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Abstract This study aims at characterising the adsorption-induced pore pressure
and confinement in nanoscopic pores by molecular non-local density functional
theory (DFT). Considering its important potential industrial applications, the ad-
sorption of methane in graphitic slit pores has been selected as the test case. While
retaining the accuracy of molecular simulations at pore scale, DFT has a very low
computational cost that allows obtaining highly resolved pore pressure maps as a
function of both pore width and thermodynamic conditions. The dependency of
pore pressure on these parameters (pore width, pressure and temperature) is care-
fully analysed in order to highlight the effect of each parameter on the confined
fluid properties that impact the solid matrix.

Keywords pore pressure · adsorption · microporous · density functional theory ·
methane · carbon

1 Introduction

Following the IUPAC recommendation [1,2], the pore space in porous materials
is divided into three groups according to the pore size diameters: macropores of
widths greater than 50 nm, mesopores of widths between 2 and 50 nm and mi-
cropores1 of widths less than 2 nm. Zeolites, activated carbons , tight rocks, coal
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1 The term nanopores is sometimes preferred in the Mechanics community to label pores
of width less than 2 nm. However, the 2015 IUPAC report [2] recommends that this term
embraces the three categories of pores, but with an upper limit ≈ 100 nm.
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2 David Grégoire et al.

rocks, source rocks, cement paste or construction materials are among microporous
materials. In recent years, a major attention has been paid on these microporous
materials because the surface-to-volume ratio (i.e., the specific pore surface) in-
creases with decreasing characteristic pore size. Consequently, these materials can
trap an important quantity of fluid molecules as an adsorbed phase. This is im-
portant for applications in petroleum and oil recovery, gas storage, separation,
catalysis or drug delivery.

In very small pores, the molecules of fluid are confined (molecular packing).
This effect induces that fluid-fluid and fluid-solid interactions sum at the pore scale
and has significant consequences at the macroscale, such as instantaneous swelling
or shrinkage deformation. In different contexts, these deformations may be critical.
A lot of natural and synthesised porous media are composed of a double porosity:
the microporosity where the fluid is trapped as an adsorbed phase and a meso or a
macro porosity required to ensure the transport of fluids to and from the smaller
pores. If adsorption in nanopores induces instantaneous deformations at a higher
scale, the matrix swelling may close the transport porosity, reducing the global
permeability of the porous system or annihilating the functionality of synthesised
materials. Particularly, in situ adsorption-induced coal swelling has been identi-
fied [3,4] as the principal factor leading to a rapid decrease in CO2 injectivity
during coal bed methane production enhanced by CO2 injection. Conversely, gas
desorption can lead to matrix shrinkage and microcracking, which may help oil
and gas recovery in the context of unconventional petroleum engineering [5]. The
effects of adsorbent deformation on physical adsorption has also been identified [6]
as the major challenge concerning gas porosimetry in nano-porous non-rigid mate-
rials (e.g. metal organic frameworks). In conclusion, there is now a consensus in the
community that major attention has to be focused on the coupled effects appear-
ing at the nanoscale within microporous media because they may have significant
consequences at the macroscale [7].

Experimentally, different authors tried to combine gas adsorption results and
volumetric swelling data (see e.g. [7] for a review). Pioneer works of Meehan [8]
showed the effect of carbon dioxide sorption on the expansion of charcoal but
only mechanical deformations were reported and no adsorption quantities were
measured. Later on, different authors [9,5,10,11,12,13,14] highlighted the phe-
nomenon on bituminous coals, because it is of utmost importance in the context
of CO2 geological sequestration and coal bed reservoirs exploitation. Recently,
Perrier et al. [15,16] performed simultaneous measurements of adsorbed quanti-
ties and induced strain on an activated carbon and showed that the volumetric
swelling is directly linked to the excess adsorbed quantity.

