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Abstract—We are interested in the problem of the estimation of
states and some unknown parameters for a class of discrete-time
nonlinear state-space model. The class contains those nonlinear
models written using a Linear Parameter Varying (LPV) or a
quasi-LPV form. The unknown parameters appear affinely in the
LPV/quasi-LPV form. An elimination approach forms the core
of the proposed algorithm that leads to the estimation of the
parameter and then the states in a sliding measurement window.
Several examples illustrate the mechanics and the working of the
algorithm. Some insights and implications of this approach are
discussed.

I. INTRODUCTION

State-space modeling of dynamical systems offers a natural
approach to capture the characteristics of many systems. The
conditions that can guarantee the computation of the model
parameters from input-output data have been investigated
using many tools. For a large class of discrete-time nonlinear
models, difference algebra based conditions for identifiability
were formulated in [1]. Other methods for discrete-time case
include the local-state isomorphism approach [2] and the
realization theory of Affine LPV models [3].

A related situation is when a part of the parameter set is
unknown and a joint estimation of those unknown parameters
and the states of the system is required. Such scenarios arise
when the parameter values are affected by model uncertainties,
equipment faults, gradual degradation of performance etc. The
structural conditions for joint estimation of states and param-
eters include the model observability, and the identifiability a
form of identifiability condition that depends on the approach
used for the estimation. For example, one approach is to design
an extended Kalman filter (EKF) for an extended model where
the unknown, but constant parameters are added to the state
vector. These approaches have been shown practically useful
in many applications. However, they may suffer from some
structural issues, as discussed in [4].

One algebraic method of interest for the estimation of states
and/or parameters of a state-space model is that of elimination.
An elimination method takes a model in state-space form
and obtains a set of equations in inputs, outputs and their
future values (higher-order derivatives, in continuous-time)
along with a limited set of unknown/unmeasured variables
of interests while eliminating the others. In [5], an elimina-
tion theory is proposed to achieve this through the use of
differential algebra. The author illustrates how to convert a

nonlinear state-space model to a set of differential equations
in the inputs and outputs and some inequations. In [6], the
author gives a procedure that results in two sets of equations,
one that has only the inputs, outputs and their higher order
derivatives and the other set contains all those in the first set
along with state variables. The latter set allows for solving the
states as a function of inputs, outputs and their higher order
derivatives, giving a nonlinear extension to the interpretation
of observability.

In this paper, we develop an elimination approach for
models in Linear Parameter Varying (LPV) or quasi-LPV
forms with the parameters appearing affinely on the model
matrices. Over a sliding window of measurements, the al-
gorithm sequentially estimates the parameters and then the
states through elimination. Our contribution is in exploiting
the recent tools in linear algebra and consolidate them into
a full-fledged algorithm for state and parameter estimation.
In this context, the paper is organized as follows. A brief
on the recent advances in the applied mathematical tools
used in the paper is in Sec. II. The proposed elimination
approach is illustrated for a linear case in Sec. III. This is
then extended to the LPV/quasi-LPV case in Sec. IV where the
algorithm is summarized. A discussion on various aspects of
the algorithm is given in Sec. V which is followed by several
examples illustrating the algorithms in Sec. VI. Finally, the
paper concludes with some remarks in Sec. VII.

A. Notation

Some notation used in the paper were chosen for simpler
representation. X(θ) and Xθ are used to represent the de-
pendence of the matrix X on the parameter θ. If a matrix
X depends on a scheduling variable ρk in an LPV/quasi-
LPV model, it would be represented either as X(ρk) or
Xk. And if the same matrix depends on both the unknown
parameter θ and the scheduling variable ρk, the notations
X(ρk, θ) and Xθ

k are used interchangeably. The dimensions
of the variables are given by xk ∈ Rnx , uk ∈ Rnu , yk ∈ Rny ,
ρk ∈ Rnp and θ ∈ Rnθ represent the states, the inputs, the
outputs, the scheduling variables and the unknown parameters,
respectively. For individual elements within each of these
vectors, a subscript is used. For example, x1,k is the first state
in the state vector. The system matrices used are of appropriate
dimensions. I represents an identity matrix of appropriate



dimensions. The 0 entries in a matrix could correspond to
a scalar or a zero matrix of appropriate dimension.

