
HAL Id: hal-01637808
https://hal.science/hal-01637808v2

Preprint submitted on 14 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fluctuation analysis on mutation models with birth-date
dependence
Adrien Mazoyer

To cite this version:
Adrien Mazoyer. Fluctuation analysis on mutation models with birth-date dependence. 2018. �hal-
01637808v2�

https://hal.science/hal-01637808v2
https://hal.archives-ouvertes.fr


Fluctuation analysis on mutation models with
birth-date dependence

Adrien Mazoyer

June 14, 2018

Abstract

The classic Luria-Delbrück model can be interpreted as a Poisson compound
(number of mutations) of exponential mixtures (developing time of mutant clones)
of geometric distributions (size of a clone in a given time). This “three-ingredients”
approach is generalized in this paper to the case where the split instant distributions
of cells are not i.i.d. : the lifetime of each cell is assumed to depend on its birth date.
This model takes also into account cell deaths and non-exponentially distributed life-
times. Previous results on the convergence of the distribution of mutant counts are
recovered. The particular case where the instantaneous division rates of normal and
mutant cells are proportional is studied. The classic Luria-Delbrück and Haldane
models are recovered. Probability computations and simulation algorithms are pro-
vided. Robust estimation methods developed for the classic mutation models are
adapted to the new model: their properties of consistency and asymptotic normal-
ity remain true; their asymptotic variances are computed. Finally, the estimation
biases induced by considering classic mutation models instead of an inhomogeneous
model are studied with simulation experiments.

1 Introduction

Mutation models are probabilistic descriptions of the growth of a population of cells,
in which scarce mutations randomly occur. Data are samples of integers, interpreted
as final numbers of mutant cells. The frequent appearance in the data of very large
mutant counts, usually called “jackpots”, evidences heavy-tailed probability distributions.
Mutation models have two objectives: study the distribution of the number of mutant
cells at the end of the growth process; perform fluctuation analysis on data to estimate
the probability for a mutant to appear at any division.

Any classic mutation model can be interpreted as the result of the three following
ingredients [10]:
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1. a random number of mutations occurring with small probability among a large
number of cell divisions. Due to the law of small numbers, the number of mutations
approximately follows a Poisson distribution. The expectation of that distribution
is the product of the mutation probability by the total number of divisions;

2. from each mutation, a clone of mutant cells growing during a random time. Due to
exponential growth, most mutations occur close to the end of the process, and the
developing time of a random clone has exponential distribution. The rate of that
distribution is the relative fitness, i.e., the ratio of the growth rate of normal cells
to that of mutants;

3. the number of mutant cells that any clone developing for a given time will produce.
The distribution of this number depends on the modeling assumptions, in particular
the lifetimes of mutants.

This approach leads to a family of probability distributions which depend on the expected
number of mutations and the relative fitness. One of the most used mutation models is
the well known Luria-Delbrück model [20]. A review on the Luria-Delbrück distribution
for the second half of the twentieth century can be found in [43]. Here we try to give a
historical summary of previous works, including last decades. Mathematical descriptions
were introduced by Lea and Coulson [18], followed by Armitage [3] and Bartlett [5]. In
that model, division times of mutant cells were supposed to be exponentially distributed.
Thus a clone develops according to a Yule process [42, p. 35]; [4, p. 109], and its size at
any given time follows a geometric distribution. The distribution of final mutant counts
is also explicit when lifetimes of mutant cells are supposed to be constant. This latter
model is called Haldane model by Sarkar [30]; a first practical algorithm for computing
the Haldane distribution was proposed much later by Zheng [45]; an explicit form of the
asymptotic distribution is finally given by Ycart [39]. General lifetimes have also been
studied in [39], but no explicit distribution is available apart from the exponential and
constant lifetimes. Other extensions of the Luria-Delbrück model take into account the
case where cells have a certain probability to die rather than divide [2, sec. 3.1]; [6, 14,
40], where final number of cells are random [2, 14, 41, 46].

As mentioned above, the main statistical objective of mutation models is the estima-
tion of the probability for a mutant cell to appear upon any given cell division. It is
computed dividing estimate of the mean number of mutations by the mean final number
of cells. Computing robust estimates is of crucial importance in medical applications, like
cancer tumor relapse or multidrug resistance of Mycobacterium Tuberculosis for instance.
Estimates are realizations of an estimator which is a random variable depending on the
considered sample. A robust estimator satisfies two properties: consistency, and explicit
asymptotic distribution. Thus confidence intervals and p-values can be computed.

Luria and Delbrück [20] have proposed two estimators. The first estimator, called p0

estimator, is based on the relation between the probability to get a null count in the
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sample and the mean number of mutations: taking the negative logarithm of the relative
frequency of zeros among the sample gives a robust estimate of the expected number
of mutations [20, eq. (5)]. Remark that if the sample does not contain null counts, the
method cannot be applied. The second estimator proposed in the same article is based on
the relation between the mean number of mutants, the sample size, and the final mutant of
cells [20, eq. (8)]. Since this estimator does not have expectation, it is not consistent and
should not be used. A wide panel of estimation methods has been proposed since then [28,
9]. Most of these methods are based on empirical median of the mutant count to reduce
the heavy tail effects [18, eq. (25)], [13, eq. (6)]. Even if some median methods give good
results in practice, the consistency property is not satisfied or cannot be checked: indeed
the empirical median is not a robust estimator of the median for discrete distributions.
Thus other methods which satisfy the properties of interest should be considered. Since
the distribution of final numbers has an explicit form, the Maximum Likelihood (ML)
seems to be an obvious optimal choice [21, 32, 44]. The computation of the likelihood and
its derivatives can be numerically unstable in the sample contains large jackpots. One of
the possible ways to reduce such tail effects is “Winsorization” of the sample [38, sec. 2.2],
which consists in replacing any value of the sample that pass a certain bound by the bound
itself. However, since very large numbers of mutants are not countable in practice, such
cases where the Winsorization is required are not common. The last method exposed here
uses the probability generating function [29, 10], and is called Generating Function (GF)
method. This method is comparable in terms of efficiency to the ML method. Moreover,
this method has a good numerical stability and a negligible computing time. However,
this method depends on tuning parameters. These parameters should be set according to
the data, which is not possible in practice. Therefore, the GF method is implemented as
a trained semi-parametric method. The p0, ML, and GF methods provide asymptotically
normal estimators of the mean number of mutation. The estimation of the mutation
probability can then be deduced dividing estimation of mean number of mutations by
the mean final number of cells. The fluctuations of the final number of cells can also be
taken into account [41], in order to get a more accurate estimation. Sometimes, data are
samples of couples of integers, interpreted as final numbers of mutants and final numbers
of cells. In that case, the Maximum Likelihood can be used to estimate directly the
mutation probability [41]. Moreover, the relative fitness can also be estimated.

The lifetimes of the cells are supposed to be i.i.d. in the classic mutation models.
Thus, the population grows exponentially or dies out [4, 12]. However, the growth is in
practice logistic [16]: it is exponential until an inflexion instant when the growth begins
to slow and eventually tends to zero. Indeed, during an experiment, a colony of cells
grows in an environment which contains a finite amount of resources. Then a cell born
at a instant s1 will complete its lifetime faster than a cell born at a instant s2 � s1. The
Verhulst model [36] is one of the most known deterministic growth model which takes into
account this limitation. Logistic-type stochastic models are described by Allen [1, sec.
9.4.2], and mathematically studied by several authors among which [34, 35, 17]. Stewart
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et al. [33] proposed an approach to take into account the decreasing rate of division as
the cells run out of resources. Houchmandzadeh [11] described a discrete approach with
a general growth model for mutant clones. A Luria-Delbrück model assuming that the
replication number of any normal cell is limited whereas mutants are not has been exposed
in [27]. However, none of these studies provide results for the non-i.i.d. lifetimes case, in
particular on the distribution of final mutant count.

In a previous work [23], an extension of the classic mutation models to the case where
the split instant of a cell depends on its birth date has been proposed. The results on the
asymptotic distribution of the mutant count were very similar to that of classic Luria-
Delbrück model. Therefore the methods of estimation described above should be directly
adapted to the model with birth-date dependence. As for the homogeneous case, the three
methods provide consistent and asymptotically normal estimator for the parameters of
interest. However, fast simulation cannot be deduced from the approach exposed in [23].
Such algorithms are necessary to perform large scale simulation studies. Another approach
of the model is proposed here: as for the homogeneous mutation models, the distribution
of the final mutant count can still be interpreted as the result of three ingredients. As a
direct consequence, a fast simulation algorithm can be deduced. The asymptotic results
on the distribution of the mutant count of [23] are recovered and extended to the case
where the death of normal cells are taken into account.

General modeling assumptions are described in Section 2. The three-ingredients ap-
proach is exposed and used to prove the convergence in distribution of the final mutant
count in the Section 3. Probability computation and simulation algorithms are exposed in
Section 4. The case where the hazard functions associated to the split instant distribution
of normal and mutant cells are proportional is studied. In particular, the Luria-Delbrück
distribution with cell deaths [40] is recovered. The Haldane model is also recovered, and
extended to the case where mutant cell deaths are taken into account. The statistical
question of estimation of the number of mutations and the relative fitness is studied in
Section 5: assuming that the other parameters are known, the methods p0, ML, and
GF methods can be extended to inhomogeneous models. Estimation biases induced by
considering classic mutation models instead of model with birth-date dependence are il-
lustrated with simulation experiments in Section 6. In particular, simulations seem to
show that the bias will be in practice negligible, which encourages to continue to use the
classic model for estimation.

2 Hypotheses and models

Notations and hypotheses are described in this section. A rigorous definition of the
probabilistic model as a tree-indexed process has already been given in [23, sec. 2]. Thus,
the dynamics are shortly described, and the modeling assumptions will be summarized at
the end of this section.
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Consider a normal cell born at a given instant s. At a random instant (called here a
final instant) with cumulative distribution function (cdf) Fν(s, ·), the cell produces one
normal and one mutant cell with probability π (this event is called a mutation), two
normal cells with probability 1 − π − γ, or dies with probability γ. Consider now a
mutant cell, born at a given time s. At a random instant with cdf Fµ(s, ·), the mutant
produces two mutant cells with probability 1− δ or dies with probability δ. Starting from
a single cell, whatever its nature, the set of all descendants constitutes a clone. Thus
the clone size at a given time t denotes the number of cells alive at time t in the clone.
Consider a given cell, the mutation or death events are independent from its final instant.
Two cells are independent conditionally on their common ancestor. Therefore, the clones
stemming from these cells are also independent conditionally on this ancestor. Remark
that those dependence assumptions hold whatever the nature of the considered cells. At
the beginning of the process, the population contains a given number n of normal cells
and no mutants.