As far as modeling is concerned, standard poromechanics [17,18] links the
macroscopic strain to the total stress and the pore fluid pressure (i.e. the bulk
pressure in that case) and has led to relevant descriptions of various multiphysics
phenomena in macroporous materials. However, this classical approach fails in
describing adsorption-induced strain and predicts volumetric shrinkage instead of
volumetric swelling for these microporous materials [19]. Such classical framework
needs to be extended to take into account the fluid confinement effects present
within the nanopores. Especially, molecular packing induces a deviation of the
pore fluid pressure from its bulk value, the difference being most often denoted
as solvation force or pressure [20]. The effect of this modified pore fluid pressure
on the pore walls has to be characterized at the pore scale and upscaled to rep-
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resent macroscopic swelling strain. Molecular simulations are the classical tools
to represent the distribution of molecules due to fluid-fluid and fluid-solid inter-
actions at the nanoscale. Different authors used Monte Carlo simulation tools to
study the pore fluid pressure profiles within nanopores. Do and coworkers per-
formed Grand Canonical Monte Carlo simulations for argon [21,22], methane and
methanol [23] in slit-shaped micropores with movable solid layers to compute the
pore pressures and corresponding deformations. Kowalczyk and coworkers studied
adsorption-induced deformation of microporous carbons filled with carbon diox-
ide [24,25] and near-critical argon [26]. These investigations showed that pressures
applied on the pore surfaces may be very high (few hundred of MPa), depend-
ing on the thermodynamic conditions and on the pore sizes. However, even if
macroscopic adsorption isotherms may be reconstructed in a consistent way from
molecular simulations through the material pore size distribution [27], molecular
simulations are not a tractable nor an efficient tool to predict resulting defor-
mations at a macroscale in a complex material. Hence, enhanced poromechanics
framework have been developed [19,28,16,29] to obtain semi-analytical efficient
and tractable tools capable to predict macroscopic strain induced by adsorption
in homogeneous microporous materials. In these formulations, the fluid confine-
ment is macroscopically deduced from experimental measurements of adsorbed
quantities and not from the thermodynamic state of the fluid at the nanoscale.
For micro-to-macro heterogeneous porous media, the fluid confinement cannot be
deduced from experimental measurement and new strategies have to be proposed.

If molecular simulations are too time consuming to be coupled with porome-
chanical models or macroscopic numerical simulations, an elegant and relevant
alternative approach consists in estimating the fluid confinement with a molecular
density functional theory (DFT)2. It has been already shown [32,33] that non-
local DFT is as accurate as molecular simulations to estimate density profiles of
real fluids in nanopores but with a very lower computational cost. Another key
feature is that DFT is written in a continuum framework and then may be coupled
more easily with continuum poromechanics theory than discrete simulations re-
sults. Balbuena et al. [34] proposed a theoretical study based on DFT to estimate
the solvation pressure of Lennard-Jones fluids in slit micropores. At low pressure
and low temperature conditions, Neimark and co-workers [35,36,37] or Ustinov
and Do [38] used different DFT variations to estimate the solvation pressure (e.g.
for porous media characterisation purposes). To our knowledge, only one article in
the literature proposes to apply this strategy on a large range of temperature and
pressure [39] by studying the adsorption of methane on natural coals at geological
conditions.

This paper aims at using a non-local density functional theory combined with a
powerful equation-of-state in order to obtain highly-resolved pore pressure maps as
a function of bulk pressure and pore width at different temperatures. The proposed
method allows to better characterise the complex pore pressure behaviour for
large thermodynamic conditions on the whole range of micropore widths even
for complex fluids. This is the first step to provide a unified theory from nano to
macro scales that links adsorption of the fluid in the nanopores to the macroscopic
deformation of the material.

2 A comprehensive description of DFT and its applications can be found in the review of
Evans [30] or the monograph of Davis [31].
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2 Theory

2.1 Brief overview of NLDFT

The version of the Non-Local Density Functional Theory (NLDFT) used in this
work has been fully described in Malheiro et al. [32]. Therefore, the discussion on
this theory will be limited to its most significant features here.

Let us consider a fluid of chemical potential µ at temperature T in a volume V .
In the density functional theory (DFT) framework [30], the grand thermodynamic
potential Ω of an inhomogeneous fluid in an external field in the grand canonical
ensemble (µ, V, T ) is given by:

Ω[ρ] = A[ρ]−
N∑
i=1

∫
V

ρi(x)[µbi − V exti (x)]dx . (1)

In Eq. (1), Ω is the grand thermodynamic potential, A is the Helmholtz free
energy, ρ = (ρ1, ..., ρN ) is the vector of the different molecular densities of the N

species of the inhomogeneous fluid, which depend on the position vector x, V exti is
an external field (e.g. a fluid/solid interaction potential), µbi is the bulk chemical
potential of the specie i.

