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ABSTRACT
We propose a new method to learn overcomplete dictionar-
ies for sparse coding. The method is designed to learn dic-
tionaries structured as unions of orthonormal bases. The
interest of such a structure is manifold. Indeed, it seems
that many signals or images can be modeled as the super-
imposition of several layers with sparse decompositions in
as many bases. Moreover, in such dictionaries, the efficient
Block Coordinate Relaxation (BCR) algorithm can be used
to compute sparse decompositions. We show that it is pos-
sible to design an iterative learning algorithm that produces
a dictionary with the required structure. Each step is based
on the coefficients estimation, using a variant of BCR, fol-
lowed by the update of one chosen basis, using Singular
Value Decomposition. We assess experimentally how well
the learning algorithm recovers dictionaries that may or may
not have the required structure, and to what extent the noise
level is a disturbing factor.

1. INTRODUCTION

Sparse coding [1, 2] is a useful tool to analyze and try to
explain the structure of series of observed data, such as
successive time frames of an audio signal [3] or natural
images [4]. Formally, assume that we observe T vectors
x(t) = (xn(t))N

n=1, 1 ≤ t ≤ T which are supposed to have
been generated following the model:

x(t) = As(t) + ϵ(t) (1)

A being an overcomplete dictionary (anN×K matrix, with
K ≥ N ), s(t) ∈ RK some “sparse” coefficients and ϵ(t) ∈
RN a Gaussian noise. Sparse coding can be viewed as a way
of estimatingA from the only observation ofX = AS+E
where X is the N × T matrix containing T signal frames
(similar notations being used for S and E).

Jointly optimizing the coefficients and the dictionary,
under constraints added to enforce the well-posedness of
the problem, is a hard task, so we use an alternating opti-
mization strategy:

⋆The initial part of this work was done in collaboration with Laurent
Benaroya while he was finishing his PhD with IRISA.

1. Coefficient update given a dictionaryA:

argmin
S

∥X− AS∥2
2 + λ∥S∥1 (2)

2. Dictionary update given coefficients S:

arg min
A

∥X− AS∥2
2 (3)

under some constraint onA.

The coefficient update step (2) can be justified in a prob-
abilistic framework using a Laplacian prior on the coeffi-
cients sk(t) [5]. Moreover, it is a simpler parent problem of
the NP-hard combinatorial problem, where ∥S∥1 is replaced
with ∥S∥0

0, the number of non-zero components in S. Com-
puting the solution to Eq. (2) by Quadratic Programming is
rather computationally intensive in the general case where
A has no special structure. However, when A is a union
of orthonormal bases (ONB), Block Coordinate Relaxation
(BCR) methods are efficient [6]. Another motivation to con-
strain the dictionary to be a union of ONB is that it seems
that audio signals [7] and images [8] can indeed be modeled
as the superimposition of several layers, each of which hav-
ing a sparse representation in its own adapted ONB. Note
that when A is constrained to have this precise structure,
the dictionary update step (3) is also made relatively easy.
This step, in a probabilistic framework, can be interpreted as
a likelihood maximization and solved with an Expectation-
Maximization (EM) algorithm [9].

In Section 2, we describe BCR and a variant which we
used to solve (2). In Section 3, we introduce our algorithm
to learn a union of bases by iteratively optimizing (3) with
respect to each basis. In Section 4 we describe and ana-
lyze the experiments made with the learning algorithm on
data generated following the model (1). We study the influ-
ence of the number T of frames of the learning dataset, of
the a priori knowledge on the noise level, and of the possi-
ble modeling error corresponding to the fact that the trueA
might not be a union of bases or the number of bases could
be wrong.



2. COMPUTATION OF SPARSE COEFFICIENTS

Finding sparse coefficients for the observed data X is the
result of a compromise between

• the minimization of the reconstruction error:

∥X− AS∥2
2 :=

N∑

n=1

T∑

t=1

|xn(t) − (As(t))n|2.

• the minimization of a diversity measure, the most
common ones being:

∥S∥p
p :=

K∑

k=1

T∑

t=1

|sk(t)|p

for 0 ≤ p ≤ 1. The strict diversity, defined by the
number of non-zeros coefficients, is given by ∥S∥ 0

0.