Some details about Fν and Fµ are now given. The final instant of a cell born at a given
time s > 0 cannot be smaller than s. Thus, both cdf satisfies Fν(s, t) = 0 and Fµ(s, t) = 0
for t 6 s. Moreover, the total number of cells is in practice bounded by the carrying
capacity. It corresponds to the maximum sustainable population: the closer to this bound
the number of cells, the slower the growth of the population. In other words, some cells
do not produce descendants before the end of the growth process. Thus, the distribution
of the final instant of any cell may have a positive mass at infinity. The cdfs Fν(s, ·)
and Fµ(s, ·) are cdfs of subprobability measures on R+, i.e. the limit of Fν(s, t) and Fµ(s, t)
as t tends to infinity may be strictly smaller than 1 for any s in R+. For more details
about subprobability measures, see for example [25, p. 170]. Thus, Fν(s, ·) and Fµ(s, ·)
are assumed to be cdfs on the extended real line R+ = R+ ∪ {+∞} for any s ∈ R+.
Construction of such cdfs is described in [23]. Additive assumptions on the cdf Fν(s, ·)
are now precised. For any s > 0, let F (s, ·) be a cdf on R+ such that F (s, t) = 0 if t 6 s.
The cdf F will satisfy (H) if there exists a cdf of subprobability on R+, denoted by F̃ (s, ·),
such that the following holds:

(H1) the cdf F̃ is differentiable with respect to s and t, and decreasing in s;

(H2) lim
t→+∞

F̃ (s, t) 6 1 for all s ∈ R+ and F̃ (s, t) = 0 if t 6 s;

(H3) for any s > 0, F (s, ·) is deduced from F̃ (s, ·) by

F (s, t) = F̃ (s, t)1t∈[0 ; +∞) + 1t=+∞ ;

(H4) the function h defined for all (s, t) ∈ R2
+ by

h(s, t) = − log
(

1− F̃ (s, t)
)
,
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satisfies for any t > s:
h(s, t) = h(0, t)− h(0, s) .

By definition, h is positive, differentiable with respect to s and t, increasing in t, decreasing
in s, and for any (s,t) ∈ R2

+:
h(s, t) 6 lim

t→+∞
h(0, t) .

There exists a positive, continuous, R+-valued function λ such that:

h(s, t) =

∫ t

s

λ(u)du .

The function h can be interpreted as the cumulative hazard rate on an interval [s ; t]
associated to F . The function λ can be interpreted as the instantaneous hazard rate
associated to F . The cdf F (s, ·) is then defined on R+ for any s ∈ R+ by

F (s, t) =


(

1− exp

(
−
∫ t

s

λ(u)du

))
1s6t if t < +∞ ,

1 if t = +∞ .

(1)

Moreover, consider a positive, continuous, and R+-valued function λ. Then, the cdf
deduced from λ by (1) satisfies (H). In particular, if λ(t) tends to 0 as t tends to infinity,
then the limit of h(0, t) is finite. In that case, the limit of F̃ (s, t) is smaller than 1 for
any s > 0.

Notice also that if T (s) is a random variable with cdf F (s, ·), such that F satisfies (H),
then:

P [T (s) > u+ t|T (s) > t] =
e−h(s,u+t)

e−h(s,u+t)

= P [T (t) > u+ t] .

This is quite similar to the memorylessness property of exponential distributions.
Condition (H4) is quite restrictive. However, the mean growth of the population can

be adjusted to any positive, continuous, increasing and R+-valued function [23]. Remark
that condition (H4) is equivalent to satisfy:

F̃ (s, t) =
F̃ (0, t)− F̃ (0, s)

1− F̃ (0, s)
.

Therefore, for any R+-valued cdf G, the cdf F̃ defined by

F̃ (s, t) =
G(t)−G(s)

1−G(s)
,
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satisfies (H4).
From now on, Fν is assumed to satisfy (H). Its related function defined in (H4) will

be denoted by hν . The limit of hν(0, t) as t tends to infinity will be denoted by hν,∞. The
instantaneous division rate associate to Fν will be denoted by λν . No additive assumptions
on Fµ are required yet. The modeling assumptions can then be summarized as follows:

• at time 0, n normal cells are present;

• the final instant of any cell depends on its nature and its birth date;

• the final instant of a normal cell born at time s is a random variable with cdf Fν(s, ·)
which satisfies (H);

• upon completion of the lifetime of a normal cell:

– with probability π one normal and one mutant cells are produced;

– with probability γ the cell dies out;

– with probability 1− π − γ two normal cells are produced;

• the final instant of a mutant cell born at time s is a random variable with cdf Fµ(s, ·)
defined on R+;

• upon completion of the lifetime of a mutant cell:

– with probability δ the cell dies out;

– with probability 1− δ two mutant cells are produced;

• for any cell, the events of death or mutation do not depend on its final instant;

• two cells, whatever their nature, are independent conditionally on their common
ancestor;

• two clones are independent conditionally on the common ancestor of the two cells
which started those clones.

3 “Three-ingredients” approach

The generalization of the “three-ingredients” interpretation exposed in the introduction
is described in this section. Let (τn)n∈N be a sequence of observation instants, tending
to infinity as n tends to infinity. Let (πn)n∈N be a sequence of mutation probabilities,
tending to 0 as n tends to infinity. Moreover, assume

lim
n→+∞

πnnehν(0,τn) = α ,
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where α is some fixed positive real number. Remark that the constant α corresponds
in the classic case to the mean number of mutations. Denote by Zn(t) the number of
mutations in an interval [0 ; t], starting with n normal cells at time 0. The increasing

sequence of mutation instants will be denoted by
(
T

(n)
i

)
i∈N

.

Similarly to [10], a three-ingredients approach of model mutations can be given for the
non-homogeneous birth date case.

Proposition 3.1. Assume γ = 0. Let π = (πn)n∈N and τ = (τn)n∈N two sequences, and α
a positive real such that:

lim
n→+∞

πn = 0 , lim
n→+∞

τn = +∞ , lim
n→+∞

πnnehν(0,τn) = α .

Then:

(A(0)
1 ) As n tends to infinity, the distribution of the total number of mutations Zn(τn) tends

to the Poisson distribution with parameter

m = α
(
1− e−hν,∞

)
,

where
hν,∞ = lim

t→+∞
hν(0, t) .

(A(0)
2 ) As n tends to infinity, the joint distribution of the vector

(
T

(n)
1 , . . . , T

(n)
k

)
of k fixed

number of mutation instants in an interval [0 ; t] converges to the order statistics of
a k sample of the distribution:

λν(u)e−hν(u,t)

1− e−hν(0,t)
1u∈[0 ; t] ,

i.e. the distribution λν(u)e−hν(u,t) truncated on [0 ; t].

In particular, from assertions (A(0)
2 ), the probability generating function (pgf) of the

size at a given time t of any mutant clone is given by

I(z, t) =

∫ t

0

ψ(z, u, t)
λν(u)e−hν(u,t)

1− e−hν(0,t)
du , (2)

where ψ(z, s, t) is the pgf of the size at time t of a clone stemming from a mutant born
at time s.

Proposition 3.1.
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Assertion (A(0)
1 ) Consider the binary branching process with a single initial cell and with-

out mutations. Denote by N1(t) the total number of cells at instant t. For any t > 0,
consider the sequence (Nn(t))n∈N defined for any n > 0 by

Nn(t) =
n∑
i=1

N
(i)
1 (t) , (3)

where the N
(i)
1 (t) are i.i.d. copies of N1(t). For any n > 0, Nn(t) denotes the total number

of cells living at time t in n independent copies of N1(t). According to Proposition 3.2.
of [23]:

E[N1(t)] = ehν(0,t) .

Let ε > 0. According to the law of large numbers, there exists for any t > 0 an integer n0(t)
such that for any n > n0(t):

P
[∣∣∣∣ Nn(t)

nehν(0,t)
− 1

∣∣∣∣ < (1− e−hν(0,t)
)
ε

]
= 1 . (4)

Since:

Nn(t)− n
n (ehν(0,t) − 1)

− 1 =
1

1− e−hν(0,t)

(
Nn(t)

nehν(0,t)
− e−hν(0,t)

)
− 1

=
1

1− e−hν(0,t)

(
Nn(t)

nehν(0,t)
− 1

)
,

for any n > n0(t):

P
[∣∣∣∣ Nn(t)− n
n (ehν(0,t) − 1)

− 1

∣∣∣∣ < ε

]
= 1 . (5)

Thus, the number of cell divisions during the time interval [0 ; t] is almost surely equivalent
to n

(
ehν(0,t) − 1

)
. Let ϑ > 0. Since τn tend to infinity, there exists n1 ∈ N such that for

any n > n1:
τn > ϑ . (6)

Therefore, according to (5) and (6), for any n > max(n0(ϑ), n1):

P
[∣∣∣∣ Nn(τn)− n
n (ehν(0,τn) − 1)

− 1

∣∣∣∣ < ε

]
= 1 . (7)

Thus, the total number of divisionsNn(τn)−n is almost surely equivalent to n
(
ehν(0,τn) − 1

)
.

Since the mutant clones develop according to a different dynamic, the number of divisions
of normal cells in a mutation model does not have the same distribution. However, since
mutations are rare, the difference remains negligible: start with the n independent copies,
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and mark independently the division as potentially mutant with probability πn. Denote
by (Xn(t))n∈N the sequence of the number of marked divisions at time t in the n copies.
Since πnnehν(0,τn) tends to α as n tends to infinity, the distribution of Xn(τn) converges to
the Poisson distribution with parameter m = α(1− e−hν,∞). Thus the number of marked
divisions remains bounded in probability. Consider now that the clones stemming from
the marked divisions are mutant clones. If a division is marked, all the marked divisions
occurring in the clone stemming from it will be ignored. In other words, the number of
mutations Zn(τn) is smaller than the number of marked divisions Xn(τn) with probabil-
ity 1. Moreover, since Xn(τn) is bounded in probability, the difference between Zn(τn)
and Xn(τn) is also bounded. Since this difference is bounded, the number of mutations
occasions is equivalent in probability to n

(
ehν(0,τn) − 1

)
. In other words, for any ε > 0,

there exists n2 ∈ N such that for any n > n2:

P [|Xn(τn)− Zn(τn)| > ε] = 0 .

Then the distribution of Zn(τn) tends to the Poisson distribution with parameter m.

Hence (A(0)
1 ).