The minimization of this grand potential leads to the Euler-Lagrange equations
that allow computing the density distributions of the fluid at equilibrium:

δΩ[ρ]

δρi
=
δA[ρ]

δρi
− µbi + V exti = 0 ∀i ∈ [1, N ] . (2)

In Eq. (2), (Ω,A are the volumetric grand thermodynamic potential and the vol-
umetric Helmholtz free energy respectively.

In this work, the SAFT-VR equation of state [40] has been used as the ther-
modynamic model to compute both the properties of the bulk fluid phase and
the chemical potential at equilibrium and as the bulk limit to build the inhomo-
geneous Helmholtz free energy. In this work, we deal with methane, a fluid of
non-associating spherical monomers of diameter σ, with a mean-field (MF) ap-
proximation, i.e. the correlations due to the long-range attractive interactions are
neglected. In that case, the Helmholtz free energy functional is given by:

A[ρ] =

∫
V

A[ρ(x)]dx = Aideal[ρ]︸ ︷︷ ︸
ideal
part

+ AHS[ρ]︸ ︷︷ ︸
hard sphere
contribution

+Alr
1 [ρ] +Asr

1 [ρ] +A2[ρ]︸ ︷︷ ︸
dispersive part

. (3)

In Eq. (3):

– Aideal is the ideal part and is exactly known as:

Aideal[ρ] = kBT
N∑
i=1

∫
V

ρi(x)
(

ln[ρi(x)Λ3
i ]− 1

)
dx . (4)

In Eq. (4), kB is the Boltzmann constant and Λi is the thermal de Broglie
wavelength.
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– The hard sphere contribution AHS is computed non locally with the modified
fundamental measure theory (MFMT) [41,42] taking into account scalar and
vectorial contributions:

AHS[ρ] = kBT

∫
V

(
ΦHS,s[ρ(x)] + ΦHS,v[ρ(x)]

)
dx (5)

with 
ΦHS,s = −n0 ln(1− n3) + n1n2

1−n3
+

n3
2 ln(1−n3)

36πn2
3

ΦHS,v =
n4n5

1−n3
− n2n5n5 ln(1−n3)

12πn2
3

− n2n5n5

12πn3 ln(1−n3)2

(6)

and 
∀α ∈ [0, 3], nα[ρ(x)] =

N∑
i=1

∫
V
ρi(ξ)wα(‖x− ξ‖)dξ

∀β ∈ [4, 5], nβ [ρ(x)] =
N∑
i=1

∫
V
ρi(ξ)wβ(x− ξ)dξ

(7)

wherew0(r) = 1
πσ2 δ(

σ
2 − r) , w1(r) = 1

2πσ δ(
σ
2 − r) , w2(r) = δ(σ2 − r) ,

w3(r) = H(σ2 − r) , w4(r) = r
2πσr δ(

σ
2 − r) , w5(r) = r

r δ(
σ
2 − r) .

(8)

In Eq. (8), δ and H are respectively the Dirac and the Heaviside functions.

– The dispersive part encompasses a first-order and a second-order monomer
perturbation. The first-order monomer perturbation has been partitioned to
get on the one hand the ”short-range” contribution Asr

1 and on the other hand
the ”long-range” contribution Alr

1 that becomes the classical attractive term of
the DFT framework in the mean-field approximation [43]. We get

Alr
1 [ρ] =

1

2

N∑
i=1

N∑
j=1

∫
V

ρ(x)

(∫
V

ρ(ξ)Φatt
ij (‖x− ξ‖)dξ

)
dx . (9)

In Eq. (9), Φatt
ij is the attractive part of the square-well potential. The ”short-

range” contribution Asr
1 and the second-order monomer perturbation A2 are

estimated through a coarse-grained approach (see [32] for full details) from a
weighted density:

ρ̃(x) =
3

4πσ3

∫
V

ρ(ξ)H
(
σ − ‖x− ξ‖

)
dξ . (10)

In the following, we are considering a slit pore of width L made of two solid par-
allel graphitic surfaces and filled with methane (see Fig. 1). The external potential
V ext applied on the fluid is the sum of the Steele’s interaction potentials [44]: V ext(z) = V steele(z) + V steele(L− z)

V steele(z) = 2πεsfρsσ
2
sf∆

[
0.4
(σsf

z

)10 − (σsf

z

)4 − ( σ4
sf

3∆(z+0.61∆)3

)]
(11)

http://dx.doi.org/10.1007/s00161-017-0602-x
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Fig. 1 Schematic view of a slit pore filled with methane.
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Fig. 2 Density profiles of methane in carbon slit pores at T = 353 K and P = 6 MPa
with different pore sizes. (lines): NLDFT modeling; (symbols) : GCMC molecular simulations
(Adapted from [32]).