II. PRELIMINARIES

In this section, we outline some tools and perspectives
that form the building blocks of the elimination procedure
as proposed in this paper. Nonlinear embedding techniques
such as in [7] can transform nonlinear models, under certain
conditions, to LPV and quasi-LPV forms. However, in the rest
of the paper, we assume that an LPV or a quasi-LPV model
is available.

A. Parity-space approach

Parity-space approach (or Chow-Wilsky approach) was used
for fault detection in [8], from the context of robustness
to model uncertainties. Analytical redundancy relations of
the underlying system are used to design residual generation
methods which in-turn could aid in minimizing the effects
of the uncertainties. In this paper, we propose to use some
known and derived analytical redundancy relations based on
the LPV/quasi-LPV form so as to eliminate the states of the
system.

B. Polynomial null-space

Computation of null-space of polynomial matrices has
achieved considerable attention in the last few years. A matrix
pencil based approach was initiated in [9] and has been applied
in many contexts including fault detection [10]. Non-pencil
approaches exploiting the Toeplitz structure [11] have also
been developed. Moreover, the null-space computation tools
are now integrated into the symbolic computation toolboxes in
software packages like Maple, MATLAB etc. In this paper, we
suggest two ways to map the null-space computation problem
to that of solving a set of linear equations.

III. STATE AND PARAMETER ESTIMATION THROUGH
ELIMINATION: LINEAR CASE

In this section, we discuss the proposed algorithm. The
unknown parameters are assumed to appear affine on the
matrices A and B such that for a linear case,

Aθ = A0 +

nθ∑
i=1

θiĀi

Similarly for B. To illustrate the steps of the algorithm, this
section elaborates it for a case where the underlying model is
linear with a scalar unknown parameter such that,

xk+1 = Aθxk +Bθuk

yk = Cxk (1)

with

Aθ = A0 + θĀ, Bθ = B0 + θB̄ (2)

where the entries of the matrices A0, Ā, B0, B̄ are constant.

A. Observability forms

The proposed algorithm estimates the unknown parameters
and the states within a given measurement window of size
N . For a given measurement window, the dynamical model
could be represented to reflect the relationship between the
inputs and the measurements available during the measurement
window with the states and unknown parameters. Two such
relationships, termed as Observability forms are described
here.

1) Observability form 1: Consider the formulation,

Y1 =Oθ1xk + GθU (3)

with

Y1 =


yk
yk+1

...
yk+N−1

 , Oθ1 =


C
CAθ

...
C(Aθ)N−1

 , U=


uk
uk+1

...
uk+N−2



Gθ=


0 0 · · · 0

CBθ 0 · · · 0
. . .

C(Aθ)N−2Bθ C(Aθ)N−3Bθ · · · CBθ


This is the standard observability formulation and we will term
the equation (3) in this paper as observability form 1.

2) Observability form 2: Also consider an alternative rep-
resentation,

Y θ2 =Oθ2X (4)

with

Y θ2 =
[
yk Bθuk yk+1 ... Bθuk+N−2 yk+N−1

]T
X=

[
xk xk+1 ... xk+N−1

]T

Oθ2 =



C 0 0 · · · 0 0
−Aθ I 0 · · · 0 0

0 C 0 · · · 0 0
. . .

0 0 0 · · · −Aθ I
0 0 0 · · · 0 C


This equation is called the observability form 2.

Remark 1: The terms Y1, U , and Y θ2 consist of
known/measured variables and of a given measurement win-
dow. Similarly, the state vector X . Their contents depend on
the sampling instant k, but their symbols do not signify it for
notational convenience.

B. Null-space computation

We consider the left null-spaces of the matrices Oθ1 and Oθ2
defined as,

(Ωθ1)TOθ1 = 0 and (Ωθ2)TOθ2 = 0 (5)

As outlined in the previous section, there are many approaches
to compute the null-space of polynomial matrices (Oθ1 or Oθ2).
Two intuitive processes one for each observability form is
given below.



