Non-reactive sponge cake formulated with starch and cellulose derivatives: effect of process to design various cellular crumb structures Josselin Bousquières, Catherine Bonazzi, Camille Michon # ▶ To cite this version: Josselin Bousquières, Catherine Bonazzi, Camille Michon. Non-reactive sponge cake formulated with starch and cellulose derivatives: effect of process to design various cellular crumb structures. 13. International Hydrocolloids Conference, May 2016, Guelph, Canada. hal-01637753 HAL Id: hal-01637753 https://hal.science/hal-01637753 Submitted on 5 Jun 2020 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Non-reactive sponge cake formulated with starch and cellulose derivatives: effect of process to design various cellular crumb structures Josselin Bousquières, Catherine Bonazzi, Camille Michon josselin.bousquieres@agroparistech.fr catherine.bonazzi@agroparistech.fr camille.michon@agroparistech.fr Ingénierie Procédés Aliments (Food & Process Engineering) ENIAL 2 A. **∆**groParisTech # Introduction & objective **Context:** improvement of nutritional and organoleptic quality of cereal products by determining the different pathways of Maillard and caramelization reactions ## Strategy: #### 1^{rst} step - Development of a realistic non-reactive model sponge cake (solid + cellular structure) replacing the reactive species by non-reactive one having the same functional properties - Check of the model sponge cake non-reactivity #### 2nd step - Introduction of reactant species one by one (glucose, fructose, amino acids....) - Exploration of the range of cellular structure variations playing on composition and process parameters GENIAL Camille Michon - 13th International Hydrocolloids Conference - Guelph, Canada - 05/19/2016 Introduction & objective # Strategy: 3 **∆**groParisTech # 1^{rst} step - Development of a realistic non-reactive model sponge cake (solid + cellular structure) replacing the reactive species by non-reactive one having the same functional properties - Check of the model sponge cake non-reactivity #### 2nd step - Introduction of reactant species one by one (glucose, fructose, amino acids,...) - Exploration of the range of cellular structure variations playing on composition and process parameters ENIAL 4 # Plan of the presentation - 1. Functional properties of cellulose derivatives and their effects on the model sponge cake cellular structure through the process - 2. Effect of starch mixing time on sponge cake cellular structure # **Strategy:** ### 1^{rst} step - Development of a realistic non-reactive model sponge cake (solid + cellular structure) replacing the reactive species by non-reactive one having the same functional properties - Check of the model sponge cake non-reactivity #### 2nd ster - Introduction of reactant species one by one (glucose, fructose, amino acids,...) - Exploration of the range of cellular structure variations playing on composition and process parameters **Σ** τ 4 ▲groParisTech GENIAL Camille Michon - 13th International Hydrocolloids Conference - Guelph, Canada - 05/19/2016 - thickening at room temperature, - · gelling upon heating, - foaming. **∆**groParisTech ENIAL # => Cellulose derivatives were good candidates | | Intrinsic
viscosity
(dL/g) | Gelation
temperature
(°C) | Air/water surface
tension at equil.
(mN/m) at 0.05 g/L | |--------|----------------------------------|---------------------------------|--| | нрмс 🗦 | 10.1 | ~80 °C
Weak gel | 47.1 ± 0.1 | | мс > | 4.3 | ~40 °C
Strong gel | 50.7 ± 0.1 | Camille Michon - 13th International Hydrocolloids Conference - Guelph, Canada - 05/19/2016 1. Functional properties & model sponge cake cellular structure # Functional properties of HPMC and MC in the model sponge cake • MC governs the gelling properties #### HPMC - Governs the air incorporation in batter and in sponge cake - o Increases the gelation temperature (hinders the MC gel formation) #### Starch - Decreases the gelation temperature ([MC] by small absorbtion of water even in native form) - Absorbs a lot of water at the gelatinization temperature ([HPMC] and [MC] all around) - Plays a major role in the air loss during bater formation and on bubble size **Conclusion 1** MgroParisTech **UMR** GENIAL #### □ A lovely model sponge cake was designed - √ NON-reactive=> useful for Maillard and caramelization reaction studies - ✓ Cellular structure mimicking real sponge one - ✓ Rational design based on functional properties of HPMC, MC and starch - ✓ Functional properties used at different step of the process - illustration through MC gelling and starch gelatinization versus [HPMC]/[MC] - ☐ A complex model system to play with to create a great variety of cellular structures and properties - √ Formulation - Changing starch botanical source => rice is a catastrophe !! But modified maize starch is OK - · Addittion of saccharose - ✓ Process - 1rst step mixing: foaming time, speed, rest time before starch addition - 2nd step of mixing: mixing time, speed, starch addition - . Baking: moisture in the oven, temperature #### A model sponge cake useful for further understanding - √ Water repartition evolution during the process Starch contribution - ✓ Solid foam texture : link between structure and mechanical properties. Evolution of ENIAL starch, variety of starch swelling, contribution of damaged starch,... Work founded by Région Ile-de-France **JRU Food and Process Engineering** Massy, France josselin.bousquieres@agroparistech.fr catherine.bonazzi@agroparistech.fr camille.michon@agroparistech.fr 22 AgroParisTech Camille Michon - 13th International Hydrocolloids Conference - Guelph, Canada - 05/19/2016