In Eq. (11), ρs = 114 molecules/m3 is the density of graphite, ∆ = 0.335 nm is the
space between two layers of graphite constituting the wall [45]. (σ, ε) are respec-
tively the collision diameter and the depth of the well potential. σsf and εsf are
the solid-fluid interaction parameters determined by the Lorentz-Berthelot rules
σsf =

σss+σff

2 and εsf =
√
εssεff . (σff , εff ) are the fluid monomer parameters

in the SAFT-VR theory and (σss, εss) are the solid parameters.

As shown in Malheiro et al. [32] and reprinted in Fig. 2, molecular simula-
tions have been used to validate the methane’s density profiles obtained with the
NLDFT framework presented above in the full micropores range.
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2.2 Pore pressure estimation

The grand thermodynamic potential of a fluid confined in a slit-like pore of width
L between two parallel plates of surface A0 being [46]:

dΩ = −SdT −
∑
i

Nidµi + 2γdA0 −ΠfA0dL , (12)

the pressure Πf is:

Πf = − 1

A0

(
∂Ω

∂L

)
T,A0,µi

. (13)

Thus defined, Πf becomes equal to the bulk pressure Pb when L → ∞. It is
the sum of two contributions Πf = Pb + fs, fs being the solvation pressure as
introduced by Hansen and McDonald [46] that vanishes when L → ∞. One can
demonstrate (see Appendix A for a complete development) from Eqs. (1) and (13)
that:

Πf = −
L∫

0

ρ(z)
∂V ext(z, L)

∂L
dz . (14)

In case of a Steele-type external potential (see Eq. (11)), we get also:

Πf = −
L∫

0

ρ(z)
∂V steele

∂z
(z)dz . (15)

Eq. (15) is in agreement with Eq. (6.5.5) of Hansen and McDonald’s book [46]
or [34]. Thus, the pressure inside a slit-like pore can be computed with Eq. (15)
as soon as the density profiles have been computed with the NLDFT.

3 Results and discussion

The pore pressure Πf has been computed in the whole range of micropores (
L < 2 nm), for pressures up to 20 MPa at three temperatures : 303, 373 and
443 K. As an example, the 3D map of Πf = f(L,Pb) at 373 K is plotted in
Fig. 3 whereas the 3D maps corresponding to the other temperatures are plot-
ted in appendix B (Fig. 10). Animated versions of these 3D maps are given as
supplementary materials.

These maps Πf = f(L,Pb) clearly highlight that the pore pressure is a complex
function of both pore size and thermodynamic conditions and that its variation
is far from being obvious. Indeed, it depends on an intricate interplay between
fluid-solid and fluid-fluid interactions; the first ones being highly dependent on
the distance between pore walls (given an adsorbent-adsorbate pair) and the lat-
est ones on the thermodynamic conditions (pressure and temperature). As already
observed in some molecular simulations [21,23] and DFT [35,39] calculations in
idealised slit or cylindrical pores, the pore pressure oscillates as a function of pore
width as a result of commensurate or incommensurate packing. As mentioned in
the Introduction, this behaviour has already been presented in the literature with
molecular simulations. However, the calculation speed of thermodynamic theories

http://dx.doi.org/10.1007/s00161-017-0602-x
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Fig. 3 Pore pressure as a function of bulk pressure and pore size at 373 K.

