinates and the landmark coordi-
nates are considered as detected landmarks. In order to find
the local minima, we simply analyze the connected compo-
nents separately. Even though more sophisticated methods
for covering “touching shapes” can be used, we found that
this simplistic approach is sufficient for the task.

Note that the closest deformation-free coordinates
among all visible pixels to a landmark point is not necessar-
ily the correct corresponding landmark. This phenomenon
is called “landmark marching” [53] and mostly affects the
jaw landmarks which are dependent on changes in head
pose. It should be noted that we do not use any explicit su-
pervision for landmark detection nor focus on ad-hoc meth-
ods to cope with this issue. Errors on jaw landmarks due
to invisible coordinates and improvements thanks to de-
formable models can be observed in Fig. 8.

Herein, we evaluate the landmark localization perfor-
mance of DenseReg as well as the performance obtained

by employing DenseReg as an initialization for deformable
models [34, 44, 1, 42] trained for the specific task. In the
second scenario, we provide a slightly improved initializa-
tion with very small computational cost by reconstructing
the detected landmarks with a PCA shape model that is con-
structed from ground-truth annotations.

We present experimental results using the very challeng-
ing 300W benchmark. This is the testing database that was
used in the 300W competition [40, 39] - the most impor-
tant facial landmark localization challenge. The error is
measured using the point-to-point RMS error normalized
with the interocular distance and reported in the form of
Cumulative Error Distribution (CED). Figure 7 (bottom)
presents some self-evaluations in which we compare the
quality of initialization for deformable modelling between
DenseReg and two other standard face detection techniques
(HOG-SVM [23], DPM [32]). The employed deformable
models are the popular generative approach of patch-based
Active Appearance Models (AAM) [34, 44, 1], as well as
the current state-of-the-art approach of Mnemonic Descent
Method (MDM) [42]. It is interesting to notice that the per-
formance of DenseReg without any additional deformable
model on top, already outperforms even HOG-SVM detec-
tion combined with MDM. Especially when DenseReg is

DPM + AAM

DPM + MDM

HOG-SVM + AAM

HOG-SVM + MDM

DenseReg + AAM
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Figure 7: Landmark localization results on the 300W test-
ing dataset using 68 points. Accuracy is reported as Cumu-
lative Error Distribution of RMS point-to-point error nor-
malized with interocular distance. Top: Comparison with
state-of-the-art. Bottom: Self-evaluation results.



Input Image Groundtruth U (uh) Estimated U (ûh) Groundtruth V (uv) Estimated V (ûv) DenseReg DenseReg+MDM

Figure 8: Qualitative Results. Ground-truth and estimated deformation-free coordinates and landmarks obtained from
DenseReg and DenseReg+MDM are presented. Estimated landmarks(blue), ground-truth(green), lines between estimated
and ground-truth landmarks(red).

combined with MDM, it greatly outperforms all other com-
binations.

Method AUC Failure Rate (%)
DenseReg + MDM 0.5219 3.67
DenseReg 0.3605 10.83
Fan et al. [15] 0.4802 14.83
Deng et al. [14] 0.4752 5.5
Martinez et al. [30] 0.3779 16.0
Cech et al. [8] 0.2218 33.83
Uricar et al. [46] 0.2109 32.17

Table 2: Landmark localization results on the 300W testing
dataset using 68 points. Accuracy is reported as the AUC
and the Failure Rate.

Figure 7 (top) compares DenseReg+MDM with the re-
sults of the latest 300W competition [39]. We greatly out-
perform all competitors by a large margin. It should be
noted that the participants of the competition did not have
any restrictions on the amount of training data employed
and some of them are industrial companies (e.g. Fan et
al. [15]), which further illustrates the effectiveness of our
approach. Finally, Table 2 reports the area under the curve
(AUC) of the CED curves, as well as the failure rate for a
maximum RMS error of 0.1. Apart from the accuracy im-
provement shown by the AUC, we believe that the reported
failure rate of 3.67% is remarkable and highlights the ro-
bustness of DenseReg.