This problem is generally difficult. It is indeed NP-hard
with the ∥S∥0

0 diversity measure when A is an arbitrary
redundant dictionary. Many sub-optimal algorithms have
been proposed such as Matching Pursuit (MP) [10], Basis
Pursuit (BP) [5] and FOCUSS [11]. The latter solves the
minimization problem

min
S

∥X− AS∥2
2 + λ∥S∥p

p (4)

and Basis Pursuit solves it for p = 1 (see Eq. (2)). These
algorithms are generally rather computationally intensive.
However Basis Pursuit can be implementedmore efficiently
with a Block Coordinate Relaxation (BCR) method [6] when
A is a union of ONB. Moreover, it has been shown that, un-
der some conditions, the solution of (4) for any 0 ≤ p ≤ 1
is close to the solution given by Basis Pursuit [12].

In this section we recall how Basis Pursuit is imple-
mented with soft-thresholding when A is a single ONB,
then we remind the reader about BCR and eventually we
describe a variant of BCR that we introduced to deal with
low noise levels (small threshold parameter λ).

2.1. Case of an orthonormal basis

WhenA is an orthonormal basis, the solution of (2) is given
by soft thresholding:

∀k, t ŝk(t) =

⎧
⎨

⎩

aT
k x(t) − λ/2 if aT

k x(t) > λ/2
0 if |aT

k x(t)| ≤ λ/2
aT

k x(t) + λ/2 if aT
k x(t) < −λ/2

(5)
where ak is the kth column of A (also called atom of the
dictionary).

2.2. Case of a union of orthonormal bases

When A = [A1, . . . ,AL] is a union of L orthonormal
bases, the coefficients S are decomposed in L subsets of co-
efficientsSl corresponding to theL bases, as S = [ST

1 , . . . ,ST
L ]T .

The BCR algorithm, described in Table 1 deals with the dif-
ficulty to directly solve (2) for a redundant dictionaryA by
successively solving it for its different bases Al. Then the
sub-coefficients of an initial estimate Sinit are iteratively
updated until convergence is reached. The BCR algorithm
has been proven to converge in a wake sense to a solution of
(2), when, in Step 1, the selection of S l follows a systematic
cycle, or results from an optimal descent rule [6]. Unfor-
tunately, if λ is very small (which corresponds to looking
for a small reconstruction error, namely the low noise as-
sumption), BCR might converge very slowly since almost
no thresholding is performed in Step 3. In order to com-
pute sparse coefficients in this low noise case, we propose
to start BCR with a large initial threshold λ0 and decrease
it regularly, leading to the algorithm explained in Table 2.
During the very first steps, since the threshold is high, spar-
sity is enforced; when the threshold becomes smaller, the
error vanishes.

1. Select a subset Sl of the current S to update;

2. ComputeXl = X−
∑

i̸=l AiSi;

3. Update Sl by replacing it by

arg min
Sl

∥Xl − AlSl∥2
2 + λ∥Sl∥1,

which is computed by soft thresholding (Eq. (5));

4. If the stopping criterion is not reached, go to step 1.

Table 1. Block Coordinate Relaxation algorithm

for it = 0 toNit

use BCR with threshold λ0(1 − it
Nit

) to update S

end

Table 2. Modified BCR algorithm for the low noise case

2.3. Experiments

Even though we have no proof of convergence of this mod-
ified BCR algorithm, we observed experimentally that if
the two parameters Nit and λ0 are appropriately chosen, it
reaches a solution close to those provided at a higher com-
putational cost by MP and FOCUSS.
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Fig. 1. Diversity of the coefficients computed by the BCR
variant, depending on the initial threshold, and the number
of iterations

We ran the following experiment. Data are sparsely gen-
erated from a dictionary that is the union of two orthonor-
mal bases. Using this dictionary, the BCR variant was run
on the data, for different values of the initial threshold (be-
tween 10−6 and 103), and for different number of iterations
(3, 10 and 100). The diversity of the obtained coefficients
is displayed in figure 1. We can see that, for any N it, the
initial threshold λ0 greatly impacts the diversity of the esti-
mated coefficients. An optimal value of λ0 may be choosen
a posteriori to minimize (2). Note that the higher the num-
ber of iterations, the sparser the coefficients obtained using
the optimal threshold.