1) Null-space for observability form 1: Given that the
parametrization is affine, the entries direct that O1 will be
a polynomial in θ with a degree N − 1 for a window of size
N . Let us consider the case for N = 3, which allows to write
O1 as

O1 = O1,0 + θO1,1 + θ2O1,2

with

O1,0 =

 C
CA0

CA2
0

O1,1 =

 0
CĀ

C(ĀA0 +A0Ā)

O1,2 =

 0
0

CĀ2


The null-space can also be parametrized similarly. This is
given by

Ωθ1 = Ω1,0 + θΩ1,1 + ...+ θmΩ1,m (6)

This type of parametrization allows a coefficient-wise compar-
ison of the left and right hand side of the null-space equation
in (5). This leads to,[

ΩT1,0 ΩT1,1 ... ΩT1,m
]
P1 = 0 (7)

where,

P1 =


O1,0 O1,1 O1,2 0 0 ... 0

0 O1,0 O1,1 O1,2 0 ... 0
0 0 O1,0 O1,1 O1,2 ... 0

· · ·
. . . · · ·

. . .
...

0 0 0 · · · O1,0 O1,1 O1,2


The problem has now been transformed to a solution of a
linear system of equations.

Remark 2: The value of m is to be chosen. The choice
can be made through an iteration starting with 0 and then
incrementing by 1 until the null-space exists. The case m = 0
is when the parameter appears only on the matrix B.

2) Null-space for observability form 2: For the observabil-
ity form 2, the affine characterization and the presence of
Aθ without a power would make the parametrization O2(θ)
independent of the window size such that,

Oθ2 = O2,0 + θO2,1 (8)

where (for N = 3),

O2,0 =


C 0 0
−A0 I 0

0 C 0
0 −A0 I

O2,1 =


0 0 0
−Ā 0 0
0 0 0
0 −Ā 0


If the null-space is parametrized as in the previous case,

Ωθ2 = Ω2,0 + θΩ2,1 + ...+ θmΩ2,m (9)

This would lead to the null-space equation (5) as,[
ΩT2,0 ΩT2,1 ... ΩT2,m

]
P2 = 0 (10)

where

P2 =


O2,0 O2,1 0 0 0 ... 0

0 O2,0 O2,1 0 0 ... 0
0 0 O2,0 O2,1 0 ... 0

· · ·
. . . · · ·

. . .
...

0 0 0 · · · 0 O2,0 O2,1


Remark 3: The structure of the matrices P1 and P2 is

exploited in the works such as [11] where a non-pencil
approach is developed to obtain polynomial null-space of a
matrix.

Remark 4: The two observability forms have interesting
properties. Given the degree 1 matrix polynomial in (8), the
form 2 simplifies the null-space computation step. The form
1 is indispensable for the state estimation as it only has xk
instead of the state vector of each instance of the measurement
window in form 2.

C. Solving nonlinear algebraic equations

Once the null-space equation in (5) is solved numerically
(or symbolically, as the case may be), we obtain one of the
two sets of parity equations, based on the chosen observability
form:

(form 1)⇒ (Ωθ1)T
(
Y1 −GθU

)
= 0 (11)

(form 2)⇒ (Ωθ2)TY θ2 = 0 (12)

The parity equations (11)-(12) contain only the known values
of inputs and outputs and the unknown parameters. The parity
equations are a polynomial in the unknown parameter with the
degree of the parameter depending on, among others, the size
of the window N , represented as,

ψ(uk, uk+1...uk+N−2, yk, yk+1, ..., yk+N−1, θ) = 0 (13)

The parity equations can be solved using one of the many
methods to solve a system of nonlinear (polynomial) equations
(see [12]). In case of a vector of unknown parameters, this
would lead to a set of multivariate polynomial equations.
Since there can be more than one solution for a given parity
equations, extra conditions or constraints shall be added to
obtain appropriate solutions.

Remark 5: The two observability forms result in the same
parity equations at the end.

D. State estimation

Once an estimate of the parameter θ̂ is obtained, the next
step is to employ the observability forms to obtain an estimate
for the states of the system. For this purpose, the observability
form 1 is more suitable and could be represented as follows.

