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Abstract

In Kohn-Sham electronic structure computations, wave functions have singularities at
nuclear positions. Because of these singularities, plane-wave expansions give a poor approx-
imation of the eigenfunctions. In conjunction with the use of pseudo-potentials, the PAW
(projector augmented-wave) method circumvents this issue by replacing the original eigen-
value problem by a new one with the same eigenvalues but smoother eigenvectors. Here a
slightly different method, called VPAW (variational PAW), is proposed and analyzed. This
new method allows for a better convergence with respect to the number of plane-waves.
Some numerical tests on an idealized case corroborate this efficiency. This work has been
recently announced in [3].

Introduction
Solving the N -body electronic problem is numerically impossible even for small molecular sys-
tems. Various nonlinear one-body approximations of this problem have been proposed, among
which Hartree-Fock theory, post-Hartree-Fock methods and density functional theory, which
describe fairly well the ground-state electronic structure of many molecules. However it can
still be expensive to compute the desired properties with these approximations. In solid-state
physics, plane-wave methods are often the method of choice to compute the lowest eigenvalues
of Kohn-Sham operators. However Coulomb potentials considerably impedes the rate of con-
vergence of plane-wave expansion because of the cusps [13, 11, 9] located at each nucleus. Over
the years, several strategies have been developped to tackle this problem.

In most situations, the knowledge of the whole energy spectrum of the Kohn-Sham Hamil-
tonian is not needed. Only eigenvalues belonging to a small energy range are. Indeed, it is
well-known that the chemical properties mostly come from the valence electrons. So it would be
satisfactory to replace the Coulomb potential and nonlinear interactions with the core electrons
by a smooth potential that reproduces the exact spectrum in the relevant range. This is the
main idea behind pseudopotential methods. Specifically, pseudopotentials are designed to match
the eigenvalues of the original atomic model in a fixed energy range. So when used in molecular
or solid-state simulations, it seems reasonable to hope that they will accurately approximate the
sought eigenvalues. Pseudopotentials can also be introduced to take into account relativistic ef-
fects at lower cost [8]. Thus a wide range of pseudopotentials with different properties have been
developped, among which, Troullier-Martins [23] and Kleinman-Bylander [14] norm conserving
pseudopotentials, Vanderbilt [24] ultrasoft pseudopotentials and Goedecker [10] pseudopoten-
tials. A mathematical study of the generation of optimal norm-conserving pseudopotentials for
the reduced Hartree-Fock theory and the local density approximation to the density-functional
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theory has already been achieved [6]. So far as we know, it is the first mathematical result on
pseudopotentials.

Another strategy is to use a better suited basis set. This is the spirit of the augmented plane-
wave (APW) method [21, 15]. The APW basis functions are discontinuous: inside balls centered
at each nucleus, a basis function reproduces the cusp of atomic electronic wave functions and
outside these balls, it is a plane-wave. One thus tries to get the best of both worlds: having
the singularity behavior encoded in the basis functions and at the same time, having the plane-
wave convergence property outside the singularity region. This method can be viewed as a
discontinuous Galerkin method and its mathematical analysis has been carried out in [7].

The projector augmented-wave (PAW) [4] method relies on the same idea as the APW
method but here, instead of using another set of basis functions, the eigenvalue problem is mod-
ified by an invertible transformation which carries the cusp behavior and/or fast oscillations in
the vicinities of the nuclei. Specifically, the operator acts locally in a ball around each nucleus
and maps atomic wave functions to smooth functions called pseudo wave functions. The form
of the transformation is compatible with slowly varying pseudopotentials in the Hamiltonian.
Doing so, one replaces the Coulomb potential by a smooth potential without changing the spec-
trum of the original operator. The solution of the corresponding generalized eigenvalue problem
can then be advantageously expanded in plane-waves. Because of the one-to-one correspondance
between the pseudo and the actual wave functions and its efficiency to produce accurate results,
the PAW method has become a very popular tool and has been implemented in several popular
electronic structure simulation codes (AbInit [22], VASP [16, 17]).

A crucial assumption in the PAW method is the completeness of the basis of atomic wave
functions used to build the PAW transformation. In practice, infinite expansions appearing in
the generalized eigenvalue problem are truncated, introducing an error which is rarely quantified.
In the variational PAW method (which will be referred to as VPAW in the following), a finite
number of functions is used right from the beginning, avoiding this truncation error. Although
pseudopotentials can no longer be incorporated, an acceleration of convergence is obtained.
This acceleration can be precisely characterized in the case of the double Dirac potential in a
one-dimensional periodic setting.

Before moving to the 1D model we analyzed, we will briefly introduce both PAW and VPAW
methods applied to a 3D Hamiltonian and explain the major differences between both ap-
proaches. More detailed expositions of the PAW method in various settings can be found in
[1, 12, 20].

1 PAW vs VPAW methods

1.1 General setting

The general setting of the VPAW method for finite molecular systems has been presented in [3].
In this paper, we will focus on the derivation of the VPAW equations in the periodic setting.
For simplicity, we restrict ourselves to a linear model.

The crystal is modelled as an infinite periodic motif of Nat point charges at positions RI in
the unit cell

Γ =
{
α1a1 + α2a2 + α3a3, (α1, α2, α3) ∈ [−1/2, 1/2)3

}
,

and repeated over the periodic lattice

R = Za1 + Za2 + Za3,

where a1,a2,a3 are linearly independent vectors of R3.
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In the linear model under consideration, the electronic properties of the crystal are encoded
in the spectral properties of the periodic Hamiltonian Hper acting on L2(R3):

Hper = −1
2∆ + Vper +Wper,

where Vper is the R-periodic potential defined (up to an irrelevant addition constant) by
−∆Vper = 4π

(∑
T∈R

Nat∑
I=1

ZI

(
δRI (·+ T)− 1

|Γ|

))
Vper is R-periodic.

(1.1)

For simplicity, Wper is a regular enough R-periodic potential. In practice, Wper is a nonlinear
potential depending on the model chosen to describe the Hartree and exchange-correlation terms
(typically a Kohn-Sham LDA potential).

The standard way to study the spectral properties of Hper is through Bloch theory which
will be outlined in the next few lines. Let R∗ be the dual lattice

R∗ = Za∗1 + Za∗2 + Za∗3,

where (a∗1,a∗2,a∗3) satisfies ai · a∗j = 2πδij . The reciprocal unit cell is defined by

Γ∗ =
{
α1a∗1 + α2a∗2 + α3a∗3, (α1, α2, α3) ∈ [−1/2, 1/2)3

}
.

As Hper commutes with R-translations, Hper admits a Bloch decomposition in operators Hq
acting on

L2
per(Γ) = {f ∈ L2

loc(R3) | f is R-periodic},

with domain
H2

per(Γ) = {f ∈ H2
loc(R3) | f is R-periodic}.

The operator Hq is given by:

Hq = 1
2 | − i∇+ q|2 + Vper +Wper, q ∈ Γ∗.

For each q ∈ Γ∗, the operator Hq is self-adjoint, bounded below and with compact resolvent.
It thus has a discrete spectrum. Denoting by E1,q ≤ E2,q ≤ . . . , with En,q −→

n→+∞
+∞, its

eigenvalues counted with multiplicities, there exists an orthonormal basis of L2
per(Γ) consisting

of eigenfunctions (ψn,q)n∈N∗
Hqψn,q = En,qψn,q. (1.2)

The spectrum of Hper is purely continuous and can be recovered from the discrete spectra of all
the operators Hq, q ∈ Γ∗

σ(Hper) =
⋃

q∈Γ∗
σ(Hq).

The PAW and VPAW methods aim to ease the numerical approximation of the eigenvalue
problem (1.2). For clarity, we will only present the case q = 0 and denote H0 by H as this special
case encloses all the main difficulties encountered in numerically solving (1.2). Transposition to
q 6= 0 can be done without problem.
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1.2 The VPAW method for solids

Following the idea of the PAW method, an invertible transformation (Id + T ) is applied to the
eigenvalue problem (1.2), where T is the sum of operators TI , each TI acting locally around
nucleus I. For each operator TI , two parameters NI and rc need to be fixed:

1. the number NI of PAW functions used to build TI ,

2. a cut-off rc radius which will set the acting domain of TI , more precisely:

• for all f ∈ L2
per(Γ), supp(TIf) ⊂

⋃
T∈R

B(RI + T, rc), where B(R, r) is the closed ball

of R3 with center R and radius r,
• if supp(f)

⋂ ⋃
T∈R

B(RI + T, rc) = ∅, then TIf = 0.

The cut-off radius rc must be chosen small enough to avoid pairwise overlaps of the balls (B(RI+
T, rc))1≤I≤N,T∈R.

The operator TI is given by:

TI =
NI∑
k=1

(φIk(r−RI)− φ̃Ik(r−RI))〈p̃Ik(· −RI) , •〉, (1.3)

where 〈• , •〉 is the usual L2
per-scalar product and the functions φIk, φ̃Ik and p̃Ik are functions in

L2
per(Γ).
These functions, which will be referred to as the PAW functions in the sequel, are chosen as

follows:

1. first, let (ϕIk)1≤k≤NI ∈ (L2(R3))NI be eigenfunctions of an atomic non-periodic Hamilto-
nian

HIϕ
I
k = εkϕ

I
k, εI1 ≤ εI2 ≤ εI3 ≤ . . . ,

∫
R3
ϕIkϕ

I
k′ = δkk′ ,

with HI defined by
HI = −1

2∆− ZI
|r| +W (|r|),

whereW is a regular enough bounded potential. The operator HI is self-adjoint on L2(R3)
with domain H2(R3). Again, in practice, W is a radial nonlinear potential belonging to
the same family of models as Wper in Equation (1.1). The PAW atomic wave functions
(φIk)1≤k≤NI ∈ (L2

per(Γ))NI satisfy:

• for 1 ≤ k ≤ NI and r ∈ Γ, φIk(r) = ϕIk(r),
• φIk is R-periodic;

2. the pseudo wave functions (φ̃Ik)1≤k≤NI , with NI ≤ ZI , are determined by the next condi-
tions:

(a) inside the unit cell Γ, φ̃Ik is smooth and matches φIk and several of its derivatives on
the sphere {|r| = rc},

(b) for r ∈ R3 \
⋃

T∈R
B(T, rc), φ̃Ik(r) = φIk(r);

3. the projector functions (p̃Ik)1≤k≤NI are defined such that:

(a) each projector function p̃Ik is supported in
⋃

T∈R
B(T, rc),

(b) they form a dual family to the pseudo wave functions (φ̃Ik)1≤k≤NI : 〈p̃Ik , φ̃Ik′〉 = δkk′ .
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By our choice of the pseudo wave functions φ̃Ik and the projectors p̃Ik, TI acts in⋃
T∈R

B(RI + T, rc).

The VPAW equations to solve are then:

H̃ψ̃ = ES̃ψ̃, (1.4)

where
H̃ = (Id + T )∗H(Id + T ), S̃ = (Id + T )∗(Id + T ), (1.5)

and

T =
Nat∑
I=1

TI .