For Nit = 100 and λ0 in a fairly large range, the di-
versity of the coefficients obtained by the BCR variant is
the same than for MP and FOCUSS. However, the BCR al-
gorithm variant is computationally less costly, taking about
3.5 seconds instead of about 9 seconds for FOCUSS, and 10
seconds for MP.

3. DICTIONARY LEARNINGWITH SVD

The algorithm used to learn a union of L orthonormal bases
(ONB) is described in Table 3. To understand the rationale
behind the use of the SVD in Step 3, we will first analyze the
optimization problem (3) whenA is constrained to be a sin-
gle ONB. Then, we will briefly explain how the algorithm
for L bases is derived from the single basis one, and we will
discuss in more details how the coefficient update (Step 2)
is performed, depending whether we know which value of
λ to use in (Step 2) or we want to adapt it to the data. As for
the the stopping criterion (Step 4), we simply set a priori

the number of learning steps. Studying how much the dic-
tionary varies between two steps may help design a better
criterion in the future.

1. Choose an initial dictionaryA = [A1 . . .AL];

2. Update the coefficients S = [S1 . . .SL] using the cur-
rentA (see text);

3. Choose which basisAl to update and:

(a) ComputeXl = X −
∑

i̸=l AiSi

(b) Compute a singular value decomposition:

XlST
l = UDVT

(c) Update
Al = UVT

4. If the stopping criterion is not reached, go to step 2
(see text).

Table 3. Learning algorithm for L orthonormal bases

3.1. Learning a single orthonormal basis

The optimization problem (3) with the constraint that A is
an ONB can be written as the minimization of a Lagrangian,

L(A, µ) = ∥X− AS∥2
2 + Tr

[
µ(AT A− Id)

]
(6)

whereµ is anN×N matrix of Lagrangemultipliers chosen
so that the minimizing matrixAopt is an ONB.

The optimal dictionaryAopt, minimizing the Lagrangian,
is obtained as follows (the proof is in annex A):

Proposition 3.1 LetUDVT be (one of) the Singular Value
Decomposition(s) (SVD) of XST , that is to say U and V
are orthogonal matrices and D is a diagonal matrix. An
optimal ONB is given by Aopt = UVT . If XST is invert-
ible, it is the unique optimal solution.

Note that, when XST is invertible, the product UVT

does not depend on the particular choice of a SVDUDV T .

3.2. Learning a union of L orthonormal bases

Ideally, when A is constrained to be the union of L or-
thonormal bases, one would like to perform the dictionary
update step (3) by minimizing the Lagrangian:

∥X−
L∑

l=1

AlSl∥2
2 +

L∑

l=1

Tr
[
µl(A

T
l Al − Id)

]
.

However, this optimization problem does not have an ex-
plicit solution as in the case of a single ONB. The principle



behind the algorithm described in Table 3 is that, at each
iteration, only one of the basesAl is optimized.

If we know which parameter λ to use in Eq. (2) – for
example, if we know the prior distributions of ϵ and s in the
probabilistic model (1) – then we perform Step 2 with the
regular BCR algorithm. In many practical cases however, it
is difficult to have an idea of a relevant value for λ, or in the
low noise limit, λ is too small. Below we discuss how Step
2 in Table 3 is performed depending on the noise model.

3.2.1. Unknown gaussian noise

If Gaussian noise ϵ(t) is assumed, with unknown variance,
we use the algorithm proposed by Azzalini et al, [13]: start-
ing from an exact representation X = AC, with A the
current dictionary, and the estimate S = 0 we iterate the
following steps

1. compute the variance σ2 of the residualR = C− S;

2. update S by letting it contain all the entries ofR that
are above the threshold λ =

√
2 log(N)σ2.

3. if the last update did not modify S, then stop, else go
to 1.

To compute the exact decomposition C, rather than using
C = A+X, one can use indifferently FOCUSS, MP, or the
variant of BCR, because they all encourage sparsity of the
coefficients.

3.2.2. Low noise limit

In the low noise limit, each of the above strategies for Step 2
will essentially fail since the dictionary update step will (al-
most) not change the dictionary.