such as NLDFT compared to molecular simulations allows drawing complete maps
of pore pressure for wide thermodynamic conditions and pore ranges. Pore pres-
sures can reach extremely high values in the ultramicropores range. For the largest
micropores, the difference between the pore and bulk pressures becomes negligible,
the pores being filled with methane at a nearly bulk state, except for the layers
on contact with the solid walls. Moreover, the pore pressure successively increases
or decreases with bulk pressure depending on the considered pore width range, as
better illustrated in the 2D plots of Fig. 4. As shown in Fig. 4 for L < 0.72 nm, the
pores exhibit only positive pore pressure, and so positive adsorption stress causing
expansion. This range of widths corresponds to pores able to accommodate only
one fluid layer. On the contrary, for L > 0.72, i.e. for pores accommodating at
least two overlapping layers, one can observe a transition from initial negative pore
pressure to positive ones with increasing bulk pressures. This behaviour reflects
the competition between fluid-solid interactions predominant at low pressures and
fluid-fluid interactions that dominate at the highest pressures. Finally, one can see
in Fig. 4 that, at a given bulk pressure, Πf successively oscillates as a function
of pore width, thus reflecting packing effects for such parallel ideal solid surfaces.
This behaviour is better illustrated in Fig. 5 where Πf is plotted as a function of
pore width at different bulk pressures at T = 373 K.

As can be seen in Fig. 5, when L increases, the pore pressure exhibits an oscil-
latory decay similar to the one of the pair correlation function, giving successively
repulsive or attractive force on the surface of the solid walls. Even if the oscilla-
tions of Πf reflect the layers formation in the case of infinite parallel smooth walls,
the same behavior has been observed in slit micropores of finite length [47] or of
heterogeneous surface [39]. For the largest micropores (L > 1.5 nm), the packing
effects become negligible and there is no more additional stress applied on the
surfaces. A quantitative comparison cannot be done with the previous results of
Kopanichuk et al. [47] and Yang et al. [39], due to the differences between both the
fluid and the solid representations. However, the solvation pressure evolutions pre-
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Fig. 4 Pore pressure computed with Eq. (15) as a function of bulk pressure at 373 K depicted
for various pore ranges.

sented here have features in perfect qualitative agreement with the works of these
authors. Indeed, on the one hand, Kopanichuk et al. performed GCMC simulations
in finite length graphitic slit pores. They obtained the same oscillatory but less
pronounced behavior of the solvation pressure because, as they mentioned, fluid
adsorption in narrow finite slits is partially depressed in compared to the infinite
ones. On the other hand, in the work of Yang et al., methane is represented in a
simpler manner (LJ pair-wise interactions) than it is done with a NLDFT-SAFT
formalism. The principal consequence is that the densities computed by Yang et al.
are underestimated at high pressure and so is the solvation pressure. For instance,
the maximum average density obtained in this work at (T = 303 K, P = 200 bar)

http://dx.doi.org/10.1007/s00161-017-0602-x
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is six times greater and consequently the solvation pressure ten times greater than
the ones obtained by Yang et al. in similar conditions.

This oscillatory decay has been previously observed for the solvation pres-
sure in liquids, theoretically and experimentally by different authors [20,48,49,50].
Israelachvili[20] proposed an exponential oscillatory decay with a pseudo-period
close to σff and a characteristic decay length equal to α×σff with α ∈ {1.2; 1.7}
for liquids. Fig. 6 presents the evolution of the estimated solvation pressure with
the normalised pore width and one can observe that the same type of exponential
decay is obtained here at T = 373 K and Pbulk = 200 bar for supercritical methane.
A characteristic exponential decay factor of α = 1.16 is recovered here. Therefore,
one can consider that for pore widths larger that 5 × α × σff ≈ 2 nm, the pore
pressure does not oscillate anymore and that the bulk pressure is fully recovered.
Moreover, Fig. 7 shows that the dependence of the characteristic exponential de-
cay factor α with the temperature is quite linear. To the authors’ knowledge, this
was never reported in the literature but only three temperatures are investigated
here and further results are needed to confirm this trend.

In addition, it is noteworthy that the extrema of the pore pressure do not ex-
actly correspond to the extrema of the average density in the pore (see Fig. 8).
Indeed, such a correspondence should only happen in the case of hard walls as ob-
served by Henderson [48] and the slight difference of position between the extrema
of pore pressure and average density is a result of the fluid-solid potential V ext.
In the literature, the maxima of Πf are often attributed to the maxima of density
occurring for the most ordered states in commensurate pores and the minima for
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the least ordered states in non-commensurate pores [20,22] maybe as a result of
less complete maps of pore pressure vs pore widths. This emphasizes the usefulness
of the calculation speed of DFTs. Fig. 8 highlights also the influence of tempera-
ture for the three different temperatures considered here (T ∈ {443, 373, 303} K).
It has already been shown in the literature [51] that the density profiles are less
structured and the mean density maxima are less pronounced when temperature
increases. This behaviour may be attributed to the increase of kinetics contribu-
tion in the free energy. We can observe here exactly the same behaviour on the
pore pressure maxima. With increasing temperature, they are less and less pro-
nounced. Moreover one can notice that the shift between pore pressure and mean
density profiles also decreases with increasing temperature. This means that this
shift is mostly driven by short range interactions whose influence decreases when
temperature and thus molecular agitation increase.