Thus if (Id + T ) is invertible, it is easy to recover the eigenfunctions of H by the formula

ψ = (Id + T )ψ̃, (1.6)

and the eigenvalues of H coincide with the generalized eigenvalues of (1.4).
By construction, the operator (Id + TI) maps the pseudo wave functions φ̃ to the atomic

eigenfunctions φ:
(Id + TI)φ̃Ik = φIk,

so if locally around each nucleus, the function ψ "behaves" like the atomic wave functions φk,
we can expect that the cusp behavior of ψ is captured by the operator T , thus ψ̃ is smoother
than ψ and the plane-wave expansion of ψ̃ converges faster than the expansion of ψ.

1.3 Differences with the PAW method

The PAW equations solved in materials science simulation packages are different from the VPAW
equations (1.4). As in [4], the construction of TI involves "complete" infinite sets of functions φIk,
φ̃Ik and p̃Ik in the sense that for a function f ∈ L2

per(Γ) supported in the balls
⋃

T∈R
B(RI + T, rc),

we have : ∞∑
k=1
〈p̃Ik , f〉φ̃Ik(x) = f(x), for a.a. x ∈

⋃
T∈R

B(RI + T, rc). (1.7)

This relation enables one to simplify the expression of (Id + T ∗)H(Id + T ) and
(Id + T ∗)(Id + T ) to

HPAW = (Id + T ∗)H(Id + T ) = H +
Nat∑
I=1

∞∑
i,j=1

p̃Ii (· −RI)(
〈φIi (· −RI) , HφIj (· −RI)〉 − 〈φ̃Ii (· −RI) , Hφ̃Ij (· −RI)〉

)
〈p̃Ij (· −RI) , •〉, (1.8)

and

SPAW = (Id + T ∗)(Id + T ) = Id +
Nat∑
I=1

∞∑
i,j=1

p̃Ii (· −RI)(
〈φIi (· −RI) , φIj (· −RI)〉 − 〈φ̃Ii (· −RI) , φ̃Ij (· −RI)〉

)
〈p̃Ij (· −RI) , •〉. (1.9)

In practice, the double sums on i, j appearing in the operators HPAW and SPAW are then
truncated and the so-obtained generalized eigenvalue problem is solved. Thus the identity
ψ = (Id+T )ψ̃ does not hold anymore and the eigenvalues of the truncated problem are different
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from the exact ones. An analysis of the eigenvalue problem HPAW f = ESPAW f in our 1D-toy
model will be provided in another paper [2].

In contrast, the VPAW approach makes use of a finite number of wave functions φIi right
from the beginning, avoiding truncation approximations.

A further modification is used in practice. As the pseudo wave functions φ̃Ik are equal to φIk
outside the balls

⋃
T∈R

B(RI + T, rc), the integrals appearing in (1.8) can be truncated to the

ball B(RI , rc). Doing so, another expression of HPAW can be obtained :

HPAW = (Id + T ∗)H(Id + T ) = H +
Nat∑
I=1

∞∑
i,j=1

p̃Ii (· −RI)(
〈φIi (· −RI) , HφIj (· −RI)〉RI − 〈φ̃

I
i (· −RI) , Hφ̃Ij (· −RI)〉RI

)
〈p̃Ij (· −RI) , •〉,

where
〈f , g〉RI =

∫
B(RI ,rc)

f(x)g(x) dx.

Using this expression of the operator HPAW , it is possible to introduce an R-periodic potential
V PP such that :

1. V PP = Vper outside
⋃

T∈R

Nat⋃
I=1

B(RI + T, rc),

2. V PP is smooth inside
⋃

T∈R

Nat⋃
I=1

B(RI + T, rc).

The expression of HPAW is

HPAW = Hps +
Nat∑
I=1

∞∑
i,j=1

p̃Ii (· −RI)(
〈φIi (· −RI) , HφIj (· −RI)〉RI − 〈φ̃

I
i (· −RI) , Hpsφ̃

I
j (· −RI)〉RI

)
〈p̃Ij (· −RI) , •〉, (1.10)

with Hps:
Hps = −1

2∆ + V PP,

where V PP is a smooth pseudopotential. Note that, in practice, the sum of i, j in (1.10) is
truncated to some level NI .

A study of the associated eigenvalue problem will also be provided in the aforementioned
paper [2]. Some numerical tests comparing the VPAW and PAWmethods in our one-dimensional
toy model can be found in Section 6.

1.4 Computational complexity

A detailed analysis of the computational cost of the PAW method can be found in [19]: the
cost scales like O(NM +M logM) where N =

∑
I NI is the total number of projectors and M

the number of plane-waves. Usually, N is chosen relatively small, but M may be large, so it is
important to avoid a computational cost of order M2.

In practice, we are interested in the cost of the computation of H̃ψ̃ and S̃ψ̃ where ψ̃ is
expanded in M plane-waves as the generalized eigenvalue problem is solved by a conjugate
gradient algorithm. We will only focus on H̃ψ̃ since the analysis S̃ψ̃ is similar. Let us split H̃
into four terms:

H̃ψ̃ = Hψ̃ + PDHP
T ψ̃ +H

(
Φ− Φ̃

)
P T ψ̃ + PH

(
Φ− Φ̃

)T
ψ̃,
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where P is theM×N matrix of the projector functions, H(Φ−Φ̃) theM×N matrix of the Fourier
representation of the N functions H(φi− φ̃i), and DH is the N×N matrix 〈φi− φ̃i , H(φj− φ̃j)〉.

The computational cost can be estimated as follows (the cost at each step is given in brackets):

1. Hψ̃ is assembled in two steps. First, −1
2∆ψ̃ is computed in O(M) since the operator 1

2∆
is diagonal in Fourier representation. For the potential V , apply an inverse FFT to ψ̃ to
have the real space representation of ψ̃, multiply pointwise by V and apply a FFT to the
whole result (O(M logM));

2. for PDHP
T ψ̃, compute the N projections P T ψ̃ (O(MN)), then successively apply the

matrices DH (O(N2)) and P (O(MN));

3. for PH(Φ − Φ̃)T ψ̃, similarly apply successively H(Φ − Φ̃)T to ψ̃ (O(MN)) and P to
H(Φ− Φ̃)T ψ̃ (O(MN));

4. for H(Φ− Φ̃)P T ψ̃, we proceed as in step 3.

Thus, the total numerical cost is of order O(MN +M logM) which is the same as for the PAW
method.

The matrix H(Φ − Φ̃) is approximated by a plane-wave expansion, which may be a poor
approximation because of the singularities of Φ. However, it should be noticed that this is only
an intermediary in the computation of ψ̃, which is well approximated by plane-waves. Hence it
is not clear that a poor approximation of H(Φ− Φ̃) should imply a poor approximation of ψ̃.

1.5 Generation of the pseudo wave functions

In practice, there are two main ways to generate the pseudo wave functions φ̃k and the projectors
p̃k introduced by Blöchl [4] and Vanderbilt [18]. For both schemes, the generation of the PAW
functions has to be done for each angular momentum `.

1.5.1 Vanderbilt scheme

Atomic wave function The functions ϕk are simply the atomic wavefunctions defined earlier
i.e. solutions to the atomic eigenvalue problem

HIϕ
I
k = εkϕ

I
k, εI1 ≤ εI2 ≤ εI3 ≤ . . . ,

∫
R3
ϕIjϕ

I
k = δjk,

with
HI = −1

2∆− ZI
|r| +W (|r|).

The eigenfunctions ϕk can be decomposed into a spherical part Y`m -the real Laplace spherical
harmonics- and a radial part Rn`

ϕk(r) = Rn`(r)
r

Y`m(ω),

where k stands for the multiple indices (n, `,m) and r = (r, ω) is written in polar coordinates.

Pseudo wave function The pseudo wave functions φ̃k are given by :

∀r ∈ Γ, φ̃k(r) = R̃n`(r)
r

Y`m(ω).

Various choices of R̃n` are possible, for example, in [18], R̃n` is a polynomial inside the augmen-
tation region B(0, rc) :

R̃n`(r) =
{
r`+1∑p

k=0 c2kr
2k for 0 ≤ r ≤ rc,

Rn`(r) for r > rc,
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or in [17], a sum of spherical Bessel functions j` :

R̃n`(r) =
{
r
∑p
k=1 αkj`(qkr) , for 0 ≤ r ≤ rc,

Rn`(r) for r > rc,

and the coefficients are chosen to match as many derivatives of Rn` as possible at rc.

Projector function First, define :

χn`(r) = 1
2R̃
′′
n`(r) +

(
En −

`(`+ 1)
2r2 − V PP

` (r)
)
R̃n`(r),

where V PP
` (r) is usually the Troullier-Martins pseudopotential [23] although other choices are

possible.
By construction, supp(χn`) ⊂ [0, rc]. Let B be the matrix

Bn,n′ =
∫ rc

0
R̃n`(r)χn′`(r) dr.

The radial parts of the projector functions are given by

pn`(r) =
NI∑
n′=1

χn′`(r)
(
B−1

)
n′n

.

The projector functions are defined by

p̃n`(r) = pn`(r)
r

Y`m(ω).

This ensures that 〈p̃n` , φ̃n′`′〉 = δnn′δ``′ .

1.5.2 Blöchl scheme

The PAW functions are generated in two steps. For each angular momentum `, we define
auxiliary functions R̃0

n` and p0
n`:

Auxiliary functions Let χ(r) be the cut-off function

χ(r) =


sin(πr/rc)

(πr/rc) for r ≤ rc,
0 for r > rc,

and let (Cn`, R̃0
n`)n∈N∗ be the unique solution to:

−1
2(R̃0

n`)′′(r) + `(`+1)
2r2 R̃0

n` + (V PP
` − En)R̃0

n` = Cn`χ(r)R̃0
n`, 0 ≤ r ≤ rc

R̃0
n`(0) = 0

R̃0
n`(rc) = R0

n`(rc), (R̃0
n`)′(rc) = (R0

n`)′(rc).
(1.11)

Let p0
n` be the auxiliary functions:

p0
n`(r) = χ(r)R̃0

n`(r)(
R̃0
n`(r)|χ(r)R̃0

n`(r)
) ,

where
(f |g) =

∫ rc

0
f(r)g(r) dr.
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PAW functions Finally the radial part of all the PAW functions are constructed with a
Gram-Schmidt process. We describe it here assuming that only two quantum numbers n1 < n2
are needed for the computation. However, one should bear in mind that, on the one hand,
usually, n2 = n1 + 1, and on the other hand, although limiting the procedure to two quantum
numbers is in general sufficient for practical purposes, it is straightforward to generalize the
following orthogonalization procedure to an arbitrary number of quantum numbers.

1. Basis: the first set of functions R̃n1`, pn1` and Rn1`, corresponding to the lowest principal
quantum number n used, are defined by

R̃n1` = R̃0
n1`, pn1` = p0

n1`, Rn1` = R0
n1`.

2. Inductive step: if there is a second radial basis function for n2 > n1,

• first, the function R̃0
n2`

is orthogonalized against pn1`:

R̃n2`(r) = Fn2`

(
R̃0
n2`(r)− R̃n1`(r)

(
pn1`|R̃0

n2`

))
, (1.12)

where the factor
Fn2` = 1(

1−
(
R̃0
n2`
|pn1`

) (
R̃0
n1`
|pn2`

))1/2

is a normalization constant;
• similarly, the function p0

n2`
is orthogonalized against R̃n1` by noticing that(

R̃0
n2`
|pn1`

)
=
(
R̃0
n1`
|p0
n2`

)
:

pn2`(r) = Fn2`

(
p0
n2` − pn1`

(
R̃0
n2`|pn1`

))
;

• finally, to ensure the continuity between the radial functions Rn2` and R̃n2`, we apply
to R0

n2`
the same linear combination in Equation (1.12)

Rn2`(r) = Fn2`

(
R0
n2`(r)−Rn1`(r)

(
pn1`|R̃0

n2`

))
.