To see it, let us simply analyse the first iteration of the
algorithm described in Table 3.

Given the initial dictionary A = [A1 . . .AL] and the
data X, the coefficients S = [S1 . . .SL] = S(A,X) com-
puted at Step 2 are uniquely defined. Because of the low
noise assumption, they give a perfet reconstruction X =
AS.

Then, if XlST
l is invertible, the proposition 3.1 shows

that the optimal basis Âl which minimizes the Lagrangian
(6) is unique. And, for the current basis A l, the first term
in the Lagrangian – the error term – is null, and the second
term is null too, because of the orthonormality of the basis.
The lower bound of the Lagrangian for an orthonormal basis
is then reached by the current basis. We conclude that Âl =
Al and there can be no change.

If XST is not invertible, the optimal basis may be dif-
ferent, but this case does not appear experimentally.

Thus, in the low noise limit, we propose to perform Step
2 with a heuristic strategy that allows the dictionary to be

modified at each step. To do that, we add some reconstruc-
tion error at each step by thresholding the coefficients. The
added reconstruction error is decreased each time Step 2 is
performed so that at the end of the process we get exact re-
construction.

1. Choose an initial dictionaryA = [A1 . . .AL] and set
Nkept, the number of kept coefficients by frame, to
zero;

2. Update the coefficients S = [S1 . . .SL] using the cur-
rentA, by the BCR variant;

3. If the algorithm stagnates, incrementNkept;

4. Set all but the NkeptT greatest coefficients of S to
zero, giving Sthres;

5. Choose which basisAl to update and:

(a) ComputeXl = X −
∑

i̸=l AiSthres
i

(b) Compute a singular value decomposition:

XlSthresT

l = UDVT

(c) Update
Al = UVT

6. If the stopping criterion is not reached, go to step 2.

Table 4. Learning algorithm for L orthonormal bases in the
low noise limit

Since the learning (experimentally) leads to decrease the
diversity of the coefficients S along the iterations, the algo-
rithm is said to stagnate when this diversity stops decreas-
ing. By example, it can be decided the algorithm stagnates
when the relative difference between the diversities of the
five last coefficients matrices is least than 10−3.

4. EXPERIMENTS

The following experiments have been designed with syn-
thetic data generated with the model (1) using a known ref-
erence dictionary Aref . The goal is to study the influence
of various parameters on the performance, and to see how
modeling error could also impact the results. We use two
relevant and complementary performancemeasures: the false
alarm rate and the missed detection rate, corresponding re-
spectively to the relative number of estimated atoms aest

(i.e. columns of Aest, the dictionary estimated using the
learning algorithm) that “do not match” any reference atom
aref , and to the relative number of reference atoms that “are
not matched” by any estimated atom. Since all atoms have
unit norm, aest and aref are considered to match if their



inner product |aT
estaref | is close enough to one. So we

use a parameter ξ to decide that they match if and only if
|aT

estaref | ≥ ξ. Different values of ξ yield different but
related performance measures.

In order to evaluate the performance on a wide range
of conditions, each experiment is run withNr different dic-
tionaries, and the performance measures are averaged over
these runs.

4.1. Influence of the number T of signal frames

First, we study the impact of the number T of frames used
to learn the dictionary, for different dimensionsN . Data are
generated withAref a union of two randomONB, using the
noiseless model (1) with s(t) (of dimension 2N ) containing
between 1 and r, randomly located, non-zero coefficients,
that follow a standard Gaussian law. r is depending on the
dimensionN and is chosen as follows: r = ⌊(1+

√
N)/2⌋.

Indeed, for this number of non-zero coefficients, the gen-
erating s(t) are the only coefficients, among those giving
exact decomposition, that solve (2) [12].

The experiments are performed for the following dimen-
sions : N = 4, 8, 16, 32, 64, and, for each of them, for
T = N/4, N, 2N, 5N, 10N, 20N, 50N, 100N .
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Fig. 2. Average Missed Detection Rate (onNr = 100 runs)
depending on the number of frames T for different dimen-
sions N

Figure 2 displays the average Missed Detection Rate of
the learned dictionary (average onNr = 100 runs) depend-
ing on the number of frames T . The False Alarm Rate is not
displayed since it is nearly the same.

