
HAL Id: hal-01637794
https://hal.science/hal-01637794v1

Submitted on 28 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An RLS Memory-based Mechanism for the Automatic
Adaptation of VMs on Cloud Environments

Carlos Ruiz, Hector A. Duran-Limon, Nikos Parlavantzas

To cite this version:
Carlos Ruiz, Hector A. Duran-Limon, Nikos Parlavantzas. An RLS Memory-based Mechanism
for the Automatic Adaptation of VMs on Cloud Environments. Workshop on Adaptive Resource
Management and Scheduling for Cloud Computing, Jul 2017, Washington, DC, United States.
�10.1145/3110355.3110358�. �hal-01637794�

https://hal.science/hal-01637794v1
https://hal.archives-ouvertes.fr


An RLS Memory-based Mechanism for the Automatic
Adaptation of VMs on Cloud Environments

Carlos Ruiz
University of Guadalajara

Periferico Nte 799
Zapopan, Jalisco, Mexico
ruiz_carlos@cucea.udg.mx

Hector A. Duran-Limon
University of Guadalajara

Periferico Nte 799
Zapopan, Jalisco, Mexico
hduran@cucea.udg.mx

Nikos Parlavantzas
IRISA INSA de Rennes

263 Avenue du Général Leclerc
Rennes, France

Nikos.Parlavantzas@irisa.fr

ABSTRACT
One key factor for Cloud computing success is the resource flex-
ibility it provides. Because of this characteristic, academia and
industry have focused their efforts on making efficient use of cloud
computational resources without having to sacrifice performance.
One way to achieve this purpose is through the automatic adap-
tation of the computational capabilities of VMs according to their
resource utilization and performance. In this paper we present the
design and preliminary results of our resource adaptation solution,
which proactively adapts VMs (memory-based vertical scaling) to
maintain an expected performance. Our solution targets multi-tier
applications deployed on Cloud environments, and its core resides
in RLS-based resource and performance predictors. Our results
show that our solution, when compared with VMs with larger and
permanently allocated computational resources, is able to maintain
expected performance while reducing resource waste.

CCS CONCEPTS
• Networks → Cloud computing; • Computing methodolo-
gies→ Machine learning approaches; • Computer systems orga-
nization → n-tier architectures;

KEYWORDS
Cloud computing, Vertical scaling, Dynamic adaptation, Perfor-
mance prediction

1 INTRODUCTION
Cloud computing is a computing paradigm whose main objective
is to provide computing resources (e.g. networks, servers, storage,
applications and services) on demand at low costs and in a seem-
ingly unlimited amount. This is especially true at the Infrastructure
as a Service (IaaS) level offered by the cloud paradigm, which fo-
cuses on provisioning computational resources such as processing
power, network capacity and/or storage. This characteristic makes
the IaaS model suitable for distributed applications (e.g., multi-tier
applications), which require resource flexibility to achieve perfor-
mance and cost goals, among others. Hence, academia and industry
have focused their efforts on making efficient use of cloud com-
putational resources without having to sacrifice performance or
increase costs. One way to achieve this purpose is through the au-
tomatic adaptation of VM computational capabilities according to
resource utilization and performance, i.e., VM resource adaptation

, ,
. ACM ISBN .
https://doi.org/

as a response to changes in the VM environment and Service Level
Objectives (SLOs). However in order to achieve such a purpose, sev-
eral aspects have to be considered. Among the aspects to consider,
we can mention:

• The impact on the cloud application’s performance as a con-
sequence of a modification on the supporting VM; i.e., per-
form adaptations on VMs without affecting agreed SLOs.
• To perform adaptation actions on a VM only when required
and at the proper time. This to avoid resource waste or star-
vation while being compliant with agreed SLOs.

In order to face such challenges, researchers have come up with
several solutions, which can be classified as follows: Regarding
the time at which a change in the VM environment is detected
and a consequent adaptation action takes place, solutions can be
classified into reactive and proactive. Reactive approaches: their
intention is to perform adaptation actions after a change in the VM
environment has been detected. These types of approaches define
thresholds on VM’s allocated resources or VM’s performance; once
such a threshold is reached or exceeded a consequent action is
taken. Proactive approaches: the intention is to execute adaptation
actions before a resource or performance degradation on the VM
affects the application running on top of it. The accuracy of this
type of approaches greatly depends on the prediction technique
being used and its tuning.