Assertion (A(0)
2 ) From (5), the number of mutation occasions in an interval [0 ; t] is equiv-

alent in probability to
⌊
n
(
ehν(0,t) − 1

)⌋
. Then for any k ∈ N and any t > 0:

lim
n→+∞

P [Zn(t) = k]

ιn(k, t)
= 1 ,

with

ιn(k, t) =

(⌊
n
(
ehν(0,t) − 1

)⌋
k

)
πkn(1− πn)bn(ehν (0,t)−1)c−k ,

where bxc is the only relative integer which satisfies for any x ∈ R:

bxc 6 x < bxc+ 1 ,

i.e. the integer part of x. Hence:

ιn(k, t) =

⌊
n
(
ehν(0,t) − 1

)⌋ (⌊
n
(
ehν(0,t) − 1

)⌋
− 1
)
. . .
(⌊
n
(
ehν(0,t) − 1

)⌋
− k + 1

)
k!

×
(

πn
1− πn

)k
exp

(⌊
n
(
ehν(0,t) − 1

)⌋
log(1− πn)

)
∼

n→+∞

(
πn
⌊
n
(
ehν(0,t) − 1

)⌋)k
k!

exp
(
−πn

⌊
n
(
ehν(0,t) − 1

)⌋)
∼

n→+∞

(
πnn

(
ehν(0,t) − 1

))k
k!

exp
(
−πnn

(
ehν(0,t) − 1

))
.

Moreover, by construction of {Xn(t)}t>0, the process {Zn(t)}t>0 satisfies the following
properties:
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1. {Zn(t)}t>0 is simple, i.e. for any t ∈ R+:

lim
∆t→0

1

∆t
P [Zn(t+ ∆t)− Zn(t) > 1] = 0 ;

2. {Zn(t)}t>0 has independent increments;

3. Zn(0) = 0 with probability 1.

Denote by ξn the intensity of the process {Zn(t)}t>0 defined for any t ∈ R+ by

ξn(t) = lim
∆t→0

1

∆t
P [Zn(t+ ∆t)− Zn(t) = 1] .

For any t = (t1, . . . , tk) ∈ Rk
+, the event

(
T

(n)
1 = t1, . . . , T

(n)
k = tk

)
will be denoted

by T (n) = t For any k ∈ N and t ∈ Rk
+ and conditionally to T (n) = t, the distribu-

tion of the (k + 1)-th mutation instant T
(n)
k+1 is given by Proposition A.2

f(
T

(n)
k+1 |T (n)=t

)(t) =

(
ξn(t)

∫ t

tk

ξn(u)du

)
10<t1<···<tk<t .

The joint distribution of the first k mutation instants T (n) is also given by Proposition A.2:

fT (n)(t) =

(
k∏
i=1

ξn(ti)

)
exp

(
−

k∑
i=1

∫ ti

ti−1

ξn(u)du

)
10<t1<···<tk .

Consider now the inhomogeneous Poisson process {Yn(t)}t>0 with expectation:

mn(t) = nπn
(
ehν(0,t) − 1

)
.

For any k ∈ N, denote by S(n) =
(
S

(n)
1 , . . . , S

(n)
k

)
the k first occurrence instants of the

process {Yn(t)}t>0. Then, for any k ∈ N, t ∈ R+ and t ∈ Rk
+, the three following assertions

hold:

lim
n→+∞

P [Zn(t) = k]

P [Yn(t) = k]
= 1 , (8)

and:

lim
n→+∞

fT (n)(t)

fS(n)(t)
= 1 , (9)

and:

lim
n→+∞

f(
T

(n)
k+1 |T (n)=t

)(t)

f(
S
(n)
k+1 |S(n)=t

)(t)
= 1 . (10)
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Thus, for any k ∈ N, t ∈ R+, and conditionally to Zn(t) = k the distribution of the
vector T (n) is given for any t ∈ Rk

+ by

f(T (n) |Zn(t)=k)(t) =
fT (n)(t)P

[
Zn(t) = k

∣∣T (n) = t
]

P [Zn(t) = k]

=
fT (n)(t)P

[
T

(n)
k+1 > t

∣∣T (n) = t
]

P [Zn(t) = k]
.

Thus, according to (8), (9) and (10):

lim
n→+∞

f(T (n) |Zn(t)=k)(t)

f(S(n) |Yn(t)=k)(t)
= 1 ,

for any k ∈ N. Conditionally to Yn(t) = k, the vector S(n) is distributed as the order
statistics of k sample of the distribution (Proposition A.1):

m′n(u)

mn(t)
1u∈[0 ; t] =

λν(u)ehν(0,u)

ehν(0,t)−1
1u∈[0 ; t]

=
λν(u)e−hν(u,t)

1− e−hν(0,t)
1u∈[0 ; t] .

Hence (A(0)
2 ).

Remark that (A(0)
2 ) considers mutation instants, while similar results for homogeneous

cases consider developing times of mutant clones. For example, according to Theorems
2.1 and 3.1 of [15], the joint distribution of developing times of k fixed mutant clones
converges to the product of k independent exponential distributions.

The asymptotic pgf of the total mutant counts can be explicited, as long as the pgf ψ
of a clone size is known.

Theorem 3.1. Assume γ = 0. Let π = (πn)n∈N and τ = (τn)n∈N two sequences, and α a
positive real such that:

lim
n→+∞

πn = 0 , lim
n→+∞

τn = +∞ , lim
n→+∞

πnnehν(0,τn) = α .

As n tends to infinity, the pgf of the number of mutants at time τn starting with n normal
cells tends to the pgf:

φ(z) = exp {−m (1− I(z))} , (11)

where

I(z) = lim
t→+∞

I(z, t)

=
1

1− e−hν,∞
lim
t→+∞

∫ t

0

ψ(z, u, t)λν(u)e−hν(u,t)du . (12)
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A first probabilistic interpretation of Theorem 3.1 is the generalization of the “three-
ingredients” description exposed in the introduction as follows:

1. a random number of mutations occurring with small probability among a large num-
ber of cell divisions. According to (A(0)

1 ), the number of mutations approximately
follows a Poisson distribution with expectation m = α

(
1− e−hν,∞

)
;

2. each mutation appears at a random instant. According to (A(0)
2 ), any mutation

instant asymptotically follows the distribution λν(u)e−hν(u,t) truncated on the inter-
val [0 ; t];

3. a mutant clone started at instant s develops according to a given process. Its size
at time t follows the distribution with pgf ψ(z, s, t).

Remark that the second ingredient concerns the instants at which a given number of
mutant clones are started, instead of their developing times. Observe that Theorem 3.1
holds whether if Fµ satisfies (H) or not. The Haldane model can be considered as an
example: the final instants of the normal cell are exponentially distributed with rate λ
and the lifetimes of the mutant cells are equal to a constant a. Then the cdf Fµ(s, ·) is
defined for any t > s by

Fµ(s, t) =

{
1 if t > s+ a ,
0 else ,

and does not satisfy (H). Computation of pgfs and probabilites for Haldane model have
already been done in [23]. The pgf I is given by

I(z) =
∑
i>0

bi(z)e−λia
(
1− e−λa

)
. (13)

For any i > 0, the pgf bi represents the size of a clone stemming from a mutant born at
time s in the interval [s+ ia ; s+ (i+ 1)a]. In other words, b0(z) = z, and for all i > 0:

bi(z) = δ + (1− δ) (bi−1(z))2 . (14)

The probabilities of the final mutant count will be recalled in next section. In particular,
the results obtained in [39] are recovered when δ = 0 and a = log(2).

Proposition 3.1 can be extended to the case γ > 0.

Proposition 3.2. Let π = (πn)n∈N et τ = (τn)n∈N two sequences, and α a positive real
such that:

lim
n→+∞

πn = 0 , lim
n→+∞

τn = +∞ , lim
n→+∞

πnnω(τn)eh
∗
ν(0,τn) = α ,

where
h∗ν(s, t) = (1− 2γ)hν(s, t) ,
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and

ω(t) =
1− 2γ

1− γ − γe−h∗ν(0,t)
,

the probability that a clone stemming from a normal cell born at time 0 is not died out at
time t. Then:

(A(γ)
1 ) As n tends to infinity, the distribution of the total number of mutations Zn(τn) tends

to the Poisson distribution parameter:

m = α
(

1−
(
ω∞eh

∗
ν,∞
)−1
)
,

where
h∗ν,∞ = lim

t→+∞
h∗ν(0, t) , and ω∞ = lim

t→+∞
ω(t) ;

(A(γ)
2 ) As n tends to infinity, the joint distribution of the vector

(
T

(n)
1 , . . . , T

(n)
k

)
of k

mutation instants in an interval [0 ; t] converges to that of the order statistics of a k
sample of the distribution

(ω′(u) + λν(u)(1− 2γ)ω(u)) e−h
∗
ν(u,t)

ω(t)− e−h∗ν(0,t)
1u∈[0 ; t] .

Proposition 3.2.

Assertion (A(γ)
1 ) Consider again the binary branching process with a single initial cell

and without mutations: each cell can die out with probability γ instead of dividing
into two cells. Denote by N1(t) the total number of cells at instant t. For any t > 0,
consider the sequence (Nn(t))n∈N defined by (3). For any t > 0, each copy of N1(t) may

survive until t with probability ω(t). By the same reasoning as for assertion (A(0)
1 ), the

number of divisions in the surviving clones occurring in [0 ; t] is almost surely equivalent
to n

(
ω(t)eh

∗
ν(0,t) − 1

)
. Moreover, the number of divisions in the proportion 1 − ω(t) of

dying clones is bounded and can be neglected. Thus, the total number of divisions in the n
copies is almost surely equivalent to n

(
ω(τn)eh

∗
ν(0,τn) − 1

)
. Let us mark independently

and with probability πn the cells divisions. Consider (Xn(t))n∈N the sequence of marked

divisions at time t in the n copies. By the same reasoning as for assertion (A(0)
1 ), the

distribution of the number of mutations Zn(τn) tends to the Poisson distribution with

parameter m = α
(

1−
(
ω∞eh

∗
ν,∞
)−1
)

.

Assertion (A(γ)
2 ) The number of mutation occasions in an interval [0 ; t] is equivalent in

probability to n
(
ω(t)eh

∗
ν(0,t) − 1

)
. Therefore:

lim
n→+∞

P [Zn(t) = k]

ιn(k, t)
= 1 ,

14



where

ιn(k, t) =

(⌊
n
(
ω(t)eh

∗
ν(0,t) − 1

)⌋
k

)
πkn(1− πn)bn(ω(t)eh

∗
ν (0,t)−1)c−k .