The MD Rate is decreasing as the relative number of
learning frames is growing. For T ≤ 2N , the dictionary
estimation yields poor performance, the false alarm rate and
the missed detection rate are both greater than 50%, for ξ =
0.99, and even than 90%, for N ≥ 16. On the contrary,

for T = 100N , about seven out of ten atoms are correctly
estimated. Noting that the computing time greatly increases
with T , we set T = 50N in the rest of the experiments.

4.2. Influence of the noise level

To understand the effect of the noise level on the perfor-
mance, we repeat the above experiments with the same data
to whichwe add noise at various signal to noise ratios (SNR):
+∞ dB, 10 dB, 0 dB. At each SNR level we run the three
configurations of the learning algorithm designed respec-
tively for known λ, small λ and unknown λ.

Learning algorithm +∞ dB +10 dB +0 dB
λknown 7% 28% 59%
λsmall 6% 30% 63%
λunknown 42% 58% 86%

Table 5. Missed Detection Rate depending on the noise
level on data, and on the learning method, with ξ = 0.99
(average overNr = 60 experiments)

Table 4.2 shows that the algorithms with known λ, and
small λ (without prior knowledge on λ), give almost similar
results, the first one performing better when there is some
noise, while the second one giving better estimation in the
low-noise case. Unfortunately, the algorithm designed for
unknown λ always misses more atoms. Thus, in the follow-
ing, this algorithm by Azzalini will no more be used.

The three configurations of the algorithm are greatly de-
pendent on the noise level. Indeed, even for a+10dB signal
to noise ratio, among the Nr = 60 runs, the Missed De-
tection Rate of the most succesful experiment is no smaller
than 14%. This means that for this SNR level, the algo-
rithms never finds more than 86% of the atoms of the dic-
tionary.

On the contrary, when there is no noise, the first two al-
gorithms retrieve all the atoms in most of the runs. A part of
the experiments entirely fail, leading to the means displayed
in Table 4.2 (7% and 6%).

4.3. Influence of the dimension N of signal frames

In order to understand the influence of the dimension N of
signal frames on the behaviour of the algorithm, we run the
learning for noiseless data, as in subsection 4.1, for different
values ofN . The dictionary is made of two random ONB.

The first experiment illustrates how many iterations are
required for the algorithm to converge, dependingonN . For
each N , Nr = 100 experiments are launched, and results
are then averaged. The algorithm is decided to converge
when the original dictionary has been retrieved with a suf-
ficient precision, namely when the Missed Detection Rate,



for a threshold ξ = 0.99, reaches 0%. The size of framesN
is chosen between 4 and 128. Indeed, for higher values of
N , the computation is too long, and learning is unfeasible.

The figure 3 shows the number of iterations needed to
converge, depending on N , when the algorithm converges.
The Nr points, for each N , represent the number of itera-
tions needed to converge in each of theNr experiments. The
circles represent the mean for a given N , and the bars, the
associated standard deviation. The broken line is the linear
regression of the means.
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Fig. 3. Average number of iterations before convergence,
depending onN , in the cases when the algorithm effectively
converge

We see that, in the case when the learning is succes-
ful, the average number of iterations to reach convergence
increases linearly with the size N . Using the mean is accu-
rate since the variance of the data points around the mean is
small enough to clearly see the linear dependence between
N and the number of iterations before convergence.

The figure 4 shows the percentage of converging exper-
iments.

We see that, for very small values of N , very few ex-
periments converge, and the algorithm seems also to be less
efficient whenN become high. Work should be done to de-
cide, for a given experiment, if the algorithm has converged
to a correct solution. An idea would be to learn three dictio-
naries and to make a vote, hoping that two dictionaries out
of the three are the good ones.

A second experiment is performed, showing the influ-
ence of the size of the signal frames on the computational
cost. The number of samples Ntotal in the whole signal is
set constant (i.e. for different N , the signals are different
frame hashings of the same original signal). The number
T of frames is then T = Ntotal

N . Note we could expect
bad learning results when T become too small, according to
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Fig. 4. Percentage of experiments where the algorithm have
converged (the estimated dictionary is the original one)

subsection 4. In fact, in this experiment, we only look at the
computational time, and learning is not performed until the
end (and the result of the learning is not important here).