Despite reactive approaches being easier to implement than
proactive ones, they are prone to cause SLOs violations, given
that adaptation actions are taken later in time. On the other side,
proactive approaches can cause resource waste or performance
degradation if the prediction is not accurate. Regarding the type
of adaptation action taken, the solutions use vertical, horizontal or
hybrid resource escalation.

• Vertical scaling: it involves the increment of allocated com-
putational resources (usually vCPU and/or memory) within
a single VM at runtime, without disrupting the execution of
the VM.
• Horizontal scaling: it is commonly used in commercial or
open solutions such as AWS and Openstack [9] [5]. Its pur-
pose is to create/instantiate new VMs, so that the currently
experienced workload can be distributed among several VMs.
• Hybrid scaling: lately there have been efforts towards combin-
ing the previously mentioned escalation approaches. These
types of solutions usually perform vertical scaling first, up
to the point that it is no longer cost or performance efficient,
and then horizontal scaling. The process is iterative and is
repeated as much as needed.

https://doi.org/


Lately, hybrid approaches have received more attention from
the research community, given that they try to mitigate the dis-
advantages that simple escalation models can have. For example,
a purely vertical approach could be limited by supporting tech-
nologies e.g. not all hypervisors support transparent addition of
vCPUs at runtime. However, the first step for a hybrid approach
to be effective is the correct setup of its fundamental components.
To that end, the current paper focuses on setting up and applying
vertical scaling, which has not been sufficiently investigated in
research literature. The proposed solution in this paper follows
the proactive model (RLS-based prediction) in combination with
vertical scaling (memory-based). Those models were chosen as fun-
damental building blocks given they can help to reduce resource
waste and avoid performance violations. Details about these design
decisions are given in the corresponding sections (see section 2).
Hence, we propose a solution that targets multi-tier applications de-
ployed on Cloud environments, which relies on RLS-based resource
and performance predictors. Our preliminary results show that our
solution, when compared with VMs with larger and permanently-
allocated computational resources, is able to maintain expected
performance while reducing resource waste. In summary, the main
contributions of this work are:

• Usage of prediction techniques to vertically scale VMs.
• Coordinated usage of resource and performance RLS-based
predictors to avoid resource waste while maintaining prede-
fined performance.
• Systematic evaluation of the proposed solution.

The remainder of this paper is organized as follows. Section
2 presents the reasons for choosing RLS filters as the prediction
technique and memory utilization and response time as reference
indicators for predictions. The architectural design of our approach
is presented in Section 3. Section 4 presents the experimental evalu-
ation and analyses obtained results. Section 5 presents related work.
Finally, Section 6 presents conclusions and future work.

2 RLS-BASED PREDICTION
This section justifies the selection of the Recursive Least Square
(RLS) filter as the prediction technique and of VM memory utiliza-
tion and response time as reference indicators for our RLS-based
predictors (see section 3).

2.1 Recursive Least Square filter (RLS filter)
Recursive Least Square (RLS) filter is a machine learning technique
that has been used for diverse purposes, such as adaptive filtering,
prediction, and system identification [6] [7]. Its main objective is
to minimize the sum of the square of the differences between the
desired signal and the estimated filter output. When compared with
Least Mean Square (LMS) filters, RLS filters offer faster convergence
and smaller error with respect to the desired signal (see figure 1).
A key difference between LMS and RLS filters is the fact that the
latter applies a forgetting factor, which determines the influence
of past input data over the current estimation. Because of those
qualities, RLS-based mechanisms have been applied to the problem
of dynamically adapting VM resources on cloud environments (see
section 5).