Moreover:

ιn(k, t) ∼
n→+∞

(
πn
⌊
n
(
ω(t)eh

∗
ν(0,t) − 1

)⌋)k
k!

exp
(
−πn

⌊
n
(
ω(t)eh

∗
ν(0,t) − 1

)⌋)
∼

n→+∞

(
πnn

(
ω(t)eh

∗
ν(0,t) − 1

))k
k!

exp
(
−πnn

(
ω(t)eh

∗
ν(0,t) − 1

))
.

For any t > 0 and as n tends to infinity, the distribution of Zn(t) is equivalent to the
Poisson distribution with parameter:

mn(t) = nπn
(
ω(t)eh

∗
ν(0,t) − 1

)
.

Assertion (A(γ)
2 ) is then deduced by the same reasoning as for assertion (A(0)

2 ).

Therefore, Theorem 3.1 can also be extended to the case where γ > 0.

Theorem 3.2. Let π = (πn)n∈N and τ = (τn)n∈N two sequences, and α a positive real
such that:

lim
n→+∞

πn = 0 , lim
n→+∞

τn = +∞ , lim
n→+∞

πnnω(τn)eh
∗
ν(0,τn) = α

As n tends to infinity, the pgf of the number of mutants at time τn starting with n normal
cells tends to the pgf (11) with:

m = α
(

1−
(
ω∞eh

∗
ν,∞
)−1
)
,

and

I(z) =
1

ω∞ − e−h
∗
ν,∞

lim
t→+∞

∫ t

0

ψ(z, u, t) (ω′(u) + λν(u)(1− 2γ)ω(u)) e−h
∗
ν(u,t)du . (15)

From now on, assume that Fµ satisfies (H) and denote by hµ its related function
defined in (H4). There exists a positive, continuous, R+-valued function λµ such that:

hµ(s, t) =

∫ t

s

λµ(u)du .

From Proposition 3.2 of [23], the pgf of the size at time t of a clone stemming from a
mutant cell born at time s is given by

ψ(z, s, t) =
δ(1− z) + e−h

∗
µ(s,t)((1− δ)z − δ)

(1− δ)(1− z) + e−h
∗
µ(s,t)((1− δ)z − δ)

, (16)
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where, for any (s, t) ∈ R2
+:

h∗µ(s, t) = (1− 2δ)hµ(s, t) .

Assume also there exists ρ > 0 such that for any t > 0:

(1− 2γ)λν(t) = ρ(1− 2δ)λµ(t) . (17)

The constant ρ can be interpreted as the instantaneous ratio of hazard functions λν and λµ.
The assumption of proportional hazard functions is not new: in survival analysis, it is
known as the Cox proportional-hazard regression model, which is widely used. Observe
that, in the case where λµ is a positive constant, the constant ρ corresponds to the relative
fitness in Luria-Delbrück model. This designation will be kept from now on. Under the
asymptotic context of Thereom 3.2, the distribution of final mutant count depends on the
mean number of mutation m, the fitness ρ, the death parameters γ and δ, and the limit
of hµ(0, t).

Theorem 3.3. Let π = (πn)n∈N and τ = (τn)n∈N two sequences, and α a positive real
such that:

lim
n→+∞

πn = 0 , lim
n→+∞

τn = +∞ , lim
n→+∞

πnnω(τn)eh
∗
ν(0,τn) = α .

Under (17) and as n tends to infinity, the pgf of the number of mutants at time τn starting
with n normal cells tends to the pgf (11) with:

m = α
(

1−
(
ω∞eρh

∗
µ,∞
)−1
)
,

and

I(z) =
(1− 2γ)ρ

ω∞ − e−ρh
∗
µ,∞

∫ 1

e−h
∗
µ,∞

δ(1− z) + v((1− δ)z − δ)
(1− δ)(1− z) + v((1− δ)z − δ)

Q(v)vρ−1dv , (18)

where
hµ,∞ = lim

t→+∞
hµ(0, t) , h∗µ,∞ = (1− 2δ)hµ,∞ ,

and

Q(v) =
1− γ − 2γve−ρh

∗
µ,∞(

1− γ − γve−ρh
∗
µ,∞
)2 . (19)

In particular, when γ = 0, (18) becomes:

I(z) =
1

1− e−ρh
∗
µ,∞

∫ 1

e−h
∗
µ,∞

δ(1− z) + v((1− δ)z − δ)
(1− δ)(1− z) + v((1− δ)z − δ)

vρ−1dv , (20)

which corresponds to Theorem 5.1 of [23].
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Theorem 3.3. Plugging (16) in (15) and changing e−hµ(s,t) into v leads to

I(z) =
(1− 2γ)ρ

ω∞ − e−ρh
∗
µ,∞

lim
t→+∞

∫ 1

e−h
∗
µ(0,t)

δ(1− z) + v(1− δ)z − δ)
(1− δ)(1− z) + v(1− δ)z − δ)(
1− γ − 2γve−ρh

∗
µ(0,t)

)(
1− γ − γve−ρh

∗
µ(0,t)

)2 v
ρ−1dv .

Since for any v ∈ [0 ; 1] and t > 0:(
1− γ − 2γve−ρh

∗
µ(0,t)

)(
1− γ − γve−ρh

∗
µ(0,t)

)2 6
1

1− γ
,

applying the dominated convergence theorem leads to the result.

A first example consists in considering a non-negative and increasing function f on R+,
with finite limit f∞ as t tends to infinity. Let hµ be defined for (s, t) in R2

+ by

hµ(s, t) = log

(
f(t)

f(s)

)
. (21)

Then the expected size of a mutant clone started at time s is

(
f(t)

f(s)

)1−2δ

. In other

words, it is possible to fit the average trajectory of the development of the clones to any
appropriate function of time defining hµ as (21). Moreover, only the ratio of f∞ over f(0)
has an influence on I(z).

As another particular case, if hµ,∞ is infinite, the Luria-Delbrück with cells deaths
distribution [40] is recovered.

Corollary 3.1. Let π = (πn)n∈N and τ = (τn)n∈N two sequences, and α a positive real
such that:

lim
n→+∞

πn = 0 , lim
n→+∞

τn = +∞ , lim
n→+∞

πnnω(τn)eh
∗
ν(0,τn) = α .

Assume hµ,∞ = +∞. Under (17) and as n tends to infinity, the pgf of the number of
mutants at time τn starting with n normal cells tends to the pgf (11) with m = α and:

I(z) = ρ

∫ 1

0

δ(1− z) + v((1− δ)z − δ)
(1− δ)(1− z) + v((1− δ)z − δ)

vρ−1dv . (22)

In other words, the Luria-Delbrück with cells deaths distribution can be extended
to the case where Fν(s, ·) and Fµ(s, ·) are non-exponential distributions, as long as they
satisfy (H), are cdfs of true measures on R+, and such that the associated functions λν
and λµ are proportional. Moreover, the asymptotic distribution of the number of mutants
does not depend on the γ parameter in this specific case. That was already notable in
[40]: the death parameter of normal cells (denoted by q in this reference) does not appear
anymore when taking the asymptotic. From now on, the different mutation models will
be referred to from the notations of Table 1.
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IMM(m, γ, δ, Fν , Fµ)
Inhomogeneous mutation models where the final instant of a

normal (resp. mutant) cell born at time s has cdf Fν(s, ·)
(resp. Fµ(s, ·)) (Theorem 3.2)

ILD(m, ρ, γ, δ, hµ,∞) IMM models where Fµ satisfies (H) under (17) (Theorem 3.3)

LD(m, ρ, δ) ILD models where hµ,∞ = +∞ (Corollary 3.1)

H(m, ρ, δ) Haldane model

Table 1: Mutation models designations. The parameters m, ρ, γ, δ, and hµ,∞ respectively,
denote the mean number of mutation, the fitness parameter, the probability of dying for a
normal cell, the probability of dying for a mutant cell, the asymptotic cumulative division
rate of mutants. Fν and Fµ, respectively, denote the cdf of the final instant for normal
cells, the cdf of final instant for mutant.

4 Probability calculations

Computation and simulation algorithms for the distribution of the final mutant counts
are described here. Consider first the case of IMM models. The pgf (15) can be written
as

I(z, t) =
∑
k>0

rk(t)z
k ,

where rk is defined for any k ∈ N and t ∈ R+ by

rk(t) =
1

ω(t)− e−h∗ν(0,t)

∫ t

0

pk(u, t) (ω′(u) + λν(u)(1− 2γ)ω(u)) e−h
∗
ν(u,t)du .

and the pk(s, t)’s are probabilities of the size at time t of a mutant clone started at time s.
These probabilities mainly depend on the model assumptions. For example, if the cdf Fµ
satisfies (H), the pk(s, t)’s are given by Proposition 3.3 of [23]

p0(s, t) =
δ(1− e−h

∗
µ(s,t))

1− δ − δe−h∗µ(s,t)
,

and for k > 0:
pk(s, t) = (1− p0(s, t))P (s, t)(1− P (s, t))k−1 ,

where:

P (s, t) =
(1− 2δ)e−h

∗
µ(s,t)

1− δ − δe−h∗µ(s,t)
.

Thus:

r0(t) =
1

ω(t)− e−h∗ν(0,t)

∫ t

0

δ
(
1− e−h

∗
µ(u,t)

)
1− δ − δe−h∗µ(u,t)

(ω′(u) + λν(u)(1− 2γ)ω(u)) e−h
∗
ν(u,t)du ,
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and for all k > 0:

rk(t) =
1

ω(t)− e−h∗ν(0,t)

∫ t

0

(
1−

δ
(
1− e−h

∗
µ(u,t)

)
1− δ − δe−h∗µ(u,t)

)
P (u, t)(1− P (u, t))k−1

(ω′(u) + λν(u)(1− 2γ)ω(u)) e−h
∗
ν(u,t)du ,

Then, (15) can be given by

I(z) =
∑
k>0

rkz
k ,

where for any k ∈ N, rk is the limit of rk(t) as t tends to infinity. In particular, the rk’s
for ILD models are given by

r0 =
(1− 2γ)ρ

ω∞ − e−ρh
∗
µ,∞

∫ 1

e−h
∗
µ,∞

δ − δv
1− δ − δv

vρ−1Q(v)dv ,

and for all k > 0:

rk =
(1− 2γ)ρ(1− 2δ)2(1− δ)k−1

ω∞ − e−ρh
∗
µ,∞

∫ 1

e−h
∗
µ,∞

(1− v)k−1

(1− δ − δv)k+1
Q(v)vρdv , (23)

where Q is given by (19). Remark that for γ = δ = 0, (23) leads to:

rk =
ρ

1− e−ρhµ,∞

∫ 1

e−hµ,∞
(1− w)k−1wρdw

=
ρ

1− e−ρhµ,∞
(B(ρ+ 1, k)−Be−hµ,∞ (ρ+ 1, k)) ,

where Bx(θ, β) is the incomplete Beta function defined for any x ∈ (0 ; 1) by

Bx(θ, β) =

∫ x

0

wθ−1(1− w)β−1dw ,

and B(θ, β) is the complete Beta function, i.e. B(θ, β) = B1(θ, β).
As an other example, consider now H models. The pgf I is then given by (13). For

any i ∈ N, let us denote by
(
p

(i)
k

)
k∈N

the probabilities associated to the pgf (14). Then

pgf I can be rewritting as

I(z) =
∑
i>0

e−λia
(
1− e−λa

)∑
k>0

p
(i)
k z

k

=
∑
k>0

zk
∑
i>0

e−λia
(
1− e−λa

)
p

(i)
k .
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The probabilities (rk)k∈N are then given by

rk =
∑
i>0

e−λia
(
1− e−λa

)
p

(i)
k .