The average computational time of each step of the al-
gorithm in Table 3 is measured. As a result, we observe that
for high values ofN (fromN = 128 to 2048), the computa-
tional time of the SVD Step 3b, the matrices multiplication
Steps 3a and 3c and the coefficients update Step 2 grow
as a power of N (between O(N 2) and O(N 3)). Thus, on a
Pentium 4, for N = 512, a single iteration takes 10s, and
for N = 2048, it takes 324s.

The computational time for performing learning then in-
creases for two reasons asN grows. Firstly, it increases due
to the higher computational cost of each step, and secondly,
more iterations are needed before convergence. The algo-
rithm is then untractable for values ofN greater than 64.

But, in audio signal, the frame size is commonly about
20ms. At a sampling frequency of 44100Hz, a frame of
23.2ms corresponds to N = 1024, that is untractable with
this algorithm. A challenge would be to adapt the method
to high dimension frames.

4.4. Influence of the model mismatch

We designed experiments to analyse the behavior of the
learning algorithm when there is a mismatch between the
number of ONB in the reference dictionary and in the esti-
mated one.

We run the same algorithm to estimate a pair of ONB on
three datasets generated as above with the noiseless model
(1) with

• Aref,1 a single random ONB

• Aref,2 a union of two ONB



• Aref,3 a union of three random ONB.

Note that with Aref,3, if the three bases are sufficiently
different one from another, one cannot expect to get less
than 33% missed detection, because only 2N atoms are es-
timated while there are 3N reference atoms. With Aref,1,
as soon as there is no more than 50% false alarmwe are sure
to have recovered the atoms of the reference dictionary, but
they may be split in the two learned bases.

Reference dictionary Aref,1 Aref,2 Aref,3

Average missed detection rate 0.5% 7% 99.5%
Average false alarm rate 44% 7% 99%

Table 6. missed detection rate and false alarm rate (ξ =
0.99) depending on the number of bases inAref , when the
estimated dictionary owes two bases (average over Nr =
200 runs)

The results of two hundred runs are summarized in Ta-
ble 4.4. More precisely:

• Aref,1: almost all reference atoms are retrieved. In
55 cases out of 100, one of the estimated basis is ex-
actlyAest,1. In the 45 other cases out of 100, the re-
trieved atoms are shared between the two bases, 82%
in the first basis, and 17% in the second, while 1% are
not detected.

• Aref,2: the average performance values hide two dis-
tinct behaviours. In 92% of the experiments, the dic-
tionary is perfectly estimated, while in 8% of the cases,
learning totally failed, without anywell estimated atom
at all.

• Aref,3: never more than 15% of the atoms were re-
trieved, the average being only 0.5%.

The algorithm seems to be efficient only when estimat-
ing at least as many bases as there are in the reference dic-
tionary. A good strategy could therefore be to learn a lot of
bases, and to estimate a posteriori the number of interesting
ones.

5. CONCLUSION

We have presented a new method for learning, from a set
of observed data vectors, a dictionary structured as a union
of orthonormal bases, with the objective that the decompo-
sition of the data on this dictionary would be sparse. We
have demonstrated on synthetically generated data that this
method is able to recover a relevant underlying dictionary
provided that it knows a priori the structure (i.e. the number
of ONB in the dictionary). The approach seems to behave

reasonably well even when the number of bases is overesti-
mated. We are now considering several remaining practical
problems, namely estimating the number of bases, study-
ing how the algorithm scales when the dimension N of the
data becomes large and extending experiments to real au-
dio signals or images. Last but not least, we are looking for
conditions where we can prove that the algorithm converges
to the underlying dictionary.

APPENDIX

A. PROOF OF PROPOSITION 3.1

Let detail the proof giving the optimal solution Aopt to the
minimization of the Lagrangian (6). The Lagragian is:

L(A, µ) = ∥X− AS∥2
2 + Tr

[
µ(AT A − Id)

]

The optimal dictionaryAopt necessarily verify that the gra-
dients ∇µL and∇AL are equal to zero:

AT A − Id = 0 (7)
−2(X− AS)ST + A(µ + µT ) = 0 (8)

or {
AT A = Id
XST = A

[
SST + 1

2 (µ + µT )
] (9)

Let Z := XST andY := SST +(µ+µT )/2. While Z
can be explicitly computed,Y is unknown since it depends
on the unknown multipliers µ.