Input 

Desired 

Estimated Error 

Unknow System 

Adaptive filter SUM -

+

Figure 1: RLS filter

Table 1: VM tested configurations

Configuration ID CPU (No. Cores) Memory HDD
MEM_C1 1 512MB 15GB
MEM_C2 1 1GB 15GB
MEM_C3 1 1.5GB 15GB
MEM_C4 1 2GB 15GB

Another prediction technique considered was artificial neural
networks (ANN). Despite the fact that ANNs have been also used
to address similar problems [2] [4], the final decision was taken
considering the following factors:
• RLS filters dynamically adapt to the input data and produce
an output accordingly, i.e., RLS are suitable for online train-
ing. On the other side, ANN prediction models are generated
offline, which make them depend greatly on their training
data set. Such dependency implies that training datasets have
to be representative enough and to accurately describe the
behaviour of the targeted system.
• RLS filters provide a forgetting factor, which can be used to
determine the influence of past data over current estimations.
This makes RLS filters suitable for fast adaptation to sudden
changes in the input data. Conversely, ANNs have to be
retrained every time the input data diverges from the data
set used to train them, situation that is not desirable in highly
dynamic applications such as multi-tier applications running
on clouds.

2.2 Memory as prediction indicator
In order to determine which VM resource (CPU or memory uti-
lization) better represents the behaviour of a VM under different
workload conditions and, hence, can be used as reference indicator
for our RLS-based predictor, we perform a profiling of a web server
running on top of a VM. For the profiling process, we considered
the following factors:
• VMs with different resource configurations (see table 1).
• Web server serving only static content, i.e., request response
does not need to fetch data from a DB server.
• Several injection request rates (see table 2).

The profiling process on the base case configuration showed
a possible correlation between VM’s memory utilization and its



Table 2: Workload injection rates

Injection ID Min req. rate Max req. rate Step req. rate
I1 2840 req/sec 3000 req/sec 2 req/sec

Injection ID Req type Max amount Max timeout
I1 Static 25000 req 3sec

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

0	

10	

20	

30	

40	

50	

60	

2830	 2850	 2870	 2890	 2910	 2930	 2950	 2970	 2990	 3010	

Re
sp
on

se
	(
m
e	
(m

s)
	

Av
g	
U
(l
iz
a(

on
	(0

-1
00
%
)	

Request	rate	(req/sec)	

Average	RT	-	Resource	U(liza(on	

CPU	

MEM	

RT	

Figure 2: MEM_C3 RT - Resource utilization

2000	

2100	

2200	

2300	

2400	

2500	

2600	

2700	

2800	

2900	

3000	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

2820	 2840	 2860	 2880	 2900	 2920	 2940	 2960	 2980	 3000	 3020	

Th
ro
ug
hp

ut
	(r
eq

/s
ec
)	

Av
g	
U
4l
iz
a4

on
	(0

-1
00
%
)	

Request	rate	(req/sec)		

Average	Throughput	-	Resource	U4liza4on	

CPU	

Memory	

T	Measured	

T	Expected	

Figure 3: MEM_C3 Throughput - Resource utilization

performance. However, such correlation was not clear; therefore,
we decided to repeat the profiling process using other VM resource
configurations. From the results (see figures 2 and 3) we could
observe the following:
• A possible direct correlation between memory utilization
and the performance of the VM (in terms of response time)
exists.
• A possible inverse correlation between memory utilization
and the performance of the VM (in terms of throughput)
exists.
• CPU utilization neither reflects the VM’s experienced work-
load nor its current performance.

Table 3: RT - Memory correlation results

Injection rate (req/sec) 2840 2850 2860 2870
Correlation value 0.2525 0.4989 0.4239 0.4675

Injection rate (req/sec) 2880 2890 2900 2910
Correlation value 0.6595 0.7093 0.6059 0.6799

Figure 4: Prediction interval 5 seconds

In order to corroborate this possible correlation between VM’s
memory utilization and its performance (response time or through-
put), correlation tests were applied to these variables (linear cor-
relation test applied was Pearson’s product-moment correlation
with 95% confidence). However, correlation tests were not con-
cluding given they did not show a clear correlation between both
variables; we considered correlation values in the following way:
values above 0.8 represent a strong correlation whereas below 0.5
describe a weak correlation. Table 3 shows correlation values for
MEM_C1 (Base case) configuration. It is worth to mention that only
linear correlation tests were applied. These correlation results can
be explained by the fact that linear statistical methods cannot ac-
curately describe the behaviour of multi-tier applications [1]. This
explanation reinforces our decision of using RLS filters (machine
learning technique) to perform our predictions.

Even though the correlation between memory utilization and
performance could not be confirmed, we decided to use memory uti-
lization for our prediction given that it showed stronger correlation
than cpu utilization.