Then the probabilities (rk)k∈N can be computed if the probabilities
(
p

(i)
k

)
k∈N

are known

for all i ∈ N. In practice,
(
r

(i)
k

)
k∈N

can be identified using Fast Fourier Transform.

The probabilities (qk)k∈N of the final mutant count can finally be explicited using the
following algorithm [7] for Poisson compounds:

q0 = e−m(1−r0) , (24)

and for any k > 0:

qk =
m

k

k∑
i=1

iriqk−i . (25)

The simulation algorithms are now introduced. Consider a inhomogeneous Poisson
process {Y (t)}t>0 with a given expectation Λ(t). Denote by (Si)i∈N the occurrence in-

stants of the process {Y (t)}t>0. Conditionally to Y (t) = k,
(

Λ(S1)
Λ(t)

, . . . , Λ(Sk)
Λ(t)

)
has same

distribution as the order statistics of a k sample of the uniform distribution on (0 ; 1)
(Proposition A.2). Consider first IM models with γ = 0. As a direct consequence of

assertion (A(0)
2 ), the following corollary holds:

Corollary 4.1. Assume γ = 0. Conditionally on Zn(t) = k and as n tends to infinity,

the vector
(

ehν (0,T1)−1
ehν (0,t)−1

, . . . , ehν (0,Tk)−1
ehν (0,t)−1

)
converges in distribution to the order statistics of

a k sample of the uniform distribution on (0 ; 1)..

Then, a k sample of mutation instants T1, . . . , Tk in an interval [0 ; t] is drawn by:

1. sample k uniform variables U1, . . . , Uk;

2. deduce the order statistics U(1), . . . , U(k);

3. apply for any i = 1 . . . k:

Ti = h−1
ν,0

[
log
(
U(i)

(
ehν(0,t) − 1

)
+ 1
)]
,

where for any s, h−1
ν,s is the function which satisfies:

hν
(
s, h−1

ν,s(u)
)

= u and h−1
ν,s(hν(s, t)) = t .

From (H4), this function is well defined. For example, if hν is defined as (21), then:

h−1
ν,s(u) = f−1 [euf(s)] .

According to Corollary 4.1, a k sample of mutation instants T1, . . . , Tk in an interval [0 ; t]
is drawn by:
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1. sample k uniform variables U1, . . . , Uk;

2. deduce the order statistics U(1), . . . , U(k);

3. apply for any i = 1 . . . k:

Ti = h−1
µ,0

[
1

ρ(1− 2δ)
log
(
U(i)

(
eρh
∗
µ(0,t) − 1

)
+ 1
)]

, (26)

where for any s, h−1
µ,s is the function which satisfies:

hµ
(
s, h−1

µ,s(u)
)

= u and h−1
µ,s(hµ(s, t)) = t .

Hence the following algorithm is used to compute sample of ILD distribution with γ = 0:

1. simulate a random number k of mutations, according to the Poisson distribution
with parameter m;

2. compute the clone size stemming from each mutation:

(a) simulate the mutation instant s as above (with t = +∞);

(b) compute p0(s,+∞) and P (s,+∞);

(c) make the random choice:

• with probability p0(s,+∞), output 0 (extinction of the clone);

• with probability 1− p0(s,+∞), output a geometric random number with
parameter hµ(s,+∞).

3. sum the k clone sizes.

Remark that this algorithm can be used only if hµ,∞ is finite. Otherwise, the muta-
tions instants cannot been computed applying (26) on uniform variables. However, from
Corollary 3.1, the LD distribution is recovered when hµ,∞ = +∞. Thus the algorithm
exposed by Ycart [40] can be used. Remark that IMM models with γ > 0 could also be

considered, as a consequence of assertion (A(γ)
2 );

Corollary 4.2. Conditionally on Zn(t) = k, the vector
(
ω(T1)eh

∗
ν (0,T1)−1

ω(t)eh
∗
ν (0,t)−1

, . . . , ω(Tk)eh
∗
ν (0,Tk)−1

ω(t)eh
∗
ν (0,t)−1

)
converges as n tends to infinity to the order statistics of a k sample of the uniform dis-
tribution on (0 ; 1).

Note that the computation of the inverse function of

g(t) = ω(t)eh
∗
ν(0,t) − 1

=
1− 2γ

(1− γ)e−h∗ν(0,t) − γe−2h∗ν(0,t)
− 1 ,

has not been studied here. However, Newton-Raphson algorithm can be used to approx-
imate it. Thus, as for the case where γ = 0, the simulation of a k sample of mutation
instants is possible.
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5 Parameter estimation

This section is dedicated to the adaptation of the p0, ML, and GF methods mentioned
in the introduction. Their construction will be quickly recalled. The ILD and H models
with γ = 0 are considered here. Remark that the case γ > 0 could be theoretically
considered for the ML and GF methods. However, this case has not been implemented
yet and is not considered in Section 6. The methods exposed in this section perform
estimation only for m and ρ. Indeed, the fluctuations of the distribution of final mutant
counts with respect to δ are very small [40]. In practice, only the magnitude of δ can be
measured [31, 8]. The same is also true for the parameter hµ,∞: it is related to the death
parameter δ as follows:

hµ,∞ = lim
t→+∞

1

1− 2δ
log [E [M(0, t)]] ,

where M(s, t) is the size at time t of a mutant clone started at time s. In other words,
estimating hµ,∞ is possible only if both estimates of the death parameter and the expected
final size of a mutant clone started at time 0 are available. Thus, the identifiability of the
model is hard in practice. In that sense, δ and hµ,∞ are assumed to be known, which is not
realistic. In this section, (X1, . . . , Xn) will denote a sample of n i.i.d. random variables
following ILD or H models.

The p0 method was the first method introduced by Luria and Delbrück [20] to esti-
mate m for classic mutation models when δ = 0. It uses the fact that the probability of
null counts is e−m. This relation remains true for ILD models, whether hµ,∞ is finite or
not. Hence m can be estimated by

m̂0 = − log (q̂0) ,

where q̂0 is the relative frequency of zero among mutant counts. Thus, m̂0 is a consistent
and asymptotically estimator of m. From the ∆-method (see for example [37, p. 79]), its
asymptotic variance is given by

vm̂0 =
1− q0

nq0

.

An extension of the p0 estimator to the case where δ > 0 has been described by Ycart
[40] for LD models (called Fixed Point estimator). It uses the fact that the probability
of extinction of a supercriticial process is a fixed point of the pgf of the number of cells at
time t, in a clone starting from one cell at time 0 [4, Lemma 1, p.141]. This probability
is given by Theorem 1 of [4, Chap. I]:

δ∗ =
δ

1− δ
.
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Under ILD models, δ∗ is a fixed point of the pgf (16) and (20). Therefore, a consistent
and asymptotically normal estimator of m is then given by

m̂0 =
− log

(
φ̂n(δ∗)

)
1− δ∗

,

where φ̂n denotes the empirical pgf of the sample:

φ̂n(z) =
1

n

n∑
i=1

zXi . (27)

For any z ∈ (0, 1), φ̂n(z) is a consistent and asymptotically normal estimator of φ(z).
From the ∆-method, the asymptotic variance of m̂0 is given by

vm̂0 =
1

n(1− δ∗)2

(
φ(δ2
∗)

φ(δ∗)2
− 1

)
.

Remark that the p0 estimator of m depends only on δ. In other words, the p0 method does
not depend on the growth model, and can be used for any mutation model. However, this
method does not diretly yield an estimator of ρ. If an estimate is desired, the Maximum
Likelihood can be used for ρ only, setting m = m̂0.

As the probabilities qk’s and their derivatives with respect to m and ρ are explicit
for ILD and H models, the Maximum Likelihood method seems to be an obvious choice
to estimate m and ρ. Moreover, an equivalent of rk for large values of k can be computed
rewriting (23) as:

rk =
ρδ

2

1− e−ρh
∗
µ,∞

(∫ 1

0

(1− v)k−1

(1− δ∗v)k+1
vρdv −

∫ e
−h∗µ,∞

0

(1− v)k−1

(1− δ∗v)k+1
vρdv

)

=
ρδ

2

1− e−ρh
∗
µ,∞

(
k−ρ−1

∫ k

0

(
1− w

k

)k−1(
1− δ∗wk

)k+1
wρdw −

∫ e
−h∗µ,∞

0

(1− v)k−1

(1− δ∗v)k+1
vρdv

)
,

where the constant δ is given by

δ =
1− 2δ

1− δ
.

The following equivalent is then obtained:

rk ∼
k→+∞

ρδ
2

1− e−hν,∞

(
Γ(ρ+ 1)

kρ+1

(
1− δ
1− 2δ

)ρ+1

−
∫ e

−h∗µ,∞

0

(1− v)k−1

(1− δ∗v)k+1
vρdv

)
, (28)

where Γ is the Gamma function. Remark that for hµ,∞ = +∞, Formula (3.4) of [40] is
recovered. Consider first ILD models. The derivatives of the rk’s with respect to ρ are
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now given:

∂r0

∂ρ
=

ρ

1− e−ρh
∗
µ,∞

∫ 1

e−h
∗
µ,∞

δ − δv
1− δ − δv

vρ−1 log(v)dv +

(
1

ρ
−
h∗µ,∞e−ρh

∗
µ,∞

1− e−ρh
∗
µ,∞

)
r0 ,

and for any k > 0:

∂rk
∂ρ

=
ρ

1− e−ρh
∗
µ,∞

∫ 1

e−h
∗
µ,∞

(1− v)k−1

(1− δ − δv)k+1
vρ log(v)dv +

(
1

ρ
−
h∗µ,∞e−ρh

∗
µ,∞

1− e−ρh
∗
µ,∞

)
rk .