Oθ̂1x̂k = Y1 −Gθ̂U (14)

Depending upon the dimension and the rank of Oθ̂1, the
solutions to the linear system of equations could be obtained.
A least squares solution for this would be of the form

x̂k =
(

(Oθ̂1)T (Oθ̂1)
)−1

(Oθ̂1)T
(
Y1 −Gθ̂U

)
(15)



Stable numerical methods could be used to compute the
inverse.

IV. ELIMINATION APPROACH: LPV/QUASI-LPV CASE

We will now briefly summarize the algorithm in case of
LPV or quasi-LPV models. The type of models considered
are of the form

xk+1 = A(ρk, θ)xk +B(ρk, θ)uk

yk = Cxk (16)

where the scheduling variable ρk could be an external input
or one of the system variables such as, inputs, outputs or its
higher order derivatives if the nonlinear embedding method
results in one. Further θ is a vector of unknown parameters.
The parametrization is such that, we have

A(ρk, θ) = A0(ρk) +

nθ∑
i=1

Ā(ρk)θi

B(ρk, θ) = B0(ρk) +

nθ∑
i=1

B̄(ρk)θi (17)

The structural similarities of (1) and (16), the observability
forms and the null-space computation are also related. The
matrices in observability form 1 in (3), for the LPV/quasi-
LPV form for the case of N = 4 could be given as

Y1 =


yk
yk+1

yk+2

yk+3

 , Oθ1 =


C
CAθk

CAθk+1A
θ
k

CAθk+2A
θ
k+1A

θ
k

 , U=

 uk
uk+1

uk+2



Gθ=


0 0 0

CBθk 0 0
CAθk+1B

θ
k CBθk+1 0

CAθk+2A
θ
k+1B

θ
k CAθk+2B

θ
k+1 CBθk+2

 (18)

Similarly, for the observability form 2 in (4), we have,

Y θ2 =



yk
Bθkuk
yk+1

Bθk+1uk+1

yk+2

Bθk+2uk+2

yk+3


, X=


xk
xk+1

xk+2

xk+3



Oθ2 =



C 0 0 0
−Aθk I 0 0

0 C 0 0
0 −Aθk+1 I 0
0 0 C 0
0 0 −Aθk+2 I
0 0 0 C


(19)

The null-space computation, obtaining parity equation and the
estimation of states all follow the steps in the linear case,
given that the scheduling variables are made of known and/or
measured variables. The overall procedure is summarized in
Algorithm 1.

Algorithm 1 Steps for state and parameter estimation
1: Evaluate the window size (N ) required and construct

observability form(s)
2: for every measurement window do
3: Compute null-space and obtain parity equations
4: Solve the set of nonlinear algebraic equations
5: if Solution is not unique then
6: Extra conditions to choose parameter estimates
7: end if
8: Estimate the state values
9: end for

Remark 6: It is not necessary to compute the null-space
and the parity equations during every measurement window.
Both could be symbolically computed and evaluated inside
for the corresponding values of inputs and outputs during the
measurement window. This significantly reduces the compu-
tational burden.

Remark 7: The algorithm suggests computation of the
parameter in every measurement window, which may not be
required in an ideal case where the parameters are constant.
However, they are useful in the presence of measurement
noise, slowly time-varying parameters etc.

V. DISCUSSION

A. Time-varying parameter

In some scenarios such as process degradation, the unknown
parameter varies slowly. In some types of faults, the parameter
could change from one value to another over a period of
time and then remain constant. In these circumstances, the
algorithm works under the assumption that the parameter
remains constant for a given measurement window. It then
recalculates the parameters in the next window which indi-
rectly compensates for the possible error if the parameter is
varying.

B. Solvability issues

The set of polynomial equations that constitute the parity
equation can have unique, multiple, infinitely many or no
solution. Additional conditions could be used to find an
appropriate solution among many, if one exists. However, the
question of solvability of the parity equation for the given
set of unknown parameters is not dealt with in the algorithm.
An additional pre-processing could be performed to mitigate
this. The parity equations could first be obtained through
symbolic methods and then subjected to Buchberger algorithm
to generate a Groebner basis [13]. This would provide a way
to test the solvability.