The system (9) implies:

ZZT = AYYT AT = AY2AT

becauseY is symmetric, and

ZT Z = YT AT AY = Y2

because of the orthogonality ofA. Then, combining the two
preceding results,Aopt must satisfy:

AZT ZAT = ZZT (10)

Let Z = UDVT be one of the possible Singular Value
Decompositions (SVD) of Z, that is to say U and V are
orthogonal matrices andD is a diagonal matrix. We assume
that the diagonal elements of D (the singular values) are
ordered decreasingly, i.e. noting

• L the number of different singular values inD,

• Nk the multiplicity of the lth singular value λk ,

• Ik the identity matrix of size Nl



we have λ1 > λ2 > . . . > λL ≥ 0, and

D =

⎡

⎢⎣
λ1I1 0 0

0
. . . 0

0 0 λLIL

⎤

⎥⎦

Note that between two different SVD, only the orthogonal
matrices differs, while the diagonal matrixD is the same.

Then equation (10) gives:

AVD2VT AT = UD2UT

and notingR = UT AV (equivalent toA = URVT ),R is
orthonormal and :

RD2 = D2R (11)

Let note:
R = [Rij ]i,j

whereRij is aNi by Nj submatrix.
AsR commutes withD2 in (11), we have:

RD2 =
[
λ2

jRij

]
ij

= D2R =
[
λ2

i Rij

]
ij

and then, for all i ̸= j,

λ2
jRij = λ2

i Rij

Since λ2
i ̸= λ2

j , Rij = 0 for all i ̸= j, and R is block-
diagonal:

R =

⎡

⎢⎣
R11 0 0

0
. . . 0

0 0 RLL

⎤

⎥⎦

where for each l, the blockRll is an orthogonal matrix.
The functional (6) must then have the following form :

L(A) = ∥X−AS∥2
2 = Tr(XT X)+Tr(ST S)−2Tr(XST AT )

The first two terms are independent of A, then one must
maximize Tr(XST AT ). Rewriting it gives

Tr(XST AT ) = Tr(ZAT ) (12)
= Tr(UDRT UT )
= Tr(DRT )
= Tr(RD)

=
L∑

l=1

λlTr(Rll)

One must then maximize each of the terms of the sum.
For each l such that λl > 0, one must maximize Tr(Rll).

As all the diagonal elements of an orthonormal matrix
are lower than 1, the maximal trace isNl. It is only reached
by the identity matrix, which is the only orthogonal matrix

all diagonal elements of which are ones.. The trace ofR ll is
then maximal if and only ifRll is the identity matrix. If the
last singular value λL is null, any orthogonal matrix RLL

gives λLTr(RLL) = 0, and then is suitable.
The best matrix R is then the identity matrix, and it’s

the only one, in the case where all the singular values are
strictly positive. When the last singular values are null, the
identity matrix is again optimal, but no longer unique.

The optimal dictionary A, for a given SVD is then the
following

Aopt = UVT (13)

Remarking that the product UVT is independent from
the chosen SVD, this matrix is optimal, for every chosen
decomposition.

Let us prove thatUVT is independent of the SVD.
JE VAIS REGARDER A LA BIBLIOTHEQUE POUR

UN BOUQUIN ETABLISSANT CE RESULTAT
LetUDVT andLDMT be two different singular value

decompositions of the matrix Z. Then,

ZT Z = VD2VT = MD2MT

Noting T = (VT M), this is equivalent to:

TD2 = D2T

As before, the matrix T is then block-diagonal. Moreover,
as T is orthogonal, every diagonal block is orthogonal.

The first result is that two different SVD are related by:

M = VT

and
L = UT

withT a block-diagonalmatrix of orthogonalmatrices, each
of size of themultiplicity of the corresponding singular value.

The second result is, for the same two SVD, that the
productsUVT and LMT are equal:

LMT = UTTT VT = UVT

since T is an orthogonal matrix.
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