From (28), an asymptotic equivalent for large k is given by

∂rk
∂ρ

=
ρδ

2

1− e−ρh
∗
µ,∞

[
Γ(ρ+ 1)

kρ+1

(
1− δ
1− 2δ

)ρ+1 (
z(ρ+ 1)− log

(
kδ
))

−
∫ e

−h∗µ,∞

0

(1− v)k−1

(1− δ∗v)k+1
log(v)vρdv

]
+

(
1

ρ
−
h∗µ,∞e−ρh

∗
µ,∞

1− e−ρh
∗
µ,∞

)
rk ,

where z is the Digamma function. Remark also that for δ = 0:

∂rk
∂ρ

=
ρ

1− e−ρhµ,∞
[B(ρ+ 1, k)(z(ρ+ 1) + z(ρ+ 1 + k))

−
∫ e−hµ,∞

0

log(w)wρ(1− w)k−1dw

]
+

(
1

ρ
− hµ,∞e−ρhµ,∞

1− e−ρhµ,∞

)
rk

The gradient of the qk’s can then be deduced from the rk’s and their derivatives:

∂q0

∂m
= −(1− r0)q0 and

∂q0

∂ρ
=−

[
∂m

∂ρ
(1− r0)−m∂r0

∂ρ

]
q0

=−m

[
h∗µ,∞e−ρh

∗
µ,∞

1− e−ρh
∗
µ,∞

(1− r0)− ∂r0

∂ρ

]
q0

The derivative of φ with respect to m is given by

∂φ

∂m
(z) =− (1− I(z))φ(z)

=−

[∑
j>0

qjz
j −

(∑
i>0

riz
i

)(∑
j>0

qjz
j

)]

=−

[∑
j>0

qjz
j −

∑
i,j>0

riqjz
i+j

]
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On the other hand:
∂φ

∂m
(z) =

∑
k>0

∂qk
∂m

zk .

Hence for any k > 0:

∂qk
∂m

= −

qk − ∑
i,j>0
i+j=k

riqj

 =
k∑
i=1

riqk−i − qk . (29)

Similarly, the derivative of φ with respect to ρ is given by

∂φ

∂ρ
(z) =−

[
∂m

∂ρ
(1− I(z))−m∂h

∂ρ
(z)

]
φ(z)

=−m

[
h∗µ,∞e−ρh

∗
µ,∞

1− e−ρh
∗
µ,∞

(1− I(z))− ∂h

∂ρ
(z)

]
φ(z)

=−m

[
h∗µ,∞e−ρh

∗
µ,∞

1− e−ρh
∗
µ,∞

(
1−

∑
i>0

ziri

)
−

(∑
i>0

∂ri
∂ρ

zi

)](∑
j>0

qjz
j

)

=−m

[
h∗µ,∞e−ρh

∗
µ,∞

1− e−ρh
∗
µ,∞
−
∑
i>0

zi

(
h∗µ,∞e−ρh

∗
µ,∞

1− e−ρh
∗
µ,∞

ri +
∂ri
∂ρ

)](∑
j>0

qjz
j

)

Hence for any k > 0:

∂qk
∂ρ

= −m

[
h∗µ,∞e−ρh

∗
µ,∞

1− e−ρh
∗
µ,∞

qk −
k∑
i=1

qk−i

(
h∗µ,∞e−ρh

∗
µ,∞

1− e−ρh
∗
µ,∞

ri +
∂ri
∂ρ

)]
. (30)

Define the log-likelihood by

`(X1, . . . , Xn) =
n∑
i=1

log(qXi)

=
M∑
j=1

[
log(qj)

n∑
i=1

1Xi=j

]
, (31)

where M = maxj Xj is the sample maximum. The couple (m̂ML, ρ̂ML) maximizing (31) is
consistent and asymptotically normal [19, Theo. 5.1, Chap.6]. The asymptotic variances
of m̂ML and ρ̂ML are given by

vm̂ML
=

I2,2

det(I)
and vρ̂ML

=
I1,1

det(I)
,
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where I = (Ii,j)i,j∈{1,2} is the following information matrix:

I =
M∑
j=0



(
∂qj
∂m

1

qj

)2
∂qj
∂m

∂qj
∂ρ

1

q2
j

∂qj
∂m

∂qj
∂ρ

1

q2
j

(
∂qj
∂ρ

1

qj

)2


n∑
i=1

1Xi=j

 .

Using the algorithms (25), (29) and (30), the log-likelihood and its derivatives can be
calculated iteratively. However, the formulas must be applied to vectors as large as M .
Therefore, as for the homogeneous case [10], the procedure can be very long and numer-
ically unstable. In practice, this instability problem can be avoided using Winsorization
[38, sec. 2.2.]: any value of the sample that pass a certain bound is replaced by the
bound itself. All information above the bound is lost. In extreme cases where the sample
minimum is greater than the bound, i.e. for large m and/or small ρ, irrelevant results
will be returned. However, these difficulties should not be met in practice. Indeed, very
large numbers of mutants are not countable and do not appear in data sets.

As mentioned previously, the optimization of the likelihood with respect to δ and hµ,∞
is hard in practice. However, the derivatives of the rk’s and the qk’s with respect to δ
and hµ,∞ can also be iteratively computed. Consider first the derivatives with respect
to δ:

∂r0

∂δ
=

2ρhµ,∞e−ρh
∗
µ,∞

1− e−ρh
∗
µ,∞

(
r0 −

δ
(
1− eh

∗
µ,∞
)
ρe(ρ−1)h∗µ,∞

1− δ − δeh∗µ,∞

)

+
1

1− e−ρh
∗
µ,∞

∫ 1

e−h
∗
µ,∞

(1− v)ρvρ−1

(1− δ − δv)2 dv ,

and

∂q0

∂δ
= −

[
∂m

∂δ
(1− r0)−m∂r0

∂δ

]
q0

= −m
[

2ρhµ,∞e−ρh
∗
µ,∞

1− e−ρh
∗
µ,∞

(1− r0)− ∂r0

∂δ

]
q0 .

For all k > 0:

∂rk
∂δ

=
1

1− e−ρh
∗
µ,∞

{
rk

(
−2δ(1− δ)− (1− 2δ)(k − 1)

(1− 2δ)(1− δ)
+ 2ρh∗µ,∞e−ρh

∗
µ,∞

)

+ (1− 2δ)(1− δ)k−1

[
−
(
1− e−h

∗
µ,∞
)k−1

1− δ − δe−h∗µ,∞
2h∗µ,∞ρe−ρh

∗
µ,∞

+

∫ 1

e−h
∗
µ,∞

(1− v)k−1(1 + v)(k + 1)

(1− δ − δv)k+1
ρvρdv

]}
.
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Since the derivative of φ with respect to δ is given by

∂φ

∂δ
(z) =−

[
∂m

∂δ
(1− I(z))−m∂h

∂δ
(z)

]
φ(z)

=−m
[

2ρhµ,∞e−ρh
∗
µ,∞

1− e−ρh
∗
µ,∞

(1− I(z))− ∂h

∂δ
(z)

]
φ(z)

=−m

[
2ρhµ,∞e−ρh

∗
µ,∞

1− e−ρh
∗
µ,∞

−
∑
i>0

zi
(
∂ri
∂δ

+
2ρhµ,∞e−ρh

∗
µ,∞

1− eρh
∗
µ,∞

ri

)](∑
j>0

qjz
j

)
.

Hence, for any k > 0:

∂qk
∂δ

= −m

[
2ρhµ,∞e−ρh

∗
µ,∞

1− e−ρh
∗
µ,∞

qk −
k∑
i=1

qk−i

(
∂ri
∂δ
− 2hµ,∞e−ρh

∗
µ,∞

1− e−ρh
∗
µ,∞

ri

)]
.

The derivatives of the rk’s and the qk’s with respect to h∗µ,∞ can be computed as follows:

∂r0

∂h∗µ,∞
=

ρe−ρh
∗
µ,∞

1− e−ρh
∗
µ,∞

(
−r0 +

δ
(
1− e−h

∗
µ,∞
)

1− δ − δe−h∗µ,∞

)
,

thus:

∂q0

∂h∗µ,∞
=−

[
∂m

∂h∗µ,∞
(1− r0)−m ∂r0

∂h∗µ,∞

]
q0

=m

[
ρe−ρh

∗
µ,∞

1− e−ρh
∗
µ,∞

(1− r0) +
∂r0

∂h∗µ,∞

]
q0 .

And for any k > 0:

∂rk
∂h∗µ,∞

=
ρe−ρh

∗
µ,∞

1− e−ρh
∗
µ,∞

(
−rk +

e−h
∗
µ,∞
(
1− e−h

∗
µ,∞
)k−1(

1− δ − δe−h∗µ,∞
)k+1

)

Since the derivative of φ with respect to h∗µ,∞ is given by

∂φ

∂h∗µ,∞
(z) =−

[
∂m

∂h∗µ,∞
(1− I(z))−m∂I(z)

∂h∗µ,∞

]
φ(z)

=m

[
ρe−ρh

∗
µ,∞

1− e−ρh
∗
µ,∞

(1− I(z)) +
∂I(z)

∂h∗µ,∞

]
φ(z)

=m

[
ρe−ρh

∗
µ,∞

1− e−ρh
∗
µ,∞

+
∑
i>0

zi
(

∂ri
∂h∗µ,∞

− ρe−ρh
∗
µ,∞

1− e−ρh
∗
µ,∞

ri

)](∑
j>0

qjz
j

)
.
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Hence, for any k > 0:

∂qk
∂h∗µ,∞

= m

[
ρe−ρh

∗
µ,∞

1− e−ρh
∗
µ,∞

qk +
k∑
i=1

qk−i

(
∂ri
∂h∗µ,∞

− ρe−ρh
∗
µ,∞

1− e−ρh
∗
µ,∞

ri

)]
.

Consider now H models. In that case, the derivatives of the rk’s with respect to ρ and δ
are given by

∂rk
∂ρ

=
∑
i>0

r
(i)
k

(
−iae−naρ + (i+ 1)ae−(i+1)aρ

)
=
∑
i>0

r
(n)
k ae−iaρ

(
(i+ 1)e−aρ − n

)
,

and

∂rk
∂δ

=
∑
i>0

∂p
(i)
k

∂δ

(
e−iaρ − e−(i+1)aρ

)
+ p

(i)
k

(
iρ

(1− δ)
e−iaρ − (i+ 1)ρ

(1− δ)
e−(i+1)aρ

)

=
(
1− e−aρ

)∑
i>0

∂p
(i)
k

∂δ
e−iaρ + 2ρe−a

∑
i>0

p
(i)
k e−iaρ

(
i− (i+ 1)e−aρ

)
.