Further, given the affine parametrization assumption, it is
possible to derive the characteristics of the parity equations
with respect to the degree of the polynomial terms, cross terms
etc. This in turn could provide a test for solvability and hence
the identifiability of a class of models.



C. Choosing the window size and multiple-output

A closely connected issue to solvability is choosing the
measurement window size N . At the outset, this would depend
on the relative degree of the output(s) with respect to the
unknown parameters. A systematic way to find the right
window size could be as follows:

• Choose N = 1.
• Obtain parity equations.
• Check the solvability of the parity equations. If not

solvable go back to step 1 and increment N and repeat
the procedure.

For multiple output case, this problem is further complicated.
This is because the order in which measurements should be
added for solvability is not known a priori. This could be
solved as a combinatorial optimization problem for sensor
placement.

D. Over-parametrization

The parity equations would typically be solved numerically
and would find one of the possible solutions. Additional
conditions to the optimization problem that solves it could be
added that mirrors certain application constraints (e.g., θ > 0,
0 ≤ θ ≤ 1). One part of reducing the multiple solutions
and terms that lead to multiple solutions (e.g., θ2) is to use
the constraint that θk+1 = θk. The given nonlinear equation
could be shifted once and the original and the new equation
could be solved to possibly obtain equations that doesn’t have
terms that lead to multiple solutions. This approach is termed
prolongation in [6] and the regression terminology of over-
parametrization in [1].

E. Identifiability

Identifiability for special classes of discrete-time models
have been investigated in works such as [2], [1], [3] as
discussed in Sec. I. In the algorithm proposed in this paper,
identifiability is a condition that is required for the joint state
and parameter estimation. However, it is possible to conceive
the steps followed by the algorithm and its result to provide
an indication for kind of identifiability satisfied (local/global,
structural/algebraic) or lack of thereof by the given model.
This would require further study.

VI. ILLUSTRATIVE EXAMPLES

In this section, we provide several examples to give an
illustration of the algorithm under different circumstances.

Example 1: Consider the following model with the schedul-
ing variables as ρ1,k , yk and ρ2,k , uk,

xk+1 =

[
ρ1,k −0.5
0.5θ ρ2,k

]
xk +

[
θ
0

]
uk, yk =

[
1 0

]
xk

The null-space of the matrix in observability form 1 (with
N = 3) and the parity equation are given by,

Ωθ1 =

0.25θ + ukyk
−uk − yk+1

1


yk+2 − yk+1(uk + yk+1)− θuk+1 + yk(0.25θ

+ ukyk) + θu2k = 0

In this example, given that there is a single parameter to be
estimated, the parity equation could be rewritten to obtain θ̂
as a function of known and measured variables. For some
multi-variable cases the solution could be found symbolically
to represent all the parameters as a function of known and
measured variables (e.g., solve in MATLAB). In a more
complicated multi-variable case, a numerical approach shall
be used. This estimate could be put into the observability form
1 which has the matrices

Oθ̂1 =

 1 0
yk −0.5

ykyk+1 − 0.25θ̂ −0.5(uk + yk+1)


Gθ̂=

 0 0

θ̂ 0

θ̂yk+1 θ


and Y1 and U are as described earlier to obtain an estimate
for the state,

x̂k =
(

(Oθ̂1)T (Oθ̂1)
)−1

(Oθ̂1)T
(
Y1 −Gθ̂U

)
(20)

Example 2: In this example, we illustrate the idea of over-
parametrization through a linear example. Consider,

xk+1 =

[
θ 1
−0.2 θ

]
xk +

[
1
0

]
uk, yk =

[
1 0

]
xk

For N = 3, the null-space of observability form 1 is given by,

Ωθ1 =

θ2 + 0.2
−2θ

1


which leads to a parity equation of the form,

yk+2 − uk+1 + yk(θ2 + 0.2) + θuk − 2θyk+1 = 0 (21)