2.3 Response time as predictor indicator
The response time was chosen as reference indicator for our pre-
dictor because it is the most widely-used performance indicator for
multi-tier applications in industry and academia [9] [5].

2.4 Prediction interval and accuracy of the RLS
memory-based predictor

The data obtained during the profiling phase was also used to test
the prediction capabilities of our RLS-memory based predictor.With
this set of experiments, we were able to obtain estimations about the
predictor accuracy and how far ahead it could perform predictions
before producing no longer reliable results. Figures 4, 5 and 6 depict
the accuracy results obtained by our RLS-memory predictor for
different prediction intervals. We considered 3 prediction intervals:
5, 20 and 60 seconds.



Figure 5: Prediction interval 20 seconds

Figure 6: Prediction interval 60 seconds

Although the considered prediction intervals were similar in
terms of predicted values and prediction error, the prediction in-
terval chosen for our RLS-memory predictor was 5 seconds. The
reason of such short prediction interval is that once the VM starts
experimenting significant workload, its memory utilization also
quickly increases (from approx. 40% to approx. 90% in less than
one minute in our experiments). Hence, longer prediction intervals
could lead to late adaptation actions and, therefore, SLOs violations.

Table 4 presents an excerpt of the predicted values and prediction
errors obtained for the prediction interval of 5 seconds. Samples
presented were taken from the time period between 50 and 120 of
the time index (see figure 4). This period was chosen since it is the
period of time when the VM starts experiencing significant load
and, therefore, an increment in its memory utilization. Error values
in table 4 give an idea about the accuracy of the RLS memory-based
predictor and how fast is its adaptation process when new values
are introduced as part of its input data.

3 MECHANISM DESIGN
This section describes the architectural design of our proactive
adaptation solution. Figure 7 presents the mechanism’s modules as
well as the mechanism’s flow to adapt VMs.

Our design can be divided into three main modules: Monitor-
ing, Prediction and Execution. The monitoring module consists of
two monitoring agents: Response time (RT) monitor agent and Re-
source monitor agent. These two agents are in charge of providing
VM performance and resource utilization data to respective RLS-
predictors. The resource monitor agent provides information about
the current VM’s resource utilization (memory utilization), and it
is based on Zabbix1 agent. The RT monitor agent is in charge of
fetching information from Apache web server. Data being collected
1https://www.zabbix.org

Table 4: Predicted values and error (5 sec prediction interval)

Measured value Predicted value Error
39.229 39.3085 -0.079487
38.6283 41.2072 -2.579
38.4216 39.1293 -0.70772
39.2605 39.8073 -0.5468
41.582 42.0941 -0.51214
50.593 74.3475 -23.7545
50.3795 50.3603 0.019184
50.8077 76.6792 -25.8715
51.088 48.3209 2.7671
56.4635 56.1658 0.76153
58.799 62.2383 -3.4393

Openstack cloud 

Resource	
monitor	agent	

RT	monitor	
agent	

RT	RLS-based	
predictor	

Memory	RLS-
based	predictor	

While increment is 
not detected 

Adapta9on	executor	
While violation is 

not detected 

KVM	Hypervisor	

Memory chunk 64MB 
VM ID 

Trigger adaptation 
action 

M
em

or
y 

ut
ili

za
tio

n 
 

da
ta

 

R
es

po
ns

e 
tim

e 
 

da
ta

 
VM 
modification 

VM M
on

ito
rin

g 
m

od
ul

e 
P

re
di

ct
io

n 
m

od
ul

e 

E
xe

cu
tio

n 
m

od
ul

e 

Figure 7: Architectural design

is used to derive the response time of the web server. Collected
data comprehends request arrival time and request processing time.
The monitor agents establish a connection with corresponding RLS-
based predictors just after the VM finishes its initialization. The
connection between monitors and predictors is permanent.

The prediction module consists of two RLS-based predictors, one
for RT and another for memory utilization. The main objective of
the memory RLS-based predictor (Memory predictor) is to deter-
mine whether an increment in the memory utilization is going to
occur, event that could indicate that an increment in the RT could
also occur. It starts receiving data from its resource monitor agent;
received data is used to start generating an initial prediction about
the behaviour of the VM’s resource utilization. The period to gather
this data corresponds to the reference period (see section 4) and lasts
for approximately 40 seconds. We notice that this interval of time
is enough for the predictor to generate accurate estimations. This
is because RLS-based predictors use past estimated values and real
values to dynamically adjust their predictions.