The PAW functions are given by

φn`m(x) = Rn`(r)
r

Y`m(θ, ϕ),

φ̃n`m(x) = R̃n`(r)
r

Y`m(θ, ϕ),

p̃n`m(x) = pn`(r)
r

Y`m(θ, ϕ).

Organization of the paper In this paper, we apply the VPAW formalism to the double
Dirac potential with periodic boundary conditions in one dimension. The eigenfunctions of this
model have a derivative jump at the positions of the Dirac potentials which is similar to the
electronic wave function cusp. Furthermore, the eigenvalues and eigenfunctions being known
analytically, it is possible to confront our theoretical results to very accurate numerical tests.

In Section 2, we carefully present the VPAW method in our framework. In Section 3, Fourier
decay estimates of the pseudo wave functions are given as well as estimates on the computed
eigenvalues. Proofs of these results are gathered in Section 4. In Section 5, we discuss the effect
of the addition of a smooth potential to the double Dirac model. Numerical simulations which
confirm the obtained theoretical results are provided in Section 6.
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Notation
From now on, 〈· , ·〉 denotes the usual inner product in L2

per(0, 1).
Let f be a piecewise continuous function. We denote by:

[f ]x := f(x+)− f(x−),

where f(x+) and f(x−) are respectively the right-sided and left-sided limits of f at x.
Let f be a continuous function. We denote by

∫
· · ·
∫

︸ ︷︷ ︸
2j+2

f(x) =
x∫

0

t1∫
0

· · ·
t2j+1∫
0

f(t2j+2) dt2j+2 . . . dt1

the (2j + 2)-primitive function of f vanishing at 0 as well as its first (2j + 1)-st derivatives.
For a and b in RN , a · b is the Euclidean inner product. ek is the k-th canonical vector of Rd

or RN . IN is the identity matrix of size N .

2 The VPAW method for a one-dimensional model

2.1 The double Dirac potential

We are interested in the lowest eigenvalues of the 1-D periodic Schrödinger operator H on
L2

per(0, 1) := {φ ∈ L2
loc(R) | φ 1-periodic} with form domain H1

per(0, 1) := {φ ∈ L2
loc(R) | φ′ ∈

L2
loc(R)} :

H = − d2

dx2 − Z0
∑
k∈Z

δk − Za
∑
k∈Z

δk+a, (2.1)

where 0 < a < 1, Z0, Za > 0.
A mathematical analysis of this model has been carried out in [5]. There are two negative

eigenvalues E0 = −ω2
0 and E1 = −ω2

1 which are given by the zeros of the function

f(ω) = 2ω2(1− cosh(ω)) + (Z0 + Za)ω sinh(ω)− Z0Za sinh(aω) sinh((1− a)ω).

The corresponding eigenfunctions are

ψk(x) =
{
A1,k cosh(ωkx) +B1,k sinh(ωkx) , 0 ≤ x ≤ a,
A2,k cosh(ωkx) +B2,k sinh(ωkx) , a ≤ x ≤ 1,

where the coefficients A1,k, A2,k, B1,k and B2,k are determined by the continuity conditions and
the derivative jumps at 0 and a.

There is an infinity of positive eigenvalues Ek+2 = ω2
k+2 which are given by the k-th zero of

the function :

f(ω) = 2ω2(1− cos(ω)) + (Z0 + Za)ω sin(ω) + Z0Za sin(aω) sin((1− a)ω),

and the corresponding eigenfunctions Hψk = ω2
kψk are

ψk(x) =
{
A1,k cos(ωkx) +B1,k sin(ωkx) , 0 ≤ x ≤ a,
A2,k cos(ωkx) +B2,k sin(ωkx) , a ≤ x ≤ 1,

where again the coefficients A1,k, A2,k, B1,k and B2,k are determined by the continuity conditions
and the derivative jumps at 0 and a.
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2.2 The VPAW method

The principle of the VPAW method consists in replacing the original eigenvalue problem

Hψ = Eψ,

by the generalized eigenvalue problem:

(Id + T )∗H(Id + T )ψ̃ = E(Id + T )∗(Id + T )ψ̃, (2.2)

where Id + T is an invertible bounded linear operator on L2
per(0, 1). Thus both problems have

the same eigenvalues and it is straightforward to recover the eigenfunctions of the former from
the generalized eigenfunctions of the latter:

ψ = (Id + T )ψ̃. (2.3)

T is the sum of two operators acting near the atomic sites

T = T0 + Ta.

To define T0, we fix an integer N and a radius 0 < η < min(a2 ,
1−a

2 ) so that T0 and Ta act on
two disjoint regions

⋃
k∈Z

[−η + k, η + k] and
⋃
k∈Z

[a− η + k, a+ η + k] respectively.

Atomic wave function φk Let H0 be the operator defined by :

H0 = − d2

dx2 − Z0
∑
k∈Z

δk.

By parity, the eigenfunctions of this operator are even or odd. The odd eigenfunctions are in
fact x 7→ sin(2πkx) and the even ones are the 1-periodic functions such that{

φ0(x) := cosh(ω0(x− 1
2)), for x ∈ [0, 1],

φk(x) := cos(ωk(x− 1
2)), for x ∈ [0, 1], k ∈ N∗.

To construct T0, we will only select the non-smooth thus even eigenfunctions (φk)1≤k≤N and
denote by (εk)1≤k≤N the corresponding eigenvalue:

H0φk = εkφk.

Pseudo wave function φ̃i The pseudo wave functions (φ̃i)1≤i≤N ∈
(
H1

per(0, 1)
)N

are defined
as follows:

1. for |x| /∈
⋃
k∈Z

[−η + k, η + k], φ̃i(x) = φi(x).

2. for |x| ∈
⋃
k∈Z

[−η + k, η + k], φ̃i is an even polynomial of degree at most 2d− 2, d ≥ N .

3. φ̃i is Cd−1 at η i.e. φ̃(k)
i (η) = φ

(k)
i (η) for 0 ≤ k ≤ d− 1.
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Projector functions p̃i Let ρ be a positive, continuous function with support [−1, 1] and
ρη(t) =

∑
k∈Z ρ( t−kη ). The projector functions (p̃i)1≤i≤N are obtained by an orthonormalization

procedure from the functions pi(t) = ρη(t)φ̃i(t) in order to satisfy the duality condition :

〈p̃i , φ̃j〉 = δij .

More precisely, we compute the matrix Bij := 〈pi , φ̃j〉 and invert it to obtain the projector
functions

p̃k =
N∑
j=1

(B−1)kjpj .

The matrix B is the Gram matrix of the functions φ̃j for the weight ρη. The orthogonalization
is possible only if the family (φ̃i)1≤i≤N is independent - thus necessarily d ≥ N .

T0 and Ta are given by :

T0 =
N∑
i=1

(φi − φ̃i)〈p̃i , •〉, Ta =
N∑
i=1

(φai − φ̃ai )〈p̃ai , •〉 , (2.4)

where φai are singular eigenfunctions of the operator Ha = − d2

dx2 − Za
∑
k∈Z δa+k and φ̃ai , p̃ai are

defined as before.
In the VPAW method, the generalized eigenvalue problem (2.2) is solved by expanding ψ̃ in

plane-waves.

Remark 2.1. Here we have followed the Vanderbilt scheme to generate the pseudo wave func-
tions and the projector functions with the difference that the orthogonalized functions p are taken
from the Blöchl construction.

2.3 Well-posedness of the VPAW method

To be well-posed the VPAW method requires

1. the family of pseudo wave functions (φ̃i)1≤i≤N to be independent on [−η, η], so that the
projector functions (p̃k)1≤k≤N are well defined,

2. (Id + T ) to be invertible.

The conditions on the VPAW functions and parameters are given by the following proposi-
tions. Proofs can be found in Section 4.

Proposition 2.2 (Linear independence of the pseudo wave functions). Let N ∈ N∗ and d ≥
N . There exists η0 > 0 such that for all 0 < η ≤ η0, the family (φ̃i|[−η,η])1≤i≤N is linearly
independent.

Proposition 2.3 (Invertibility of Id + T ). The operator Id + T is invertible in L2
per(0, 1) if and

only if the matrix (〈p̃k , φ`〉)1≤k,`≤N is invertible.

From now on, we will establish our results under the following
Assumption : the matrix (〈p̃k , φ`〉)1≤k,`≤N is invertible for all 0 < η ≤ η0.

3 Main results
We know from (2.3) that

ψ̃ = ψ −
N∑
i=1

(φi − φ̃i)〈p̃i , ψ̃〉 −
N∑
i=1

(φai − φ̃ai )〈p̃ai , ψ̃〉.
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In addition, ψ̃ is a piecewise smooth function with first derivative jumps (due to ψ and the
atomic wave function φk) at points of Z, Z + a and d-th derivative jumps (due to the pseudo
wave functions φ̃k) at points of Z ± η and Z + a ± η. These singularities drive the decays of
the Fourier coefficients. Thus to study the Fourier convergence rate, it suffices to study the
dependency of the different singularities with respect to N -the number of PAW functions used-,
d -the smoothness of the pseudo wave functions φ̃k- and η -the cut-off radius.

Proposition 3.1 (Derivative jumps at 0). Let N ∈ N∗ and d ≥ N . Then, there exists a positive
constant C independent of η such that for 0 ≤ j ≤ N − 1

∀ 0 < η ≤ η0,
∣∣∣[ψ̃(2j+1)

]
0

∣∣∣ ≤ Cη2N−2j , (3.1)

and for j ≥ N
∀ 0 < η ≤ η0,

∣∣∣[ψ̃(2j+1)
]

0

∣∣∣ ≤ C. (3.2)

The proof of Proposition 3.1 relies on the particular structure induced by the equations
satisfied by ψ and φi. Locally around a Dirac potential, their singularities have the same
behavior. More precisely, if we consider the even part ψe of ψ, the best approximation of ψe by
N eigenfunctions φi is of order 2N . It is then possible to rewrite the singularity at 0 of ψ̃ to
make use of this approximation.

Proposition 3.2 (d-th derivative jump at η). Let N ∈ N∗ and d ≥ N . There exists a constant
C independent of η such that for d ≤ k ≤ 2d− 2

∀ 0 < η ≤ η0,

∣∣∣∣[ψ̃(k)
]
η

∣∣∣∣ ≤ C

ηk−1 .

The derivative jump of ψ̃ at η is due to the lack of regularity of the pseudo wave functions
φ̃j at η. The latter can be written as rescaled polynomials P2d−2(xη ) where P2d−2 is of degree at
most 2d− 2. If we suppose that the coefficients of P2d−2 are uniformly bounded in η and if the
dependence on η of the projector functions p̃k is neglected, by deriving k times the polynomials
P2d−2(xη ), k ≥ d, we can see why the derivative jump of ψ̃ at η is expected to grow as η−k.
Tracking all the dependencies on η, we can in fact show that a factor η can be gained, which is
in full agreement with Figure 2.

Using Proposition 4.1 and classical estimates on eigenvalue approximations [25], we have the
following theorems.