Given that this equation would have two solution due to the
presence of θ2, we can consider the condition, θk+1 = θk and
shift (21) by 1 to obtain,

yk+3 − uk+2 + yk+1(θ2 + 0.2) + θuk+1 − 2θyk+2 = 0

The term θ2 can be eliminated using the above two equations
and gives a unique estimate for θ with an extended window,

θ̂ =
uk+1yk+1 − yk+1yk+2 + ykyk+3 − ykuk+2

yk+1(uk − 2yk+1)− yk(uk+1 − 2yk+2)

The components of (20) for state estimation are given by,

Oθ̂1 =

 1 0

θ̂ 1

θ̂2 − 0.2 2θ̂

 Gθ̂ =

0 0
1 0

θ̂ 1





Example 3: This example considers multiple unknown pa-
rameters with multiple outputs. A quasi-LPV model with the
scheduling variable ρk , uk is,

xk+1 =


0.2 0 0 θ2
0 θ1 −0.5 0
0 ρk 0 0.2
0 0 0.5 0.8

xk +


1
0
0
0

uk
yk =

[
1 0 0 0
0 1 0 0

]
xk

For N = 3 the observability form 1 null-space obtained
symbolically is given by,

Ωθ1 =


0.16 −0.02/θ2
−θ1θ2 0.5u0
−1 0.1/θ2
θ2 θ1
1 0
0 1


The parity equations are given by,

0.8u0 − u1 + 0.16y1,0 − y1,1 + y1,2 + θ2y2,1 − θ1θ2y2,0 = 0

y2,2 − θ1y2,1 + 0.5u0y2,0 − 50
y1,0
θ2
− 0.1

u0 − y1,1
θ2

= 0

With the obtained θ̂, we could compute the state using (20).
The relevant matrices are not shown due to space constraints

Example 4: In this example, a case where the parameter
only appears in the input matrix in the LPV form is given.
If the parameter is considered time-varying in this case, this
models a multiplicative actuator fault scenario. Considering
the same scheduling variables as ρ1,k , yk and ρ2,k , uk we
have,

xk+1 =

0.2 −0.5 0
0 ρ1,k 0.5
0 0.5ρ2,k −0.5

xk +

1 + θ
0

uk
yk =

[
1 0 0

]
xk

Given that the state transmission matrix A doesn’t have θ
appearing, the null-spaces of both the observability forms
would not be in θ. Symbolically, the form 1 null-space and
the parity equations are given by,

Ωθ1 =


0.05uk + 0.1yk

0.2yk+1 − 0.5yk − 0.25uk − 0.1
0.3− yk+1

1


yk+3+

1 + θ

4
(uk + 2uk+1)− yk+1(

uk
4

+
yk
2
− yk+1

5
+ 0.1)

− yk+2(yk+1 − 0.3) + yk(
uk
20

+ 0.1yk) = 0

For this example, we show the results of a time-varying
parameter and state estimation. MATLAB computing environ-
ment was used to implement with the aid of the symbolic
computation toolbox. A Gaussian, zero-mean measurement
noise with a standard deviation of 0.01 was added to the
output. In Fig. 1, the parameter estimation is illustrated for

Fig. 1. True and the estimate of the parameter

Fig. 2. State estimation errors

a time-varying case typical in fault scenarios with an arbitrary
input. There is a delay because it takes N = 4 measurements
to be available before an accurate estimation can be achieved.
In Fig. 2, the errors of state estimation are illustrated as
percentage of their values. We accounted for the delay to
calculate these errors since the states have a dynamic nature.
The errors on the states x1 and x2 are less than 1% and hence
appear to be almost zero. The spike in the state estimation
error for x3 coincides with the transition on the parameter θ.

VII. CONCLUDING REMARKS

In this paper, we have outlined a method based on elimi-
nation which can estimate unknown parameters and then the
states, but in a joint sense within a given measurement win-
dow. The models of interest are those discrete-time nonlinear
models that could be represented as an LPV or a quasi-LPV
model with affine parametrization. Several examples illustrated
the approach and a detailed discussion suggested various
open ends, extensions and possible applications. It would be
interesting to consider them as future work.
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