In order to have a better understanding of the relation between the pore den-
sity profiles and the induced attractive or repulsive pore pressure, it is useful to
compute the work of the pore pressure as this latter allows to distinguish stable
and unstable configurations, as shown in Fig. 9. Hence, it is demonstrated here
that the pore pressure work can be used to identify unambiguously the pore widths
that are commensurate (or non-commensurate) with the size of an adsorbent.

4 Concluding remarks

In this paper, we have shown that:

– A non-local density functional theory can be used to obtain highly resolved
3D maps of pore pressure versus pore widths and bulk pressure of methane in
graphitic slit-shaped pores at different temperatures.

– These maps clearly highlight that, even for a non polar fluid such as methane,
the pore pressure reaches very high values in the narrowest nanopores and is
a complex function of both pore width and thermodynamic conditions.

– For ultramicropores accommodating only one fluid layer, the pores exhibit only
positive pore pressure, and so positive adsorption stress causing expansion. For
larger pores accommodating at least two overlapping layers, one can observe a
transition from initial negative pore pressures to positive ones with increasing
bulk pressures. This behaviour reflects the competition between fluid-solid in-
teractions – predominant at low pressure – and fluid-fluid interactions – that
dominate at higher pressure.

– For a given bulk pressure and with increasing pore widths, an oscillatory decay
of the pore pressure is recovered giving successively repulsive or attractive
force on the surface of the solids walls. The dependence of the characteristic
exponential decay factor is linear with temperature in the range analysed here
and is the order of 1.2× σff .

– It has been also clearly highlighted that the pore pressure maxima differ from
the mean density ones.

– This oscillatory decay reflects both the molecular packing and the fluid confine-
ment. The pore pressure work distinguishes stable and unstable configurations.
Therefore, it can be used to unambiguously identify the pore widths that are
commensurate (or not-commensurate) with the size of an adsorbent.
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These conclusions emphasise the need to have a reliable continuous thermody-
namic model with a low computational cost to compute the pore fluid properties
and their impact on the solid matrix in order to be coupled with a poromechanical
model. A non-local DFT coupled with the SAFT equation-of-state can play this
role for complex fluids on wide thermodynamic conditions.

Supplementary Materials

Animated versions of Fig. 10.
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A Development of the pore pressure estimation

In the context of a slit pore of width L and surfaceA0, filled with pure methane, Eqs. (1) and (13)
may be rewritten as:

Ω(ρ) = A(ρ)−A0

L/2∫
−L/2

ρ(z)
(
µb − V ext(z)

)
dz

and Πf = − 1
A0

(
∂Ω
∂L

)
T,A0,µ

.

(16)

Therefore,

Πf = −
1

A0

(
∂A

∂L

)
T,µ,A0

+
∂

∂L

L/2∫
−L/2

ρ(z, L)
(
µb − V ext(z, L)

)
dz

︸ ︷︷ ︸
I1

(17)
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On one hand, considering µ as a constant during the process of the partial derivation by
L, we get: (

∂A

∂L

)
T,µ,A0

= 0 (18)

and

(
∂ρ

∂L

)
T,µ,A0

= 0 (19)

On a second hand, considering the substitution z = ϕ(u) = uL, we get:

Πf = I1 =
u= z

L

∂

∂L

1/2∫
−1/2

ρ(uL,L)
[
µb − V ext(uL,L)

]
Ldu (20)

=

1/2∫
−1/2

∂

∂L

{
ρ(uL,L)

[
µb − V ext(uL,L)

]
L
}
du (21)

=

1/2∫
−1/2

∂

∂L
[ρ(uL,L)µbL] du

︸ ︷︷ ︸
I2

−
1/2∫

−1/2

∂

∂L

[
ρ(uL,L)V ext(uL,L)L

]
du

︸ ︷︷ ︸
I3

. (22)