Theorem 3.3 (Estimates on the Fourier coefficients). Let N ∈ N∗ and d ≥ N . Let ̂̃ψm be the
m-th Fourier coefficient of ψ̃. There exists a constant C > 0 independent of η and m such that
for all 0 < η ≤ η0 and m ≥ 1

η ∣∣∣ ̂̃ψm∣∣∣ ≤ C
(
η2N

m2 + 1
ηd−1md+1

)
.

Theorem 3.4 (Estimates on the eigenvalues). Let N ∈ N∗ and d ≥ N . Let EηM be an eigenvalue
of the variational approximation of (2.2) in a basis of M plane-waves and for a cut-off radius
0 < η ≤ η0, and let E be the corresponding exact eigenvalue. There exists a constant C > 0
independent of η and M such that for all 0 < η ≤ η0 and M ≥ 1

η

0 < EηM − E ≤ C
(
η4N

M
+ 1
η2d−2

1
M2d−1

)
. (3.3)

The first term has the same asymptotic decay in M as the brute force discretization of the
problem with the original Dirac potential. However the prefactor η4N can be made small by
using a small cut-off radius η and/or a large N . Doing so, we introduce another error term which
decays as M1−2d, with a prefactor of order η2−2d. A natural strategy would thus be to balance
these two error terms. This allows one to choose the numerical parameters in a consistent way.
The numerical tests in Section 6 suggest that the estimate (3.3) is optimal.
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4 Proofs
This section is organized as follows. First, we prove that the VPAW method is well defined. The
remainder of the section is then devoted to the proofs of Theorems 3.3 and 3.4. After estimating
the decay of the Fourier coefficients of the pseudo wave function ψ̃, we will precisely characterize
the singularities of the functions ψ and φk in order to estimate the derivative jumps of ψ̃.

4.1 Well-posedness of the VPAW method

Proof of Proposition 2.2. To prove the linear independence of the pseudo wave functions is
equivalent to show that the matrix (φ(k)

j+1(η))0≤j≤N−1,0≤k≤d−1 is full rank. In fact, we will
show that the submatrix (φ(k)

j+1(η))0≤j,k≤N−1 is invertible. Using the expression of φj+1, we have
for 0 ≤ j, k ≤ N − 1,

φkj+1(η) =
{

(−1)k/2ωkj+1 cos(ωj+1(η − 1
2)) if k is even,

(−1)(k+1)/2ωkj+1 sin(ωj+1(η − 1
2)) if k is odd

Let A(η) the matrix defined by

A(η) :=

cos(ωj+1(η − 1
2)) −ωj+1 sin(ωj+1(η − 1

2)) −ω2
j+1 cos(ωj+1(η − 1

2)) · · ·

 .
The function η 7→ detA(η) is complex analytic, thus if it is not identically equal to 0, there
exists an interval (0, η0) with η0 > 0 such that the matrix A(η) is invertible. It suffices to show
that there exists η ∈ C such that A(η) is invertible. Let η = −ix+ 1

2 , x > 0. Then for x large,
we have cos(ωj+1x) ∼ 1

2e
ωj+1x and sin(ωj+1x) ∼ 1

2e
ωj+1x, thus

A(−ix+ 1
2) = 1

2

eωj+1x −ωj+1e
ωj+1x −ω2

j+1e
ωj+1x · · ·

+ ε(x),

where

‖ε(x)‖ �

∥∥∥∥∥∥∥
eωj+1x −ωj+1e

ωj+1x −ω2
j+1e

ωj+1x · · ·


∥∥∥∥∥∥∥ .

We haveeωj+1x −ωj+1e
ωj+1x −ω2

j+1e
ωj+1x · · ·

 =

e
ω1x 0

. . .
0 eωNx




1 ω1 ωN−1
1

...
... · · ·

...
1 ωN ωN−1

N


which is invertible because the phases (ωj)1≤j≤N are pairwise distinct. Hence A(−ix + 1

2) is
invertible for x large enough.

Proof of Proposition 2.3. As T is a finite rank and thus compact operator, proving the statement
is equivalent to show that Ker(Id + T ) = {0}. First, suppose that the matrix (〈p̃k , φi〉)k,i is
invertible and let f ∈ Ker(Id + T ). We have

N∑
i=1
〈p̃i , f〉(φi − φ̃i) + f = 0 (4.1)

Since φi − φ̃i is supported in [−η, η] we also have supp(f) ⊂ [−η, η].
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By multiplying each side of Equation (4.1) by p̃k, 1 ≤ k ≤ N and integrating on [−1
2 ,

1
2 ], we

obtain:

0 =
N∑
i=1
〈p̃i , f〉〈p̃k , φi − φ̃i〉+ 〈p̃k , f〉 =

N∑
i=1
〈p̃i , f〉(〈p̃k , φi〉 − 〈p̃k , φ̃i〉︸ ︷︷ ︸

=δki

) + 〈p̃k , f〉 ,

so that

∀1 ≤ k ≤ N, 0 =
N∑
i=1
〈p̃i , f〉〈p̃k , φi〉.

Since we assumed that the matrix (〈p̃k , φi〉)k,i is invertible,

∀ 1 ≤ i ≤ N, 〈p̃i , f〉 = 0 .

Going back to (4.1), this implies f = 0 and Id + T is invertible.
Now we suppose that the matrix (〈p̃k , φi〉)k,i is not invertible. Thus there is (αi)1≤i≤N such

that

∀1 ≤ i ≤ N,
N∑
j=1

αj〈p̃i , φj〉 = 0.

Let f(x) =
∑N
j=1 αj(φj − φ̃j). Then

(Id + T )f =
N∑
j=1

αj(φj − φ̃j) +
N∑
i=1

N∑
j=1

αj〈p̃i , φj − φ̃j〉(φj − φ̃j)

=
N∑
i=1

N∑
j=1

αj〈p̃i , φj〉(φj − φ̃j)

= 0

Thus Ker(I + T ) 6= {0} and (I + T ) is not invertible.

4.2 Structure and approximation lemmas

A key intermediate result in our study is the estimation of the decay of the Fourier coefficients
of ψ̃ as a function of its derivative jumps.

Proposition 4.1. Let N ∈ N∗ and d ≥ N . Let ̂̃ψm be the m-th Fourier coefficient of ψ̃. Then

̂̃
ψm =

b d2 c−1∑
j=0

1
(2iπm)2+2j

[
ψ̃(2j+1)

]
0

+
2d−2∑
k=d

e∓2iπmη

(2iπm)k+1

[
ψ̃(k)

]
±η

+ e−2iπma

b
d
2 c−1∑
j=0

1
(2iπm)2+2j

[
ψ̃(2j+1)

]
a

+
2d−2∑
k=d

e∓2iπmη

(2iπm)k+1

[
ψ̃(k)

]
a±η


+ 1

(2iπm)2d−1

∫ 1

0
ψ̃(2d−1)(x)e−2iπmx dx.

Proof. This result follows from the definition of the Fourier coefficients and integration by parts.

In view of the Proposition 4.1, the decay of the Fourier coefficients can be inferred from the
derivative jumps of ψ̃ according to the VPAW parameters. The singularities of ψ̃ at integer
values are caused by the singularity of the functions ψ and φk. Thus, to get an accurate
characterization of the singularities of ψ̃, we need to precisely know how the functions ψ and φk
behave in a neighborhood of their singularities.
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Lemma 4.2 (Structure lemma). Let ψ be an eigenfunction (2.1) associated to the eigenvalue
E. Then in a neighborhood of 0, we have the following expansion :

ψ(x) = ψ(0)

 k∑
j=0

(−E)j

(2j)! x
2j − Z0

2

k∑
j=0

(−E)j

(2j + 1)! |x|
2j+1


+ ψ′(0+) + ψ′(0−)

2

k∑
j=0

(−E)j

(2j + 1)!x
2j+1 + ψ2k+2(x), (4.2)

where ψ2k+2 is a C2k+2 function satisfying in a neighbourhood of 0,ψ
(2k+2)
2k+2 = (−E)k+1ψ,

|ψ2k+2(x)| ≤ C |−E|
k+1

(2k+2)! |x|
2k+2.

Proof. This lemma is proved by induction.

Initialization For k = 0, let

θ2(x) = ψ(x) + Z0
|x|
2 ψ(0).

We differentiate θ2 twice:

θ′′2(x) = ψ′′(x)− [ψ′]0δ0 = −Eψ(x), on (−1
2 ,

1
2). (4.3)

The function ψ being continuous, θ2 is C2 in a neighborhood of 0. Moreover,

θ2(0) = ψ(0),

and
θ′2(x) = ψ′(x)− sign(x)

2 [ψ′]0.

When x tends to 0+ or 0−, we obtain the same expression:

θ′2(0) = ψ′(0+) + ψ′(0−)
2 .

Setting

ψ2(x) = θ2(x)− ψ(0)− ψ′(0+) + ψ′(0−)
2 x,

the statement is true for k = 0.

Inductive step Suppose the statement is true for k − 1. Then, we have in a neighbourhood
of 0,

ψ
(2k)
2k (x) = (−E)kψ(x).

Let
θ2k+2(x) = ψ2k(x)− (−E)k |x|2 [ψ′]0

x2k

(2k + 1)! .

Then
θ

(2k)
2k+2(x) = (−E)k

(
ψ(x)− |x|2 [ψ′]0

)
,

so that in view of (4.3),

θ
(2k+2)
2k+2 (x) = (−E)k

(
ψ′′(x)− [ψ′]0δ0

)
= (−E)k+1ψ(x),
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in the neighbourhood of 0.
So θ2k+2 is a C2k+2 function in a neighbourhood of 0 and we have:

ψ(x) = ψ(0)

k−1∑
j=0

(−E)j

(2j)! x
2j − Z0

k∑
j=0

(−E)j

(2j + 1)!
|x|2j+1

2


+
k−1∑
j=0

(−E)j

(2j + 1)!
ψ′(0+) + ψ′(0−)

2 x2j+1 + θ2k+2(x).

Il suffices to evaluate θ(2k)
2k+2(0) and θ(2k+1)

2k+2 (0) to conclude the proof. We have

θ
(2k)
2k+2(0) = (−E)kψ(0) ,

and
θ

(2k+1)
2k+2 (x) = (−E)k

(
ψ′(x)− sign(x)

2 [ψ′]0
)
,

so if x tends to 0, we have :

θ
(2k+1)
2k+2 (0) = ψ′(0+) + ψ′(0−)

2 (−E)k.

Define
ψ2k+2(x) = θ2k+2(x)− ψ(0) x

2k

(2k)! −
ψ′(0+) + ψ′(0−)

2
x2k+1

(2k + 1)! ,

and the induction is proved.

Let ψe be the even part of ψ. We have in a neighbourhood of 0

ψe(x) = ψ(0)
N−1∑
k=0

(
x2k

(2k)! −
Z0
2
|x|2k+1

(2k + 1)!

)
(−E)k + 1

2(ψ2N (x) + ψ2N (−x)). (4.4)

Lemma 4.3 (Approximation). There exist constants (cj)1≤j≤N ∈ RN satisfying

ψe(x) =
N∑
j=1

cjφj(x) +O
(
x2N

)
, as x→ 0.