The RT RLS-based predictor (RT predictor) has as main objec-
tive the generation of predictions about the VM’s response time.
Estimations generated by this predictor are not immediately taken
into consideration; they are actively considered only after an in-
crement in the memory utilization has been predicted. However,
estimations generated before a memory utilization event occurs
are used as samples to increase the accuracy of the predictor. Once
a memory increment has been predicted and RT predictions are
being generated, we consider an adaptation period (see section 4)
before triggering and executing an adaptation action on the VM.
Regarding the execution module, as its name implies, it is in charge
of performing the adaptation action on the VM. The RT predic-
tor calls the Adaptation executor once an adaptation action has
been determined. The process to execute an adaptation action is as
follows:
• determine in which physical host is the targeted VM running,
• determine if it is possible to allocate more memory to the
VM, i.e., verify if the maximum allowed memory has not
been reached,
• instruct the host hypervisor to modify the amount of allo-
cated memory on the VM (1 memory chunk per adaptation
action).

The process of automatically adapting the VM runs as long as
necessary. In case the VM’s maximum allowed memory has been
reached and predictions still imply a decrement on VM’s perfor-
mance, distinct adaptation actions have to be executed such as
horizontal scaling (i.e. increasing the number of VMs), which is out
of the scope of this paper.

4 EXPERIMENTAL EVALUATION
In order to verify whether our proposed solution is able to automati-
cally adapt VMs to keep an expected performance and low resource
utilization, we tested it under different workload conditions and
compared it against VMs with larger and permanently-allocated
computational resources.

4.1 Experiment setup
All experiments were executed on a private cloudmanaged byOpen-
stack2 Liberty running under Linux CentOS 7, which uses KVM as
hypervisor. It consists of 1 controller (4 cores, 6 GB RAM, 3TB HDD)
and 8 compute nodes (each compute node having 8 cores 2.13Ghz,
16GB RAM and 250GB HDD) connected through a local network
100Mbps. We chose the well-known RUBBiS benchmark as our
multi-tier application. RUBBiS was deployed on top of Apache web
server; for our experiments we are using only static web content.
The VM used to deploy RUBBiS benchmark was initially configured
with 1vCPU, 512MB RAM and 15GB HDD. Traffic generator used
for our experiments was Autobench, a traffic generator tool that
internally uses Httperf to generate requests and automatically tests
multiple injection rates. Our solution was tested with different in-
jection rates (see table 2), each of which was executed 25 times. The
number of executions was chosen to give statistical validity to our
experiments. Our results show the average values obtained for each
one of the tested injection rates. In the same way as our solution

2https://www.openstack.org

Table 5: RLS-based predictor parameters

Parameter Value
RLS Forgetting factor 0.45
Sampling interval Every 4 seconds

Table 6: Adaptation parameters

Parameter Value
Reference period 20 - 40 seconds
Adaptation period 10- 20 seconds
Stabilization threshold (SBT) Determined at runtime
Variation percentage (VP) 5% over SBT
Max allowed VM memory 2 GB
Initially VM allocated memory 512MB
Memory chunk size 64MB
VM RT sampling Every 4 seconds
Runtime (RT) threshold 100 milliseconds

was tested, we tested the other VM configurations (see table 1).
This was done in order to observe the behaviour of our solution
against computationally larger VM configurations and determine if
it really avoids resource waste and SLOs violations. Tables 5 and 6
show used configuration parameters for our RLS-based predictors
and adaptation mechanism respectively. Parameter determination
was experimentally done.

The parameters from table 6 (Adaptation parameters) are:
Reference period. Period of time used in the determination

of the stabilization threshold (see below). Defined at the
beginning of the monitoring phase.

Adaptation period. Period used to determine whether a vari-
ation on the resource/performance indicator is transient or
not. If the variation is not transient, the adaptation process
is started.

Stabilization threshold (SBT). Values used as reference points
when comparing estimated values. In the case of the resource
predictor, it is the Resource (memory) utilization minimum
threshold. For the performance predictor, this value is equal
to RT threshold.