The derivatives

(
∂p

(i)
k

∂δ

)
k∈N

can be computed in a similar way as for the probabili-

ties
(
p

(i)
k

)
k∈N

. For any z ∈ (0 ; 1):

∂bi
∂δ

(z) =
∑
k>0

∂p
(i)
k

∂δ
zk

= 1− (bi−1(z))2 + 2(1− δ)∂bi−1

∂δ
(z)bi−1(z) ,

and
∂b0

∂δ
(z) = 0 .

The sequence

(
∂p

(i)
n

∂δ

)
k>0

can then be deduced for any integer i from the sequence of

polynoms

(
∂bi
∂δ

)
i>0

using Fast Fourier Transform. However, each polynom bi has 2i

coefficients. The computation of these coefficients is very long.
The last method exposed here relies on the generating function φ of final mutant count.

Indeed, the parameter of a Poisson compound can be easily estimated [29, 22]. The GF
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method proposed in [10, Section 4] uses this approach to estimate m and ρ under LD
models when δ = 0. This method can also be used for H models [39] or LD models
with δ > 0 [40]. It is extended here to the ILD models. The pgf I and its derivative with
respect to ρ are required in this method. Thus they are implemented as the following
numerically stable expressions :

I(z) = δ∗ +
z∗(1− δ∗)

1− e−ρh
∗
µ,∞

∫ 1

e−h
∗
µ,∞

ρvρ

1 + z∗v
dv ,

and

∂I(z)

∂ρ
=

z∗(1− δ∗)
1− e−ρh

∗
µ,∞

{[
1−

ρh∗µ,∞e−ρh
∗
µ,∞

1− e−ρh
∗
µ,∞

]∫ 1

e−h
∗
µ,∞

vρ

1 + z∗v
dv

+

∫ 1

e−h
∗
µ,∞

ρvρ

1 + z∗v
log(v)dv

}
,

where the constant δ∗ and z∗ are given by

δ∗ =
δ

1− δ
, and z∗ =

z − δ∗
1− z

.

Consider z1, z2, z3 in (0 ; 1). The GF estimators of m and ρ are the following:

m̂GF (z3) =
log
(
φ̂n(z3)

)
Iρ̂GF (z1,z2)(z3)− 1

and ρ̂GF (z1, z2) = g−1(ŷn) ,

where Ix is the pgf (20) for ILD models or (13) for H models setting ρ = x, φ̂n is the
empricial pgf (27) and:

g(x) =
Ix(z1)− 1

Ix(z2)− 1
and ŷn =

log
(
φ̂n(z1)

)
log
(
φ̂n(z2)

) .
From Theorem 3.4 of [29] and ∆-method, it can be proved that the estimator cou-
ple (m̂GF , ρ̂GF ) is strongly consistent and asymptotically normal, with explicit asymptotic
variance.

Proposition 5.1. Let z1, z2, z3 in (0 ; 1), two by two distinct. Consider the random vector

√
n
(

(φ̂n(z1), φ̂n(z2), φ̂n(z3))− (φ(z1), φ(z2), φ(z3))
)
,

and its asymptotic covariance matrix C = (c(zi, zj))i,j=1,2,3 given by

c(zi, zj) = φ(zizj)− φ(zi)φ(zj) .
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Then, the couple of random variables:

√
n ((m̂GF , ρ̂GF )− (m, ρ)) (32)

converges in distribution to the bivariate centered normal distribution with covariance
matrix AtCA, where A = (ai,j)i=1,2,3

j=1,2
is a 3× 2 matrix with:

a1,1 =
ma1,2

I(z3)− 1
∂I(z3)
∂ρ

; a1,2 =
I(z2)− 1

mφ(z1)
(
∂I(z1)
∂ρ

(I(z2)− 1)− ∂I(z2)
∂ρ

(I(z1)− 1)
)

a2,1 =
ma2,2

I(z3)− 1
∂I(z3)
∂ρ

; a2,2 =
I(z1)− 1

mφ(z2)
(
∂I(z2)
∂ρ

(I(z1)− 1)− ∂I(z1)
∂ρ

(I(z2)− 1)
)

a3,1 =
1

φ(z3)(I(z3)− 1)
; a3,2 = 0

The proof of Proposition 5.1 has already been exposed by Hamon and Ycart [10].
By definition, the GF estimators depend on the arbitrary values of z1, z2 and z3. They
can be seen as tuning parameters and should be appropriately chosen according to the
sample to minimize the asymptotic variances of Proposition 5.1. Since the unknown
values of m and ρ influence also the variance, optimal values for z1, z2 and z3 cannot be
easily identified. However, the fluctuations of the variances with respect to these three
parameters are quite small. Their values have been set in [10, p. 1262] using simulation
experiments, such that the tuning parameters minimizes the mean squared error. In that
sense, the GF method is a semi-empirical method, since the estimators have been trained
by simulated data. Another issue in this method concerns the estimation of ρ which
requires to identify the zero of the monotone function g(ρ)− ŷn. In practice, the research
domain is bounded. This can be a problem if the sample does not contain jackpot, i.e.
for large theoretical values of ρ. However in that case, it should be considered that a
mutation model may not be adapted to the data.

The fact is that the GF estimators are in practice comparable in precision to ML esti-
mators, with a negligible computing time [24, Fig. 1-2]. For that reason, ML optimization
can be initialized by GF estimates, to significantly improve computing time. This choice
nevertheless has an inconvenient in practice: if the GF method is not able to estimate ρ,
there is no chance to estimate it with the ML method.

6 Simulation study

If the model used for the estimation does not correspond to the theoretical model, the
estimates can be biased. Simulation experiments have been performed to observe the bias
induced by estimating under LD or H models when data are realizations of ILD model.
The death parameters γ and δ are assumed to be zero.
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These simulation studies have been implemented in R [26], using the R package flan

[24], which is available on CRAN (https://cran.r-project.org/package=flan).
Assume that hµ is defined as (21), where f is solution of the logistic equation:

f ′(t) = f(t)

(
1− f(t)

f∞

)
,

where f∞ denotes the finite limit of f as t tends to infinity, i.e. the carrying capacity.
Thus:

f(t) =
f∞

1 +
(
f∞
f(0)
− 1
)

e−t
.

The associated cdf Fµ is then given for any (s, t) ∈ R+ × R+ by

Fµ(s, t) =

(
1− f(s)

f(t)

)
1t∈[s ; +∞) + 1t=+∞ , (33)

and the asymptotic cumulative division rate hµ,∞ by

hµ,∞ = log

(
f∞
f(0)

)
.

Recall that the choice of the function f is a matter only for the simulation: mutant count
distribution depends only on the ratio hµ,∞ (Theorem 3.3). In that sense, f(0) is set here
to 1.

Simulation experiments have been made along the following lines for each of the 24
sets of parameters m = (0.5, 2, 4, 8), ρ = (0.8, 1, 1.2) and hµ,∞ = (log(100), log(104)):

1. draw 10000 samples of size 100, under inhomogeneous model with cdf (33);

2. for each sample, compute ML and GF estimates of m and ρ under ILD, LD and H
models;

3. for each model, observe the empirical distribution of relative bias θ̂/θ, where θ̂ is
the estimator of the true value θ.

Note that the sample size considered here is not realistic: in practice, the sample size
rarely exceeds 20. However, the objective of this section is to observe the bias induced by
estimating under LD or H models when data are realizations of ILD model. Therefore,
large size samples are used in order to reduce the parameter identifiability issues. Similar
simulation studies with more realistic sample sizes have also been performed and will be
exposed at the end of this section.

Boxplots of Figures 1 and 3 show the empirical distributions of the estimators m̂ML

and ρ̂ML obtained under LD model (left boxplots), H model (center boxplots), and ILD
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Figure 1: ML estimates under LD, H, and ILD models on data drawn
with ILD model (hµ,∞ = log (100)). For each of the 12 sets of parame-
ters m = (0.5, 2, 4, 8) (rows) and ρ = (0.8, 1, 1.2) (columns), 104 samples of size 100 of
the ILD(m, ρ, 0, 0, hµ,∞) distribution were simulated with cdf (33) and hµ,∞ = log(100).
For each column, the first three boxplots represent the distribution of the 104 ratio m̂ML/m
obtained under LD model (left), H model (center), and ILD model (right) ; the last three
boxplots represent the distribution of the 104 ratio ρ̂ML/ρ obtained under LD model
(left), H model (center), and ILD model (right). Red horizontal lines mark theoretical
value. Blue horizontal lines mark relative biases of 0.9 and 1.1.
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Figure 2: GF estimates under LD, H, and ILD models on data drawn
with ILD model (hµ,∞ = log (100)). For each of the 12 sets of parame-
ters m = (0.5, 2, 4, 8) (rows) and ρ = (0.8, 1, 1.2) (columns), 104 samples of size 100 of
the ILD(m, ρ, 0, 0, hµ,∞) distribution were simulated with cdf (33) and hµ,∞ = log(100).
For each column, the first three boxplots represent the distribution of the 104 ratio m̂GF/m
obtained under LD model (left), H model (center), and ILD model (right) ; the last three
boxplots represent the distribution of the 104 ratio ρ̂GF/ρ obtained under LD model
(left), H model (center), and ILD model (right). Red horizontal lines mark theoretical
value. Blue horizontal lines mark relative biases of 0.9 and 1.1.
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Figure 3: ML estimates under LD, H, and ILD models on data drawn
with ILD model (hµ,∞ = log (104)). For each of the 12 sets of parame-
ters m = (0.5, 2, 4, 8) (rows) and ρ = (0.8, 1, 1.2) (columns), 104 samples of size 100 of
the ILD(m, ρ, 0, 0, hµ,∞) distribution were simulated with cdf (33) and hµ,∞ = log(104).
For each column, the first three boxplots represent the distribution of the 104 ratio m̂ML/m
obtained under LD model (left), H model (center), and ILD model (right) ; the last three
boxplots represent the distribution of the 104 ratio ρ̂ML/ρ obtained under LD model
(left), H model (center), and ILD model (right). Red horizontal lines mark theoretical
values. Blue horizontal lines mark relative biases of 0.9 and 1.1.
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Figure 4: GF estimates under LD, H, and ILD models on data drawn
with ILD model (hµ,∞ = log (104)). For each of the 12 sets of parame-
ters m = (0.5, 2, 4, 8) (rows) and ρ = (0.8, 1, 1.2) (columns), 104 samples of size 100 of
the ILD(m, ρ, 0, 0, hµ,∞) distribution were simulated with cdf (33) and hµ,∞ = log(104).
For each column, the first three boxplots represent the distribution of the 104 ratio m̂GF/m
obtained under LD model (left), H model (center), and ILD model (right); the last three
boxplots represent the distribution of the 104 ratio ρ̂GF/ρ obtained under LD model
(left), H model (center), and ILD model (right). Red horizontal lines mark theoretical
values. Blue horizontal lines mark relative biases of 0.9 and 1.1.
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model(right boxplots), according to the value of hµ,∞. Empirical distributions of the
estimators m̂GF and ρ̂GF under same assumptions are shown in Figures 2 and 4. In the
four figures, red lines mark theoretical values, blue lines mark relative biases of 0.9 and
1.1.