Proof. By Lemma 4.2 applied to φj , we have

φj(x) = φj(0)
(
N−1∑
k=0

(−εj)k

(2k)! x
2k − Z0

2

N−1∑
k=0

(−εj)k

(2k + 1)! |x|
2k+1

)
+ φj,2N (x) ,

where
φj,2N (x) = O(x2N ).

So

ψe(x)−
N∑
j=1

cjφj(x) =
N−1∑
k=0

ψ(0)(−E)k −
N∑
j=1

(−εj)kcjφj(0)

 x2k

(2k)!

− Z0
2

N−1∑
k=0

ψ(0)(−E)k −
N∑
j=1

(−εj)kcjφj(0)

 |x|2k+1

(2k + 1)! + ψ2N (x)−
N∑
j=1

cjφj,2N (x).

To prove the lemma, it remains to show that there exist coefficients (cj) such that :

∀ 0 ≤ k ≤ N − 1,
N∑
j=1

(−εj)kcjφj(0) = ψ(0)(−E)k .

We have chosen the functions φj so that φj(0) 6= 0. By defining αj = cjφj(0), we recognize a
Vandermonde linear system. The eigenvalues εj are all different so the system is invertible and
the lemma is proved.
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4.3 Derivative jumps at 0
Recall pi(t) = ρη(t)φ̃i(t). We will introduce some notation used in the next proofs:

p(t) := (p1(t), . . . , pN (t))T ∈ RN ,
〈p̃ , ψ̃〉 := (〈p̃1 , ψ̃〉, . . . , 〈p̃N , ψ̃〉)T ∈ RN ,
〈p̃ , ψ〉 := (〈p̃1 , ψ〉, . . . , 〈p̃N , ψ〉)T ∈ RN ,

Φ(t) := (φ1(t), . . . , φN (t))T ∈ RN ,

Φ̃(t) := (φ̃1(t), . . . , φ̃N (t))T ∈ RN ,
B := (〈pi, φ̃j〉)1≤i,j≤N ∈ RN×N ,

Ã := (〈p̃i, φj〉)1≤i,j≤N ∈ RN×N ,

A := (〈pi, φj〉)1≤i,j≤N = BÃ ∈ RN×N .

Lemma 4.4. Let (ck)1≤k≤N be any vector of RN and j ∈ N. Then,

[ψ̃(2j+1)]0 = −Z0

(
(−E)jψ(0)−

N∑
k=1

ck(−εk)jφk(0)− 〈A−1p , ψ −
N∑
k=1

ckφk〉 · EjΦ(0)
)
.

where E is the diagonal matrix

E =


−ε1 0 . . . 0

0 −ε2 . . .
...

...
... . . . 0

0 . . . 0 −εN

 .

Proof. We first prove the statement for j = 0. In a neighbourhood of 0, we have:

ψ̃ = ψ −
N∑
i=1
〈p̃i , ψ̃〉(φi − φ̃i). (4.5)

Using the equations satisfied by ψ and φi gives for the first derivative jump at 0 of ψ̃ :

[ψ̃′]0 = [ψ′]0 −
N∑
i=1
〈p̃i , ψ̃〉[φ′i]0

= −Z0

(
ψ(0)−

N∑
i=1
〈p̃i , ψ̃〉φi(0)

)
. (4.6)

Multiplying equation (4.5) by p̃k and integrating on [−1/2, 1/2],

〈p̃k , ψ〉 −
N∑
i=1
〈p̃i , ψ̃〉〈p̃k , φi〉 =〈p̃k , ψ̃〉 −

N∑
i=1
〈p̃i , ψ̃〉 〈p̃k , φ̃i〉︸ ︷︷ ︸

=δki

= 0 ,

〈p̃k , ψ〉 =
N∑
i=1
〈p̃i , ψ̃〉〈p̃k , φi〉 .

Therefore
Ã〈p̃ , ψ̃〉 = 〈p̃ , ψ〉 (4.7)

Likewise
B〈p̃ , ψ〉 = 〈p , ψ〉,
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since for 1 ≤ i ≤ N :

N∑
j=1

Bij〈p̃j , ψ〉 =
N∑
j=1
〈pi , φ̃j〉〈p̃j , ψ〉

= 〈pi , ψ〉

According to Proposition 2.3, the matrix Ã is invertible and so is B since B = AÃ, with A
invertible by assumption. We therefore have

N∑
i=1
〈p̃i , ψ̃〉φi(0) = 〈p̃ , ψ̃〉 · Φ(0)

= Ã−1〈p̃ , ψ〉 · Φ(0)
= (BÃ)−1〈p , ψ〉 · Φ(0)
= 〈A−1p , ψ〉 · Φ(0).

We thus obtain the more compact form:

[ψ̃′]0 = −Z0
(
ψ(0)− 〈A−1p , ψ〉 · Φ(0)

)
.

To complete the proof the lemma, it suffices to show that

〈A−1p , φi+1〉 = ei,

where ei is the i-th vector of the canonical basis of RN . This is straightforward since 〈p , φi+1〉
is simply the i-th column of the matrix A.

For j ≥ 1, we proceed in the same way using{
[ψ(2j+1)]0 = −Z0(−E)jψ(0),
[φ(2j+1)
k ]0 = −Z0(−εk)jφk(0).

Remark 4.5. Notice that we showed

〈p̃ , ψ̃〉 = 〈A−1p , ψ〉. (4.8)

This equality will be used later in the estimation of the d-th derivative jump.

To prove Lemma 3.1, it remains to study the behavior of A−TEjΦ(0) as η goes to 0. By
assumption, A is invertible for all η > 0 but when η = 0, A is a rank 1 matrix. Actually,
in the special case of the 1D Schrödinger operator with Dirac potentials, we have a precise
characterization of the behavior of A−TEjΦ(0) as η goes to 0.

Lemma 4.6. Let f be a function in L2
per(0, 1) and Q(t) = (Q0(t), . . . , Qd−1(t))T be a vector of

even polynomials which forms a basis of the space of even polynomials of degree at most 2d− 2.
Let Gη be the d×N matrix and Cη the N × d matrix defined by:

Gη =
∫ 1

−1
ρ(t)Q(t)Φ(ηt)T dt,

Φ̃(t) = CηQ(t/η), ∀t ∈ (−η, η).

Then we have
〈A−1p , f〉 =

∫ 1

−1
ρ(t)(CηGη)−1CηQ(t)f(ηt) dt. (4.9)
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Proof. We have

Aij = 〈pi+1 , φj+1〉

=
∫ η

−η
ρ(t/η)φ̃i+1(t)φj+1(t) dt

= η

∫ 1

−1
ρ(t)φ̃i+1(ηt)φj+1(ηt) dt.

Therefore,

A = η

∫ 1

−1
ρ(t)Φ̃(ηt)Φ(ηt)T dt

= η Cη

∫ 1

−1
ρ(t)Q(t)Φ(ηt)T dt

= η CηGη.

Since (φ̃i)1≤i≤N is free, the matrix Cη is invertible :

A−1p = 1
η
ρ(t/η)(CηGη)−1CηQ(t/η).

Thus

〈A−1p , f〉 = 1
η

∫ η

−η
ρ(t/η)(CηGη)−1CηQ(t/η)f(t) dt

=
∫ 1

−1
ρ(t)(CηGη)−1CηQ(t)f(ηt) dt.

Before moving to the next lemma, we introduce the following notation. Let Qk be the even
polynomials of degrees at most 2d− 2 defined by∫ 1

−1
ρ(t)Qk(t)t2j dt = δkj , 0 ≤ k, j ≤ d− 1 ,

and let Pk, 0 ≤ k ≤ d− 1 and P be defined by

Pk(t) = 1
2kk! (t

2 − 1)k ,

P (t) = (P0(t), . . . , Pd−1(t))T .

It is easy to see that Pk satisfiesP
(j)
k (1) = 0, 0 ≤ j ≤ k − 1 ,
P

(k)
k (1) = 1.

Let Π be the transition matrix from Q to P :

ΠQ = P.

Finally we denote by Cη the matrix of the expansion of Φ̃ in the basis Q and C(P )
η the matrix

of the expansion of Φ̃ in the basis P :{
Φ̃(t) = CηQ(t/η) ,
Φ̃(t) = C

(P )
η P (t/η).

It is easy to see that
Cη = C(P )

η Π.
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Lemma 4.7. For 0 ≤ j ≤ N − 1, we have

η2j

(2j)! (E
jΦ(0))T (CηGη)−1Cη −→

η→0
eTj

(
IN Mπ

)
, (4.10)

where Mπ is a (d−N)×N matrix.
Furthermore

‖(CηGη)−1Cη‖ = O
( 1
η2N−2

)
.

Remark 4.8. The main idea of the proof is to use the particular structures of the matrices Cη
and Gη. We denote by C1, C2, G1 and G2 the matrices defined by

Cη =
(
C1
∣∣∣C2

)
,

Gη =
(
G1

G2

)
.

Suppose that C1 is invertible and such that ‖C−1
1 C2‖ = O(1) as η → 0, and there exists an

invertible matrix H1 such that 
G1H1 = IN +O(η) ,
G2H1 = O(η) ,
eT0 H

−1
1 = Φ(0)T .

Then it is easy to see that

Φ(0)T (CηGη)−1Cη = eT0

(
IN

∣∣∣ C−1
1 C2

)
+O(η).

Using Lemma 4.2 applied to Φ, it is easy to unveil the dependence in η of the matrix Gη
but we have no hint on the structure of Cη. Likewise, C(P )

η is easy to study but the matrix∫ 1
−1 ρ(t)P (t)Φ(ηt)T dt is not. So we have to work with both bases P and Q, exhibit the structures
of the matrices C(P )

η and Gη and recombine everything with the transition matrix Π.

Before proving Lemma 4.7, we state some properties of the matrix C(P )
η and its submatrices

C1, C2.

Lemma 4.9. Let N ∈ N∗ and d ≥ N . Let C1 ∈ RN×N and C2 ∈ RN×(d−N) be the matrices
such that:

C(P )
η =

(
C1
∣∣∣C2

)
. (4.11)

Let (gk)0≤k≤N−1 be the dual family of the vectors (ηkΦ(k)(η))0≤k≤N−1 and K1 be the matrix

K1 =

 gT0
...

gTN−1

 ∈ RN×N .

Then, there exists an upper triangular matrix P independent of η of the form

P =


1 0 . . . 0

0 . . . ∗ ∗
... 0 . . . ∗
0 . . . 0 1

 ∈ RN×N

such that {
C−1

1 = PK1,

C−1
1 C2 = M +O(η),

where M ∈ RN×(d−N) is a matrix independent of η.
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Remark 4.10. The particular form of the matrix P will be used in the estimation of the d-th
derivative jump of ψ̃ at η (Lemma 3.2) and of Tf(x) (Lemmas 4.13 and 4.14).

Proof. Let (ck)0≤k≤d−1 be the columns of C(P )
η . By the continuity conditions at η and our choice

of the polynomials Pk, we have

∀0 ≤ j ≤ d− 1, cj = ηjΦ(j)(η)−
j−1∑
k=0

P
(j)
k (1)ck. (4.12)

Thus cj is a linear combination of the vectors ηkΦ(k)(η) for k ≤ j whose coefficients are indepen-
dent of η. Moreover as P0 = 1, we have P (j)

0 = 0 for j ≥ 1. So in fact, for j ≥ 1, cj is spanned
by the vectors ηkΦ(k)(η) for 1 ≤ k ≤ j. Then, by definition of K1 and the vectors gk,

K1C1 =


1 0 . . . 0

0 . . . ∗ ∗
... 0 . . . ∗
0 . . . 0 1

 . (4.13)

Note that this matrix is independent of η. Let us denote it by P−1. Then the inverse of C1 is
PK1 and P has the same structure as P−1. Recall that for k ≥ N , ck is a linear combination of
the vectors ηjΦ(j)(η) for j ≤ k. As gj is the dual family of the vectors (ηlΦ(l)(η))0≤l≤N−1 and
‖gj‖ = O(η1−N ), we have

C−1
1 C2 = M +O(η), (4.14)

where M is a N × (d−N) matrix independent of η.