4.4. Deformable Tracking

For the challenging task of deformable face tracking
on lengthy videos, we employ the testing database of the

Method AUC Failure Rate (%)
DenseReg + MDM 0.5937 4.57
DenseReg 0.4320 8.1
Yang et al. [49] 0.5832 4.66
Xiao et al. [48] 0.5800 9.1
Rajamanoharan et al. [37] 0.5154 9.68
Wu et al. [47] 0.4887 15.39
Unicar et al. [45] 0.4059 16.7

Table 3: Deformable tracking results against the state-of-
the-art on the 300VW testing dataset using 68 points. Ac-
curacy is reported as AUC and the Failure Rate.

300VW challenge [41, 12] - the only existing benchmark
for deformable tracking “in-the-wild”. The benchmark con-
sists of 114 videos (∼ 218k frames in total) and includes
videos captured in totally arbitrary conditions (severe occlu-
sions and extreme illuminations). The tracking is performed
based on sparse landmark points, thus we follow the same
strategy as in the case of landmark localization in Sec. 4.3.

We compare the output of DenseReg, as well as
DenseReg+MDM which was the best performing combina-
tion for landmark localization in static images (Sec. 4.3),
against the participants of the 300VW challenge. Table 3
reports the AUC and Failure Rate measures. DenseReg
combined with MDM demonstrates better performance than
the winner of the 300VW competition. It should be high-
lighted that our approach is not fine-tuned for the task-at-
hand as opposed to the rest of the methods that were trained
on video sequences and most of them make some kind of
temporal modelling. Finally, similar to the 300W case,
the participants were allowed to use unlimited training data



(apart from the provided training seuqences), as opposed to
DenseReg (and MDM) that were trained only on the 3148
images mentioned in Sec. 4.1. Please refer to the supple-
mentary material for a more detailed presentation of the
tracking results.

4.5. Dense Correspondence for the Human Body

To portray that the DenseReg system can be used for ar-
ticulated shapes of complex topology, we present results on
the human shape. We use the recently proposed ”Unite the
People” (UP) dataset [25], which provides a 3D deformable
human shape model [28] in correspondence with images
from several publicly available datasets. We handle the
complex geometry of the human shape by manually parti-
tioning the surface into patches. We unwrap each patch us-
ing multidimensional scaling. The partitioning replaces the
quantization and the rest of the system remains the same.
Since there are no dense correspondence results between a
3D human model and image pixels in literature, we demon-
strate the performance of our system through visual results
from our test-set partition of the UP dataset in Fig.9.

Estimated 
Patches

Groundtruth 
Patches

Estimated
UV

Groundtruth
UV

Figure 9: Dense Correspondence for human body.

4.6. Ear Landmark Localization

We have also performed experiments on the human ear.
We employ the 602 images and sparse landmark annota-
tions that were generated in a semi-supervised manner by

Zhou et al. [51]. Due to the lack of a 3D model of the
human ear, we apply Thin Plate Splines to bring the im-
ages into dense correspondence and obtain the deformation-
free space. We perform landmark localization following the
same procedure as in Sec. 4.3. Quantitative results are de-
tailed in the supplementary material, where we compare
DenseReg, DenseReg+AAM and DenseReg+MDM with
alternative DPM detector based initializations. We observe
that DenseReg results are highly accurate and clearly out-
performs the DPM based alternative even without a de-
formable model. Examples for dense human ear correspon-
dence estimated by our system are presented in Fig. 10.

Estimated Groundtruth Estimated Groundtruth Estimated Groundtruth

Figure 10: Exemplar pairs of deformation-free coordinates
of dense landmarks on human ear.

5. Conclusion

We propose a fully-convolutional regression approach
for establishing dense correspondence fields between ob-
jects in natural images and three-dimensional object tem-
plates. We demonstrate that the correspondence informa-
tion can successfully be utilised on problems that can be
geometrically represented on the template shape. Through-
out the paper, we focus on face shapes, where applications
are abundant and benchmarks allow a fair comparison. We
show that using our dense regression method out-of-the-
box outperforms a state-of-the-art semantic segmentation
approach for the task of face-part segmentation, while when
used as an initialisation for SDMs, we obtain the state-of-
the-art results on the challenging 300W landmark local-
ization challenge. We demonstrate the generality of our
method by performing experiments on the human body and
human ear shapes. We believe that our method will find
ubiquitous use, since it can be readily used for face-related
tasks and can be easily integrated into many other corre-
spondence problems.

Acknowledgements Rıza Alp Güler and Iasonas Kokkinos
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