According to Figure 1, ML method correctly estimates small values of m under LD
model. Positive biases, which seem to increase as ρ decreases, are observed for larger m.
The fitness ρ is overestimated by the ML method under LD model. The bias seems to
increase as m increases and/or ρ decreases. For the extreme case where m = 8 and ρ =
0.8, a wide proportion of the estimates have a relative bias larger than 20%. However,
using ML method under H model seems to provide overestimated values of m. The
estimates of ρ seem also to be biased when ρ 6= 1: the bias is positive when ρ < 1,
negative when ρ > 1. For larger value of hµ,∞ (Figure 3), there is almost no distinction
between LD and ILD models when using ML method, whatever the theoretical value
of m and ρ. However, the behaviour of the ML estimates under H model is harder to
interpret. On the other hand, the GF method provides similar results, with slightly larger
variances (see Figures 2 and 4).

Similar simulations have also been performed using ML method on samples of size
20. Related visual results are exposed in Figures 5 and 6. These figures illustrate the
identifiability issues: the estimation of ρ is not possible if the sample does not contain
jackpot, i.e. for small m and/or large ρ.

Two facts have to be noticed. First, even if the whole population of cells has a logistic
growth, it is possible in practice to stop the experiment before the inflexion instant. Thus,
the assumption of an exponential growth could be considered and the LD distribution
could be used to perform estimations. Moreover, the initial number of cells is in practice
of order 103–104, the final number of cells of order 108–109. According to Figures 3 and 6,
the practical value of hµ,∞ is then such that the bias induced by considering an exponential
growth instead of logistical growth should be negligible. Therefore, it seems that the LD
model should be preferred since the identifiability issues have less impact for this model.

7 Conclusion

An extension for the classic mutation models to the case where the final instant of a cell
depends on its birth date has been proposed. Results are based on the decomposition as
three ingredients of any mutation model. This approach led to a family of distributions
for the asymptotic mutant count. These distributions depend on the expected number
of mutations m, the death probabilities γ and δ for normal and mutant cells, and the
final instant cdf Fν(s, ·) and Fµ(s, ·) for normal and mutant cells born at a given time s.
The previous results obtained with an analytic approach are recovered and generalized to
the case where γ > 0. Computation of probabilities and simulation algorithms have been
described. The Luria-Delbrück distribution with cell deaths and the Haldane model are
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Figure 5: ML estimates under LD, H, and ILD models on data drawn
with ILD model (hµ,∞ = log (100)). For each of the 12 sets of parame-
ters m = (0.5, 2, 4, 8) (rows) and ρ = (0.8, 1, 1.2) (columns), 104 samples of size 20 of
the ILD(m, ρ, 0, 0, hµ,∞) distribution were simulated with cdf (33) and hµ,∞ = log(104).
For each column, the first three boxplots represent the distribution of the 104 ratio m̂ML/m
obtained under LD model (left), H model (center), and ILD model (right) ; the last three
boxplots represent the distribution of the 104 ratio ρ̂ML/ρ obtained under LD model
(left), H model (center), and ILD model (right). Red horizontal lines mark theoretical
values. Blue horizontal lines mark relative biases of 0.9 and 1.1.
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Figure 6: ML estimates under LD, H, and ILD models on data drawn
with ILD model (hµ,∞ = log (104)). For each of the 12 sets of parame-
ters m = (0.5, 2, 4, 8) (rows) and ρ = (0.8, 1, 1.2) (columns), 104 samples of size 20 of
the ILD(m, ρ, 0, 0, hµ,∞) distribution were simulated with cdf (33) and hµ,∞ = log(104).
For each column, the first three boxplots represent the distribution of the 104 ratio m̂ML/m
obtained under LD model (left), H model (center), and ILD model (right) ; the last three
boxplots represent the distribution of the 104 ratio ρ̂ML/ρ obtained under LD model
(left), H model (center), and ILD model (right). Red horizontal lines mark theoretical
values. Blue horizontal lines mark relative biases of 0.9 and 1.1.
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recovered. The latter has also been extended to the case where δ > 0. The consequence
for statistical inference has been studied: robust estimation methods have been extended
to the ILD models, in the specific cases where the parameters δ and hµ,∞ are known,
and γ = 0; biases induced by considering classic mutation models instead of birth-date
dependence model have been studied with simulation experiments. Considering the order
of hµ,∞ in practice, the biases on m and ρ induced in practice by considering the LD
distribution instead of the ILD distribution seems negligible. Thus, still considering
the LD distribution for estimating parameters seems worthy. The R package flan which
has been used for simulation study is available on CRAN (https://cran.r-project.
org/package=flan). Note that flan does not take into account the death of normal cells
(i.e. γ > 0) for now. The extension to the case γ > 0 is being developed and should
appear on CRAN. In the same time, a web-tool based on flan and R package shiny is
also being developed. It allows to use some features of flan (in particular hypothesis
testing and simulation) without any installation or knowledge in R. A first version is
already available at https://toltex-shiny.u-ga.fr/RodaShiny/ShinyFlan/.

A Point processes

The main properties of point processes used in this paper are shortly exposed in this
appendix. Consider a sequence (Ti)i∈N. Each Ti represents the occurring time of a given
event, such as a mutation. Let us denote by {N(t)}t>0 the associated point process,
defined for any t ∈ R+ by

N(t) = max {i ∈ N ; Ti 6 t} ,

which represents the cumulated number of events occurring in [0 ; t]. Assume that the
following holds:

1. T0 = 0 and N(0) = 0 with probability 1;

2. The paths {N(t)}t>0 are cadlag and increasing ;

3. the counting process {N(t)}t>0 is simple, i.e. for any t ∈ R+:

lim
∆t→0

1

∆t
P [N(t+ ∆t)−N(t) > 1] = 0 .

Consider now the two following functions:

1. The intensity of the process {N(t)}t>0 defined by

ξ(t, N(t)) ≡ ξ(t, N(t), T1, . . . , TN(t))

= lim
∆t→0

1

∆t
P
[
N(t+ ∆t)−N(t) = 1 |N(t), T1, . . . , TN(t)

]
. (34)
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This intensity represents the probability of occurring after a time t, conditionally
to the number of events before t and their respective appearance time. Thus ξ is a
random variable depending on N(t), T1, . . . , TN(t). To simplify the redaction, it will
be sometimes denoted here by ξ(t, N(t)).

2. The conditional intensity defined by

ξ̃(t, n) = E[ξ(t, N(t)) |N(t) = n] (35)

The function ξ̃(t, n) is deterministic. It represents the probability of occurring after
a time t, knowing that n events have occurred before t.

The distribution of the event number occurring before a given time can then be explicited.

Proposition A.1. For any t ∈ R+, the distribution of the event number occurring before
a given time t is given by

P [N(t) = 0] = exp

(
−
∫ t

0

ξ̃(u, 0)du

)
, (36)

and for any n > 0,

P [N(t) = n] =

∫
0<t1<···<tn

[
n∏
i=1

ξ̃(ti, i− 1)

]
exp

(
−

n∑
i=0

(∫ ti+1

ti

ξ̃(u, i)du

))
dt1 . . . dtn ,

(37)
with convention t0 = 0 et tk+1 = t.

Consider now the distribution of the occurring instants. For any vector t(n) =
(t1, . . . , tn) ∈ Rn

+, the event (T1 = t1, . . . , Tn = tn) will be denoted by T (n) = t(n).

Proposition A.2. The probability distribution function (pdf) of the instant T1 of the first
event is given by

fT1(t) = ξ(t, 0) exp

(
−
∫ t

0

ξ(u, 0)du

)
. (38)

Conditionally to T (n) = t(n), the pdf of the instant Tn+1 of the n+ 1-th event is given by

f(Tn+1|T (n)=t(n))(t) = ξ(t, n, t(n)) exp

(
−
∫ t

tn

ξ(u, n, t(n))du

)
10<t1<···<tn . (39)

The joint pdf of the vector T (n) is given by

fT (n)(t(n)) =

[
n∏
i=1

ξ(ti, i− 1, t(i−1))

]
exp

(
−

n∑
i=1

∫ ti

ti−1

ξ(u, i− 1, t(i−1))du

)
10<t1<···<tn .

(40)
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Assume now that the process {N(t)}t>0 is a time inhomogeneous Poisson process. In
that case, the intensity (34) is a deterministic time function:

ξ(t, N(t), T1, . . . , TN(t)) = ξ(t) .

Note that the increments are independent. The conditional intensity (35) is given by

ξ̃(t, N(t)) = E [ξ(t) |N(t)] = ξ(t) .

According to Proposition A.1, the distribution of the event number occurring before
a given time can be explicited. The direct consequence of Proposition A.2 provides the
distribution of the occurring instant for a given number of events.

Proposition A.3. For any t ∈ R+, N(t) follows the Poisson distribution with expectation

m(t) =

∫ t

0

ξ(u)du .

The pdf of the instant T1 of the first event is given by

fT1(t) = ξ(t)e−m(t) . (41)

Conditionally to T (n) = t(n), the pgf of the (n+ 1)-th instant Tn+1 is given by

f(Tn+1|T (n)=t(n))(t) = ξ(t)em(tn)−m(t)10<t1<···<tn . (42)

The joint pdf of the vector T (n) is given by

fT (n)(t(n)) =

[
n∏
i=1

ξ(ti)

]
e−m(tn)1t1<···<tn . (43)

The inhomogeneous Poisson processes satisfy a wide panel of usefull properties. One
of them concerns the joint distribution of T (n), conditionally to N(t) = n.

Corollary A.1. Conditionally to N(t) = n, the joint pdf of the vector T (n) is the same

as the order statistics of a n sample of the distribution
ξ(u)

m(t)
1u∈[0 ; t], i.e.

f(T (n) |N(t)=n)(t(n)) = n!

[
n∏
i=1

ξ(ti)

m(t)
1ti∈[0 ; t]

]
10<t1<···<tn .

Corollary A.1 can also be written as Corollary A.2.

Corollary A.2. Conditionally to N(t) = n, the joint pdf of the vector

(
m(T1)

m(t)
, . . . ,

m(Tn)

m(t)

)
is the same as the order statistics of a n sample of the uniform distribution on (0 ; 1).
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