Proof of Lemma 4.7. Let G1 ∈ RN×N and G2 ∈ R(d−N)×N be the unique matrices such that

Gη =
(
G1
G2

)
∈ Rd×N .

By definition

Gη =
∫ 1

−1
ρ(t)Q(t)Φ(ηt)T dt.

By Lemma 4.2 applied to each φj ,

Φ(ηt) =
N−1∑
k=0

(
t2j − ηZ0

2
|t|2j+1

2j + 1

)
η2j

(2j)!E
jΦ(0) +O(η2N ).

Let aj ∈ Rd, aNj ∈ RN , ad−Nj ∈ Rd−N be defined by

aj := −
∫ 1

−1
ρ(t)Z0

2
|t|2j+1

2j + 1Q(t) dt =:
(
aNj
ad−Nj

)
.

Then by definition of the polynomials Q we haveG1 =
∑N−1
j=0 (ej + ηaNj ) η2j

(2j)!(E
jΦ(0))T +O(η2N ),

G2 =
∑N−1
j=0 ηad−Nj

η2j

(2j)!(E
jΦ(0))T +O(η2N ).

Let (f0, . . . , fN−1) be the dual basis of
(
EjΦ(0) η2j

(2j)!

)
0≤j≤N−1

in RN and H1 be the matrix

H1 :=
(
f0 · · · fN−1

)
∈ RN×N .
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It is straightforward to see that ‖H1‖ = O(η2−2N ) and{
G1H1 = IN +O(η) ,
G2H1 = O(η).

The matrix H1 is invertible and its inverse is

H−1
1 =

N−1∑
j=0

ej
η2j

(2j)! (E
jΦ(0))T .

Let us now prove (4.10) for j = 0. We have

Φ(0)T (CηGη)−1Cη = eT0 H
−1
1

(
C(P )
η ΠGη

)−1
C(P )
η Π

= eT0

(
C−1

1 C(P )
η ΠGηH1

)−1
Π
(
IN

∣∣∣ C−1
1 C2

)
= eT0

((
IN

∣∣∣ M +O(η)
)
Π
(
IN

∣∣∣ O(η)
)T)−1 (

IN
∣∣∣ M +O(η)

)
Π.

Decomposing Π into four blocks

Π =
(

Π1 Π2
Π3 Π4

)
, with Π1 ∈ RN×N ,

we obtain

Φ(0)T (CηGη)−1Cη = eT0 (Π1 +MΠ3 +O(η))−1
(
Π1 +MΠ3 +O(η)

∣∣∣ Π2 +MΠ4 +O(η)
)

= eT0

(
IN

∣∣∣ Mπ

)
+O(η).

For 1 ≤ j ≤ N − 1 we proceed in the same way, using eTj H−1
1 = η2j

(2j)!(E
jΦ(0))T .

Proof of Proposition 3.1. Let 0 ≤ j ≤ N − 1 and let (ck)1≤k≤N be as in Lemma 4.3. Then by
Lemma 4.4 we have :

[ψ̃(2j+1)]0 = (−E)jψ(0)−
N∑
k=1

ck(−εk)jφk(0)︸ ︷︷ ︸
=0

+〈A−1p , ψ −
N∑
k=1

ckφk〉 · EjΦ(0)

= 〈A−1p , ψ −
N∑
k=1

ckφk〉 · EjΦ(0)

= 〈A−1p , ψe −
N∑
k=1

ckφk〉 · EjΦ(0) ,

as p is even.
Combining Lemmas 4.6 and 4.7, we get

(EjΦ(0))TA−1p = ρ(t/η)(EjΦ(0))T (CηGη)−1CηQ(t/η) = ρ(t/η)xTηQ(t/η) ,

where ‖xη‖ = O(η−2j).
Using again Lemma 4.3, we obtain∣∣∣∣∣〈A−1p , ψ −

N∑
k=1

ckφk〉 · EjΦ(0)
∣∣∣∣∣ ≤ C‖xη‖

∥∥∥∥∥ρ(t)
N−1∑
`=0
|Q`(t)|

∥∥∥∥∥
L1[−1,1]

∥∥∥∥∥ψ −
N∑
k=1

ckφk

∥∥∥∥∥
L∞[−η,η]

≤ Cη2N−2j .
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We therefore obtain
|[ψ̃(2j+1)]0| ≤ Cη2N−2j .

For j ≥ N , we then have

(−E)jψ(0)−
N∑
k=1

ck(−εk)jφk(0) 6= 0,

and by Lemmas 4.3 and 4.7,∣∣∣∣∣∣〈A−1p , ψ −
N∑
j=1

cjφj〉 · EjΦ(0)

∣∣∣∣∣∣ ≤ C ‖(CηGη)−1Cη‖︸ ︷︷ ︸
=O(η2−2N )

∥∥∥∥∥ψ −
N∑
k=1

ckφk

∥∥∥∥∥
L∞[−η,η]︸ ︷︷ ︸

=O(η2N )

≤ Cη2.

We therefore have

[ψ̃(2j+1)]0 = (−E)jψ(0)−
N∑
k=1

ck(−εk)jφk(0)︸ ︷︷ ︸
6=0

+ 〈A−1p , ψ −
N∑
k=1

ckφk〉 · EjΦ(0)︸ ︷︷ ︸
=O(η2)

.

Thus,
|[ψ̃(2j+1)]0| ≤ C,

which completes the proof.

4.4 d-th derivative jump

We use the notation introduced in the previous section.

Proof of Proposition 3.2. We give the proof only for k = d as the proof for d + 1 ≤ k ≤ 2d− 2
is very similar. By definition of ψ̃ and Φ̃,

[ψ̃(d)]η = 〈p̃ , ψ̃〉 · [Φ̃(d)]η

= 1
ηd
〈p̃ , ψ̃〉 · (C(P )

η P (d)(1)− ηdΦ(d)(η))

= 1
ηd
〈A−1p , ψ〉 · (C(P )

η P (d)(1)− ηdΦ(d)(η)) (by Equation (4.8)),

= 1
ηd

∫ 1

−1
ρ(t)ψ(ηt)Q(t) dt · CTη (GTη CTη )−1(C(P )

η P (d)(1)− ηdΦ(d)(η)) (by Lemma 4.6).

We know from (4.12) that the columns of C(P )
η are linear combinations of ηkΦ(k)(η). Let us

apply Lemma 4.2 to Φ. As the remainder is C2d−2, for k ≤ d − 1, we can differentiate k times
and we have for k even :

ηkΦ(k)(η) =
N−1∑
j= k

2

(
η2j

(2j − k)! −
Z0
2

η2j+1

(2j + 1− k)!

)
EjΦ(0) +O(η2N ),

and for k odd, we have

ηkΦ(k)(η) = −Z0
2 ηkD

k−1
2 Φ(0) +

N−1∑
j= k+1

2

(
η2j

(2j − k)! −
Z0
2

η2j+1

(2j + 1− k)!

)
EjΦ(0) +O(η2N ).
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But by Lemma 4.7, for 0 ≤ k ≤ 2N − 2, k even, we have :

CTη (GTη CTη )−1ηkΦ(k)(η) =
N−1∑
j= k

2

(
η2j

(2j − k)! −
Z0
2

η2j+1

(2j + 1− k)!

)
CTη (GTη CTη )−1EjΦ(0) +O(η2)

=
N−1∑
j= k

2

(2j)!
(2j − k)!

(
IN
MT
π

)
ej +O(η). (4.15)

Similarly for 0 ≤ k ≤ 2N − 1, k odd :

CTη (GTη CTη )−1ηkΦ(k)(η) = −Z0
2 CTη (GTη CTη )−1ηkD

k−1
2 Φ(0)

+
N−1∑
j= k+1

2

(
η2j

(2j − k)! −
Z0
2

η2j+1

(2j + 1− k)!

)
CTη (GTη CTη )−1EjΦ(0) +O(η2)

=
N−1∑
j= k+1

2

(2j)!
(2j − k)!

(
IN
MT
π

)
ej +O(η) , (4.16)

and for k ≥ 2N , using ‖CTη (GTη CTη )−1‖ = O(η2−2N ) we have

CTη (GTη CTη )−1ηkΦ(k)(η) = O(η).

We have proved that [ψ̃(d)]η = O(η−d) but it is possible to have a slightly better estimate.
Observing that ψ is in fact a Lipschitz function and not only a continuous function, we have

for |t| ≤ 1 :
ψ(ηt) = ψ(0) +O(η).

By definition of the polynomials Qk, we have∫ 1

−1
ρ(t)Q(t)ψ(ηt) dt = ψ(0)

∫ 1

−1
ρ(t)Q(t) dt+O(η)

= ψ(0)e0 +O(η).

To complete the proof of the proposition, it remains to show

e0 · CTη (GTη CTη )−1(C(P )
η P (d)(1)− ηdΦ(d)(η)) = O(η).

As we have for j ≥ 1

eT0

(
IN
MT
π

)
ej = 0,

then for d ≥ 2, equations (4.15) and (4.16) lead to

e0 · CTη (GTη CTη )−1ηdΦ(d)(η) = O(η).

Recall that the columns of C(P )
η satisfy the relation

∀0 ≤ j ≤ d− 1, cj = ηjΦ(j)(η)−
j−1∑
k=0

P
(j)
k (1)ck.

But P (j)
0 (1) = 0 for j ≥ 1 so in fact, for all k ≥ 1, ck is a linear combination of the vectors

ηjΦ(j)(η) for 1 ≤ j ≤ k. Moreover by definition, we have

P (d)(1) = (0, . . . , 0︸ ︷︷ ︸
b d2 c

, ∗, . . . , ∗)T ,
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so C(P )
η P (d)(1) is a linear combination of the last dd2e columns of C(P )

η . Thus C(P )
η P (d)(1) is a

linear combination of the vectors ηjΦ(j)(η) for 1 ≤ j ≤ d− 1 and therefore in view of (4.15) and
(4.16), we have

eT0 C
T
η (GTη CTη )−1C(P )

η P (d)(1) = O(η).

Proof of Theorem 3.3. First, we need to bound the remainder
∫ 1

0 ψ̃
(2d−1)(x)e−2iπmx dx with re-

spect to η. Φ̃ is a vector of polynomials of degree at most 2d− 2, thus Φ̃(2d−1) = 0. Thus∣∣∣∣∫ 1

0
ψ̃(2d−1)(x)e−2iπmx dx

∣∣∣∣ ≤ ∫ 1

0
|ψ(2d−1)(x)| dx+

∫ η

−η
|〈p̃ , ψ̃〉 · Φ(2d−1)(x)|dx

+
∫ a+η

a−η
|〈p̃a , ψ̃〉 · Φ(2d−1)(x− a)| dx.