Variation percentage (VP). Percentage used to determinewhether
a resource utilization increment could be considered as signif-
icant. E.g. SUT = 44, VP = 5%. Resource utilization increment
that could be considered as significant = SUT + (SUT*VP),
i.e. 46.2. This value is only used in the case of the memory
predictor.

Total VM memory. Total memory available to the VM.
Initially VM allocated memory. Initially allocated memory

to the VM.
Memory chunk size. Amount of memory to be added or re-

moved to/from the VM in case an adaptation action is per-
formed.

Runtime (RT) threshold. Maximum response time allowed.
This value is set by the application user and is considered as
a service level objective (performance measure).



0	

20	

40	

60	

80	

100	

120	

0	

10	

20	

30	

40	

50	

60	

70	

80	

2820	 2840	 2860	 2880	 2900	 2920	 2940	 2960	 2980	 3000	 3020	

Re
sp
on

se
	(
m
e	
(m

s)
	

Re
so
ur
ce
	u
(l
iz
a(

on
	%
	

Request	rate	

RT	-	Resource	u(liza(on	

CPU_UTIL	

MEM_UTIL	

RT	

Figure 8: Response times for different injection rates

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

0	

10	

20	

30	

40	

50	

60	

70	

80	

2820	 2840	 2860	 2880	 2900	 2920	 2940	 2960	 2980	 3000	 3020	

Th
ro
ug
hp

ut
	(r
eq

/s
ec
)	

Re
so
ur
ce
	u
2l
iz
a2

on
	%
	

Request	rate	

Throughput	-	Resource	u2liza2on	

CPU_UTIL	

MEM_UTIL	

T	

Figure 9: Throughput for different injection rates

4.2 Results
Here we present and analyse the results obtained with our solution
under different workload conditions. Figures 8 and 9 present the
performance (response times and throughput) obtained with our
solution in each case tested.

Results show that our solution is able to keep response times be-
low the targeted threshold (100ms). In the case where the threshold
was surpassed, it was not surpassed for more than 10ms. Also it
can be observed that the memory being used by the VM was kept
low, which shows that the combination of RLS-based resource and
performance predictors allocates more memory only when needed.
Regarding the comparison with other VM configurations (figures 10
and 11), it can be observed that our solution (xipe-adapter) outper-
forms the base case configuration (MEM_C1) in terms of response
time and throughput. When compared with larger VM configura-
tions (MEM_C2, MEM_C3 and MEM_C4), we can observe that its
performance is similar to that of the MEM_C2 configuration. For
the rest of the configurations, we can observe that our solution
is able to achieve similar performance when injection rates are
below 2900 req/sec. Despite not being capable of outperforming
larger configurations, our solution was able to keep response times
below a defined threshold while keeping the amount of allocated
memory below 1GB (except for the highest tested injection rate
where 1GB was allocated to the VM). Therefore, saving 0.5 GB and
1.5GB when compared to MEM_C3 and MEM_C4, respectively, and
injection rates are below 3000 req/sec. Also the memory utilization
of our solution ranges from 46% up to 73% (resp. from lowest to
highest tested injection rates), which shows that our solution is
able to reduce resource waste (except for the base case, remaining
configurations have memory utilization averages from 18% up to
41%). Regarding the time required to execute an adaptation action

0	

20	

40	

60	

80	

100	

120	

2820	 2840	 2860	 2880	 2900	 2920	 2940	 2960	 2980	 3000	 3020	

Re
sp
on

se
	(
m
e	
(m

s)
	

Injec(on	rate	

Response	(me	comparison	

Case	Base	

MEM_C2	

MEM_C3	

MEM_C4	

xipe_adapter	

Figure 10: Response time comparison

1800	
1900	
2000	
2100	
2200	
2300	
2400	
2500	
2600	
2700	
2800	
2900	
3000	
3100	

2820	 2840	 2860	 2880	 2900	 2920	 2940	 2960	 2980	 3000	 3020	

Ac
hi
ev
ed

	th
ro
ug
hp

ut
	

Demanded	throughput	

Throughput	comparison	

Ideal	

Base	Case	

MEM_C2	

MEM_C3	

MEM_C4	

xipe_adapter	

Figure 11: Throughput comparison

(if required), it ranged from 2 up to 3 minutes. The reason for such
period is that an increment on the memory utilization does not
necessarily imply an immediate SLO violation; hence, an increment
on the allocated memory depends also on the RT predictor, which
can delay the time taken to carry out the allocation/deallocation of
memory, this without affecting SLOs.