• I2 =

1/2∫
−1/2

ρ(uL,L)µbdu

︸ ︷︷ ︸
I4

+

1/2∫
−1/2

µbL
∂ρ(uL,L)

∂L
du

︸ ︷︷ ︸
I5

(23)

where

I4 =
z=uL

L/2∫
−L/2

ρ(z, L)µb

L
dz =

µb

L

L/2∫
−L/2

ρ(z, L)dz (24)

and

I5 =

1/2∫
−1/2

µbL
∂ρ(uL,L)

∂L
du =

1/2∫
−1/2

µbL

(
u
∂ρ(uL,L)

∂z
+
∂ρ(uL,L)

∂L

)
du (25)

=
z=uL

L/2∫
−L/2

µb�L
(
z

L

∂ρ(z, L)

∂z
+
∂ρ(z, L)

∂L

)
dz

�L
(26)

= µb

L/2∫
−L/2

z

L

∂ρ(z, L)

∂z
dz + µb

L/2∫
−L/2

��
��∂ρ(z, L)

∂L︸ ︷︷ ︸
see Eq. (19)

dz (27)

=
by parts

µb
�
���[ zρ
L

]L/2
−L/2

− µb

L/2∫
−L/2

ρ(z, L)

L
dz (28)

= −
µb

L

L/2∫
−L/2

ρ(z, L)dz . (29)
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Therefore

I2 = I4 + I5 = 0 . (30)

• I3 =

1/2∫
−1/2

ρ(uL,L)V ext(uL,L)du

︸ ︷︷ ︸
I7

+

1/2∫
−1/2

V ext(uL,L)L
∂ρ(uL,L)

∂L
du

︸ ︷︷ ︸
I8

+

1/2∫
−1/2

ρ(uL,L)L
∂V ext(uL,L)

∂L
du

︸ ︷︷ ︸
I9

(31)

where

I7 =
z=uL

L/2∫
−L/2

ρ(z, L)V ext(z, L)

L
dz , (32)

I8 =

1/2∫
−1/2

V ext(uL,L)L

(
u
∂ρ(uL,L)

∂z
+
∂ρ(uL,L)

∂L

)
du (33)

=
z=uL

L/2∫
−L/2

V ext(z, L)L

 z

L

∂ρ(z, L)

∂z
+

�
���∂ρ(z, L)

∂L︸ ︷︷ ︸
see Eq. (19)

 dz

L
(34)

=
by parts

��
����[

zV extρ

L

]L/2
−L/2

−
L/2∫

−L/2

ρV ext

L
dz −

L/2∫
−L/2

z

L
ρ
∂V ext

∂z
dz (35)

(36)

and

I9 =
z=uL

L/2∫
−L/2

ρ(z, L)z
∂V ext(z, L)

∂z

dz

L
+

L/2∫
−L/2

ρ(z, L)
∂V ext(z, L)

∂L
dz . (37)

Therefore

I3 = I7 + I8 + I9 =

L/2∫
−L/2

ρ(z, L)
∂V ext(z, L)

∂L
dz (38)

and

Πf = I1 = I2 − I3 = −
L/2∫

−L/2

ρ(z, L)
∂V ext(z, L)

∂L
dz (39)
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For a symmetrical external potential such as the Steele-type potential (see Eq. (11)), we
get also:

Πf = −
L∫

0

ρ(z, L)
∂V ext(z, L)

∂L
dz (40)

= −
L∫

0

ρ(z, L)
∂
(
V steele(z) + V steele(L− z))

)
∂L

dz (41)

= −
L∫

0

ρ(z, L)
∂
(
V steele(L− z)

)
∂L

dz (42)

= −
L∫

0

ρ(z, L)
∂V steele

∂z
(L− z)dz (43)

= −
L∫

0

ρ(z, L)
∂V steele

∂z
(z)dz . (44)

Finally

Πf = −
L∫

0

ρ(z, L)
∂V steele

∂z
(z)dz (45)

B Pore pressure 3D-maps at 303 K, 373, K and 443 K
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Fig. 10 Pore pressure as a function of bulk pressure and pore size at 303 K (top), 373 K
(center) and 443 K (bottom).
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