We have 〈p̃ , ψ̃〉 = 〈A−1p , ψ〉 by (4.8) and by Lemmas 4.6 and 4.7,

|〈A−1p , ψ〉| ≤ C

η2N−2 ,

where C is a positive constant independent of η. Thus∫ η

−η
|〈p̃ , ψ̃〉 · Φ(2d−1)(x)| dx ≤ C

η2N−3 .

Then by Proposition 4.1, using the estimates (3.1) and (3.2) on the derivative jumps

| ̂̃ψm| ≤ C
b

d
2 c−1∑
j=0

1
(2πm)2+2j

∣∣∣[ψ̃(2j+1)
]

0

∣∣∣+ 2d−2∑
k=d

1
(2πm)k+1

∣∣∣∣[ψ̃(k)
]
±η

∣∣∣∣
+
b d2 c−1∑
j=0

1
(2πm)2+2j

∣∣∣[ψ̃(2j+1)
]

0

∣∣∣+ 2d−2∑
k=d

1
(2πm)k+1

∣∣∣∣[ψ̃(k)
]
a±η

∣∣∣∣
+ 1

(2πm)2d−1

∣∣∣∣∫ 1

0
ψ̃(2d−1)(x)e−2iπmx dx

∣∣∣∣
)

≤ C

b
d
2 c−1∑
j=0

η2N−2j

m2+2j +
2d−2∑
k=d

1
ηk−1mk+1 + 1

η2N−3m2d−1

 .
Since N ≤ d and m ≥ 1

η , we have the result.

4.5 Error bound on the eigenvalues

To derive the estimate on the eigenvalues, we would like to use the following classical result
([25], p. 68).

Proposition 4.11. Let H be a self-adjoint coercive H1-bounded operator, E1 ≤ · · · ≤ En be the
lowest eigenvalues of H and ψ1, . . . , ψn be L2-normalized associated eigenfunctions.
Let E(M)

1 ≤ · · · ≤ E
(M)
n be the lowest eigenvalues of the Rayleigh quotient of H restricted to

the subspace VM of dimension M .
Let wk ∈ VM for 1 ≤ k ≤ n be such that

n∑
k=1
‖wk − ψk‖2H1 < 1.

26



Then there exists a positive constant C which depends on the H1 norm of H and the coercivity
constant such that for all 1 ≤ k ≤ n

∣∣∣E(M)
k − Ek

∣∣∣ ≤ C n∑
k=1
‖wk − ψk‖2H1 .

We would like to apply this result to ψM = (Id + T )ψ̃M where ψ̃M is the truncation of ψ̃ to
the first M plane-waves but we need to bound the H1 norm of T with respect to η. Coercivity
for our one-dimensional model has been proved in [5]. To find this bound, we will need to rewrite
Tf in a convenient way.

Lemma 4.12. For f ∈ H1
per(0, 1), we have for |x| ≤ η:

Tf(x) = 〈p̃ , f〉 ·
(
Φ(x)− Φ̃(x)

)
=
(
C(P )
η

)T (
C(P )
η G(P )

(
C(P )
η

)T)−1
C(P )
η

∫ 1

−1
ρ(t)f(ηt)P (t) dt ·

((
C−1

1
0

)
Φ(x)− P (x/η)

)
,

where G(P ) is the following Gram matrix :

G(P ) =
∫ 1

−1
ρ(t)P (t)P (t)T dt,

and C1 ∈ RN×N is the square matrix defined in Lemma 4.9.

Proof. For |x| ≤ η, we have :

(Tf)(x) = 〈p̃ , f〉 · (Φ(x)− Φ̃(x))
= 〈B−1p , f〉 · (Φ(x)− Φ̃(x)).

Recall that

B = 〈p , Φ̃T 〉
= 〈ρ(t/η)Φ̃ , Φ̃T 〉

= η

∫ 1

−1
ρ(t)C(P )

η P (t)P (t)T
(
C(P )
η

)T
dt

= ηC(P )
η G(P )

(
C(P )
η

)T
.

Thus,

〈B−1p , f〉 · Φ̃(x) =
(
C(P )
η G(P )

(
C(P )
η

)T)−1
C(P )
η

∫ 1

−1
ρ(t)f(ηt)P (t) dt · C(P )

η P (x/η)

=
(
C(P )
η

)T (
C(P )
η G(P )

(
C(P )
η

)T)−1
C(P )
η

∫ 1

−1
ρ(t)f(ηt)P (t) dt · P (x/η).

Using the identity

C(P )
η

(
C−1

1
0

)
=
(
C1 | C2

)( C−1
1
0

)
= IN ,

we can formally rewrite 〈B−1p , f〉 as

〈B−1p , f〉 · Φ(x) =
(
C(P )
η

)T (
C(P )
η G(P )

(
C(P )
η

)T)−1
C(P )
η

∫ 1

−1
ρ(t)f(ηt)P (t) dt ·

(
C−1

1
0

)
Φ(x),

(4.17)
and the result follows.
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Lemma 4.13. There exists a positive constant C independent of η such that for all
f ∈ H1

per(0, 1) and for all x ∈ R, we have

∀ 0 < η ≤ η0,
∣∣∣〈p̃ , f〉 · (Φ(x)− Φ̃(x)

)∣∣∣ ≤ Cη‖f‖H1
per
.

Proof. In this proof, C denotes a generic constant that does not depend on η or f . Let f ∈
H1

per(0, 1). On |x| ≥ η, we have by definition of Φ̃

〈p̃ , f〉 ·
(
Φ(x)− Φ̃(x)

)
= 0.

We deduce from Lemma 4.12 that for |x| ≤ η we have

〈p̃ , f〉 ·
(
Φ(x)− Φ̃(x)

)
=
(
C(P )
η

)T (
C(P )
η G(P )

(
C(P )
η

)T)−1
C(P )
η

∫ 1

−1
ρ(t)f(ηt)P (t) dt

·
((

C−1
1
0

)
Φ(x)− P (x/η)

)
.

The proof of the lemma consists of four steps. We will successively show that

1.
(
C−1

1
0

)
Φ(x)− P (x/η) =

(
0
∗

)
+O(η), where

(
0
∗

)
is uniformly bounded in η and x;

2.
∫ 1
−1 ρ(t)f(ηt)P (t) dt = f(0)G(P )e0 +O(η)‖f‖H1

per
;

3. the norm of
(
C

(P )
η

)T (
C

(P )
η G(P )

(
C

(P )
η

)T)−1
C

(P )
η is uniformly bounded in η;

4. for j ≥ 1, eTj
(
C

(P )
η

)T (
C

(P )
η G(P )

(
C

(P )
η

)T)−1
C

(P )
η G(P )e0 is of order O(η).

Indeed, assuming these statements hold, we can infer from statement 2 that∣∣∣〈p̃ , f〉 · (Φ(x)− Φ̃(x)
)∣∣∣

≤ |f(0)|
∣∣∣∣∣(C(P )

η

)T (
C(P )
η G(P )

(
C(P )
η

)T)−1
C(P )
η G(P )e0 ·

((
C−1

1
0

)
Φ(x)− P (x/η)

)∣∣∣∣∣
+O(η)‖f‖H1

per

∣∣∣∣∣(C(P )
η

)T (
C(P )
η G(P )

(
C(P )
η

)T)−1
C(P )
η

((
C−1

1
0

)
Φ(x)− P (x/η)

)∣∣∣∣∣ .
We treat both terms separately. For the second term, by statements 1 and 3, we have∣∣∣∣∣(C(P )

η

)T (
C(P )
η G(P )

(
C(P )
η

)T)−1
C(P )
η

((
C−1

1
0

)
Φ(x)− P (x/η)

)∣∣∣∣∣ ≤ C.
For the first one, by statement 1, we only have to check that for j ≥ 1, we have∣∣∣∣∣(C(P )

η

)T (
C(P )
η G(P )

(
C(P )
η

)T)−1
C(P )
η G(P )e0 · ej

∣∣∣∣∣ ≤ Cη,
which is exactly statement 4. The lemma is then proved using the Sobolev embedding
‖f‖L∞per ≤ C‖f‖H1

per
.
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Step 1 Writing down the Taylor expansion of Φ at η, we obtain

Φ(x) =
N−1∑
k=0

(x− η)k

k! Φ(k)(η) +O((x− η)N )

=
N−1∑
k=0

1
k!

(
x

η
− 1

)k
ηkΦ(k)(η) +O((x− η)N ).

By Lemma 4.9, we have

C−1
1 ηkΦ(k)(η) = PK1η

kΦ(k)(η) = Pek,

and for k 6= 0, Pek · e0 = 0. We also know that ‖C−1
1 ‖ = O(η1−N ), so that

C−1
1 Φ(x) =

(
1
∗

)
+O(η).

By definition P0 = 1, and therefore(
C−1

1
0

)
Φ(x)− P (x/η) =

(
0
∗

)
+O(η).

Step 2 Since f ∈ H1
per(0, 1), by the Sobolev embedding theorem, f is continuous and f(0)

exists. Thus we can write∫ 1

−1
ρ(t)f(ηt)P (t) dt = f(0)

∫ 1

−1
ρ(t)P (t) dt+

∫ 1

−1
ρ(t)(f(ηt)− f(0))P (t) dt

= f(0)G(P )e0 +
∫ 1

−1
ρ(t)(f(ηt)− f(0))P (t) dt,

since P0 = 1. Using
f(ηt) = f(0) +

∫ ηt

0
f ′(x) dx,

and Cauchy-Schwarz inequality, we obtain

∣∣∣∣∫ 1

−1
ρ(t)(f(ηt)− f(0))P (t) dt

∣∣∣∣ ≤
(∫ 1

−1
ρ(t)2P 2(t) dt

∫ 1

−1

(∫ ηt

0
f ′(x) dx

)2
dt
)1/2

≤ C
(∫ 1

−1

(∫ ηt

0
f ′(x)2 dx

)
η2t2 dt

)1/2

≤ Cη‖f‖H1
per
.

Step 3 We want to bound the norm of the matrix

(
C(P )
η

)T (
C(P )
η G(P )

(
C(P )
η

)T)−1
C(P )
η .

Since G(P ) is the Gram matrix of the polynomials Pk for the weight ρ, G(P ) is a symmetric
positive definite matrix and thus admits a square root. It is easy to check that

G(P )1/2
(
C(P )
η

)T (
C(P )
η G(P )

(
C(P )
η

)T)−1
C(P )
η G(P )1/2

is an orthogonal projector. Its norm is therefore uniformly bounded in η.
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Step 4 Let G1 ∈ RN×N , G2 ∈ RN×(d−N) and G3 ∈ R(d−N)×(d−N) be the matrices respectively
defined by

G(P ) =
(
G1 G2
GT2 G3

)
.

Let Mη be the matrix
C−1

1 C2 = Mη.

Recall that by Lemma 4.9, ‖Mη‖ ≤ C. With this notation, we have

C(P )
η G(P )

(
C(P )
η

)T
= C1

(
G1 +MηG

T
2 +G2M

T
η +MηG3M

T
η

)
,

and therefore,

(
C(P )
η

)T (
C(P )
η G(P )

(
C(P )
η

)T)−1
C(P )
η e0

=
(
IN
Mη

)(
G1 +MηG

T
2 +G2M

T
η +MηG3M

T
η

)−1 (
G1 +MηG

T
2

)
e0. (4.18)

We will now show that MT
η e0 = O(η). By definition,

eT0 Mη = eT0 C
−1
1 C2 = eT0 PK1C2.