These results can be considered as a clear indicator that our
solution can accomplish its main objectives and is feasible to be
used in more complex scenarios.

5 RELATEDWORK
Most research systems and all commercial cloud solutions focus
exclusively on horizontal scaling [9] [5] [11]. In the following, we
discuss related approaches that support vertical scaling.

Farokhi et. al. [3] present a cloud controller for vertical memory
elasticity. Their approach uses control theory to adapt the VM’s
allocated memory according to changes in the performance and
resource usage of a VM. Specifically, the feedback variables for their
control theory-based controllers are the application response time
and memory utilization. Even though this approach is similar to
ours in the pursued objectives, one key difference is the adaptation
technique. Unlike our approach, their adaptation mechanism relies
in control theory and weighted moving average (WMA) to achieve
its objectives.

In [8] E. B. Lakew et. al. present performance models to achieve
response time objectives by vertically scaling VMs. The models
are based on queuing theory and use RLS filters to reduce the
impact of measurement noise on their generated outputs. Unlike
our approach, their work focuses on the adaptation of allocated
vCPUs, rather than memory. The presented performance models



cannot be easily adapted to other resources. Moreover, adapting
vCPUs implies that enough memory has to be guaranteed to the
VM to avoid bottlenecks for the variable number of vCPUs. This
can lead to resource waste either because the allocated memory is
more than enough for the currently allocated vCPUs or because of
vCPU underutilization. Also, our results show that using vCPU as
a VM’s performance indicator is not always accurate.

The approach proposed by Lei Lu et. al. in [10] is the one clos-
est to our solution. Their solution makes use of auto-regressive-
moving-average (ARMA) models to estimate the performance of
applications based on the currently allocated resources to a VM. In
their approach, the resources being considered are memory and
CPU, which are also the targets of adaptation actions (vertical scal-
ing). Unlike our solution, solution proposed by Lei Lu et. al. supports
adjusting allocations both at the individual VM level and at the
resource pool level (a VM collection), but it is dependant on the
VMware scheduler.

6 CONCLUSIONS AND FUTUREWORK
In this paper we have presented our RLS-based solution for the
automatic adaptation of VMs running on clouds environments.
Results show that our solution, when compared with VMs with
larger and permanently-allocated computational resources, is able
to maintain expected performance while reducing resource waste.
This means that the objectives that our solution pursues were well
addressed. Our proactive adaptation solution also has the advantage
of adaptation actions (memory allocation) being almost immedi-
ately reflected after their execution. This characteristic is achieved
through the utilization of the memory ballooning mechanism sup-
ported by recent Linux kernels. It also means that VMs do not have
to be stopped at any time during the adaptation process; hence,
reducing impact on deployed applications. Despite promising re-
sults obtained so far, the results presented here are only the starting
point of our solution. In order to further improve our solution more
experimentation is needed and possible better setup parameters
(either for adaptation or predictors) have to be defined. As part of
our future work we intend to perform experiments with real work-
load traces (e.g., FIFA 98 Worlcup traces), which has the objective
of verifying not only the memory allocation functionality of our
solution but also memory deallocation. Also, the addition of hori-
zontal scaling capabilities to our approach is in process; the goal is
to handle situations when the VM can no longer be vertically scaled.
Finally, comparison with commercial solutions such as Openstack
is also intended, so that we can verify the suitability of our solution
in real world environments.

ACKNOWLEDGMENTS
Wewant to thank CONACYT for the scholarship provided to Carlos
Ruiz.

REFERENCES
[1] Akindele A Bankole and Samuel A Ajila. 2013. Cloud client prediction models for

cloud resource provisioning in amultitier web application environment. In Service
Oriented System Engineering (SOSE), 2013 IEEE 7th International Symposium on.
IEEE, 156–161.

[2] Michael Borkowski, Stefan Schulte, and Christoph Hochreiner. 2016. Predicting
Cloud Resource Utilization. In Proceedings of the 9th International Conference

on Utility and Cloud Computing (UCC ’16). ACM, New York, NY, USA, 37–42.
https://doi.org/10.1145/2996890.2996907

[3] Soodeh Farokhi, Pooyan Jamshidi, Ewnetu Bayuh Lakew, Ivona Brandic, and
Erik Elmroth. 2016. A hybrid cloud controller for vertical memory elasticity: A
control-theoretic approach. Future Generation Computer Systems 65 (2016), 57 –
72. https://doi.org/10.1016/j.future.2016.05.028 Special Issue on Big Data in the
Cloud.

[4] Stefan Frey, Simon Disch, Christoph Reich, Martin Knahl, and Nathan Clarke.
2015. Cloud Storage Prediction with Neural Networks. In Cloud Computing 2015,
The Sixth International Conference on Cloud Computing, GRIDs, and Virtualization.
52 – 56. https://www.thinkmind.org/index.php?view=article&articleid=cloud_
computing_2015_3_10_20024

[5] Guilherme Galante and Luis Carlos E. de Bona. 2012. A Survey on Cloud Comput-
ing Elasticity. In Proceedings of the 2012 IEEE/ACM Fifth International Conference
on Utility and Cloud Computing (UCC ’12). IEEE Computer Society, Washington,
DC, USA, 263–270. https://doi.org/10.1109/UCC.2012.30

[6] S. A. Ghauri and M. F. Sohail. 2013. System identification using LMS, NLMS
and RLS. In 2013 IEEE Student Conference on Research and Developement. 65–69.
https://doi.org/10.1109/SCOReD.2013.7002542

[7] Simon Haykin. 1996. Adaptive Filter Theory (3rd Ed.). Prentice-Hall, Inc., Upper
Saddle River, NJ, USA.

[8] E. B. Lakew, C. Klein, F. Hernandez-Rodriguez, and E. Elmroth. 2014. To-
wards Faster Response Time Models for Vertical Elasticity. In 2014 IEEE/ACM
7th International Conference on Utility and Cloud Computing. 560–565. https:
//doi.org/10.1109/UCC.2014.86

[9] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A. Lozano. 2014. A Re-
view of Auto-scaling Techniques for Elastic Applications in Cloud Environ-
ments. Journal of Grid Computing 12, 4 (2014), 559–592. https://doi.org/10.1007/
s10723-014-9314-7

[10] L. Lu, X. Zhu, R. Griffith, P. Padala, A. Parikh, P. Shah, and E. Smirni. 2014.
Application-driven dynamic vertical scaling of virtual machines in resource
pools. In 2014 IEEE Network Operations and Management Symposium (NOMS).
1–9. https://doi.org/10.1109/NOMS.2014.6838238

[11] Athanasios Naskos, Anastasios Gounaris, and Spyros Sioutas. 2016. Cloud Elas-
ticity: A Survey. Springer International Publishing, Cham, 151–167. https:
//doi.org/10.1007/978-3-319-29919-8_12

https://doi.org/10.1145/2996890.2996907
https://doi.org/10.1016/j.future.2016.05.028
https://www.thinkmind.org/index.php?view=article&articleid=cloud_computing_2015_3_10_20024
https://www.thinkmind.org/index.php?view=article&articleid=cloud_computing_2015_3_10_20024
https://doi.org/10.1109/UCC.2012.30
https://doi.org/10.1109/SCOReD.2013.7002542
https://doi.org/10.1109/UCC.2014.86
https://doi.org/10.1109/UCC.2014.86
https://doi.org/10.1007/s10723-014-9314-7
https://doi.org/10.1007/s10723-014-9314-7
https://doi.org/10.1109/NOMS.2014.6838238
https://doi.org/10.1007/978-3-319-29919-8_12
https://doi.org/10.1007/978-3-319-29919-8_12

	Abstract
	1 Introduction
	2 RLS-based prediction
	2.1 Recursive Least Square filter (RLS filter)
	2.2 Memory as prediction indicator
	2.3 Response time as predictor indicator
	2.4 Prediction interval and accuracy of the RLS memory-based predictor

	3 Mechanism design
	4 Experimental evaluation
	4.1 Experiment setup
	4.2 Results

	5 Related work
	6 Conclusions and Future work
	Acknowledgments
	References