By Lemma 4.9, eT0 P = e0 and by definition of K1, eT0 K1 = gT0 where g0 is the vector satisfying
gT0 η

kΦ(k)(η) = δ0k for k ≤ N − 1. Again by Lemma 4.9, the columns of C(P )
η satisfy :

∀0 ≤ j ≤ d− 1, cj = ηjΦ(j)(η)−
j−1∑
k=0

P
(j)
k (1)ck,

with P (j)
0 (1) = 0 for j ≥ 1. Consequently cj is a linear combination of the vectors ηkΦ(k)(η) for

1 ≤ k ≤ j. Since ‖g0‖ = O(η1−N ), we get gT0 C2 = O(η). Coming back to Equation (4.18), we
have (

C(P )
η

)T (
C(P )
η G(P )

(
C(P )
η

)T)−1
C(P )
η e0 =

(
IN
MT
η

)
e0 +O(η).

Consequently,

eTj

(
C(P )
η

)T (
C(P )
η G(P )

(
C(P )
η

)T)−1
C(P )
η e0 = eTj

(
IN
MT
η

)
e0 +O(η)

=
{
O(η), 0 ≤ j ≤ N − 1,
eTj−NM

T
η e0 = O(η), N ≤ j ≤ d− 1.

We can establish a similar result for 〈p̃ , f〉 ·
(
Φ′(x)− Φ̃′(x)

)
.

Lemma 4.14. There exists a positive constant C independent of η such that for all
f ∈ H1

per(0, 1) and for all x ∈ R, we have

∀ 0 < η ≤ η0,
∣∣∣〈p̃ , f〉 · (Φ′(x)− Φ̃′(x)

)∣∣∣ ≤ C‖f‖H1
per
,

Proof. It is a transposition of the proof of the previous lemma. The first step is simply replaced
by

1.
(
C−1

1
0

)
Φ′(x)− 1

ηP
′(x/η) = 1

η

(
0
∗

)
+O(1), where

(
0
∗

)
is uniformly bounded in η and x.
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To prove the latter statement, we observe that P ′0 = 0 and by a Taylor expansion of Φ′, we
obtain

Φ′(x) = 1
η

N−1∑
k=1

1
(k − 1)!

(
x

η
− 1

)k−1
ηkΦ(k)(η) +O(ηN−1),

hence
C−1

1 Φ′(x) = 1
η

(
0
∗

)
+O(1).

Lemma 4.15. There exists a positive constant C independent of η such that for all f ∈
H1

per(0, 1), we have
∀ 0 < η ≤ η0, ‖Tf‖H1

per
≤ Cη

1
2 ‖f‖H1

per

Proof. This is a straightforward consequence of Lemmas 4.13 and 4.14.

Proof of Theorem 3.4. Applying Proposition 4.11 to ψM = (Id + T )ΠM ψ̃, where ΠM is the
truncation to the first M plane-waves, we have

|EηM − E| ≤ C‖(Id + T )(ΠM ψ̃ − ψ̃)‖2H1
per

≤ C(‖ΠM ψ̃ − ψ̃‖2H1
per

+ ‖T (ΠM ψ̃ − ψ̃)‖2H1
per

).

By Lemma 4.15,

‖T (ΠM ψ̃ − ψ̃)‖2H1
per
≤ C‖ΠM ψ̃ − ψ̃‖2H1

per
,

and we deduce from Theorem 3.3 that

|EηM − E| ≤ C‖ΠM ψ̃ − ψ̃‖2H1
per

≤ C
∞∑

j=M+1
(1 + j2)| ̂̃ψj |2

≤ C
∞∑

j=M+1

(
η4N

j2 + 1
η2d−2j2d

)

≤ C
(
η4N

M
+ 1
η2d−2M2d−1

)
.

5 Perturbation by a continuous potential
In standard electronic structure calculations, the Hartree and exchange-correlation terms are
modelled by a potential that is smoother than the Coulomb potential. To reproduce this setting
in our one-dimensional toy model, a smoother potentialW is added to the Hamiltonian (2.1). In
the following, we examine how the VPAW method accelerates the computation of eigenvalues.

Consider the Hamiltonian

H = − d2

dx2 − Z0
∑
k∈Z

δk − Za
∑
k∈Z

δa+k +W , (5.1)

where W is 1-periodic, continuous, 0 < a < 1, Z0, Za > 0.
With the VPAW method, the generalized eigenvalue problem

(Id + T ∗)H(Id + T )ψ̃ = E(Id + T ∗)(Id + T )ψ̃, (5.2)
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is solved by expanding ψ̃ in plane-waves. Like in Section 2.2, T = T0 + Ta, where T0 and Ta act
on two disjoint regions

⋃
k∈Z

[−η + k, η + k] and
⋃
k∈Z

[a− η + k, a+ η + k] respectively. The atomic

wave functions (φk)0≤k≤N−1 are the non-smooth solutions of the atomic Hamiltonian

H0 = − d2

dx2 − Z0
∑
k∈Z

δk + V ,

where V can be different fromW . The eigenvalues associated to (φk)0≤k≤N−1 are denoted by εk.
To define the pseudo wave functions (φ̃k)0≤k≤N−1 and the projectors (p̃k)0≤k≤N−1, we proceed
as in Section 2.2.

It follows from the study of the double Dirac delta potential Hamiltonian that the key
lemma of the analysis is the structure Lemma 4.2, which describes the behavior of eigenfunctions
near the singularities. It is possible to establish a similar result for the eigenfunctions of the
Hamiltonian (5.1).

Lemma 5.1. Let ψ be an eigenfunction of the Hamiltonian H given by (5.1) for the eigenvalue
E. Then in a neighborhood of 0, we have the following expansion :

ψ(x) = ψ(0)

 k∑
j=0

(−E)j

(2j)! x
2j − Z0

2
(−E)j

(2j + 1)! |x|
2j+1


+ ψ′(0+) + ψ′(0−)

2

k∑
j=0

(−E)j

(2j + 1)!x
2j+1 +

k∑
j=0

∫
· · ·
∫

︸ ︷︷ ︸
2j+2

Wψ(x) + ψ2k+2(x),

where ψ2k+2 is a C2k+2 function satisfying in a neighbourhood of 0{
ψ

(2k+2)
2k+2 = (−E)k+1ψ,

ψ2k+2(x) = O(x2k+2).

Proof. This lemma can be proved by induction. For k = 0, we set

θ2(x) = ψ(x) + Z0
2 |x|ψ(0)−

x∫
0

t∫
0

W (s)ψ(s)dsdt

and then proceed as in the proof of Lemma 4.2.

We will now make some assumptions on the potentials V and W :

1. V and W are smooth and 1-periodic;

2. V is even. This property would indeed be satisfied by potentials that does not break the
crystal symmetry;

Lemma 5.2. For N ≥ 2:
∫∫

V Φ(x) =
N−1∑
k=1

(V Φ)k

(
x2k

(2k)! −
Z0
2
|x|2k+1

(2k + 1)!

)
+O

(
x2N

)
,

where (V Φ)k is in span(EjΦ(0), j ≤ N − 2).

Proof. This lemma is proved by induction.
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Initialization Applying Lemma 5.1 with Za = 0 and W = V to each function φk, we obtain
expansions of the atomic PAW functions φk in the vicinity of 0:

Φ(x) = Φ(0)
(

1− Z0
2 |x|

)
+O(x2).

Deriving twice
∫∫
V Φ gives(∫∫

V Φ(x)
)′′

= V (x)Φ(x)

= V (0)Φ(0)
(

1− Z0
2 |x|

)
+O(x2).

Therefore ∫∫
V Φ(x) = V (0)Φ(0)

(
x2

2 −
Z0
2
|x|3

6

)
+O(x4).

Inductive step Let us derive twice
∫∫
V Φ:(∫∫

V Φ(x)
)′′

= V (x)Φ(x)

=
(2N−2∑

k=0
V (2k)(0) x

2k

(2k)!

)(
N−1∑
k=0

(
x2k

(2k)! −
Z0
2
|x|2k+1

(2k + 1)!

)
DkΦ(0)

+
N−2∑
j=0

∫
· · ·
∫

︸ ︷︷ ︸
(2j+2)

V Φ(x)
)

+O(x2N ). (5.3)

By the induction hypothesis,∫
· · ·
∫

︸ ︷︷ ︸
(2j+2)

V Φ(x) =
N−1∑
k=j+1

(V Φ)k−j

(
x2k

(2k)! −
Z0
2
|x|2k+1

(2k + 1)!

)
+O(x2N ).

Thus,

N−1∑
j=0

∫
· · ·
∫

︸ ︷︷ ︸
(2j+2)

V Φ(x) =
N−2∑
j=0

N−1∑
k=j+1

(V Φ)k−j

(
x2k

(2k)! −
Z0
2
|x|2k+1

(2k + 1)!

)

=
N−1∑
k=1

k−1∑
j=0

(V Φ)k−j

(
x2k

(2k)! −
Z0
2
|x|2k+1

(2k + 1)!

)
.

Going back to (5.3), expanding the equation and using the last equation, we obtain the result.

Lemma 5.3. In a neighbourhood of 0, the vector Φ has the following expansion :

Φ(x) =
k∑
j=0

(
x2j

(2j)! −
Z0
2
|x|2j+1

(2j + 1)!

)
Xj + Φ2k+2(x) ,

where the function Φ2k+2 is C2k+2 at 0 and Xj are vectors satisfying{
Xj ∈ span(E`Φ(0), ` ≤ j),
Xj − EjΦ(0) ∈ span(E`Φ(0), ` ≤ j − 1),

(5.4)

where E is the diagonal matrix with entries −ε0, . . . ,−εN−1.
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Proof. We apply Lemmas 5.1 and 5.2 and notice that the vectors (V Φ)k are spanned by
(EjΦ(0), j ≤ k − 1).

Lemma 5.4. The even part of ψ satisfies

ψe(x) =
1∑
j=0

(
(−E)j

(2j)! x
2j − Z0

2
(−E)j

(2j + 1)! |x|
2j+1

)
+W (0)ψ(0)

(
x2

2 −
Z0
2
|x|3

3!

)

+
(
W ′(0)ψ′s(0)− E

2 W (0)ψ(0)
)
x4

4! −
Z0
2

(
W ′′(0)

2 ψ(0)− EW (0)ψ(0)
) |x|5

5!

+W (0)ψ(0)
(
x4

4! −
Z0
2
x5

5!

)
+O

(
x6
)
,

where
ψ′s(0) = ψ′(0+) + ψ′(0−)

2 .

Proof. The proof follows from Lemma 5.1 and a careful estimation of the terms
∫∫
Wψ and∫∫∫∫

Wψ.

Since W is not even, ψ does not have the same structure as for the double delta potential.
More precisely, we can show that because of the term

∫∫
Wψ the singularity of the fifth order

term cannot be removed by the VPAW approach.

Lemma 5.5. For N = 2 there exist coefficients c0 and c1 such that:

ψe(x)− c0φ0(x)− c1φ1(x) = O
(
x4
)
.

For N ≥ 3, there exists a family of coefficients (ck)0≤k≤N−1 such that:

ψe(x)−
N−1∑
k=0

ckφk(x) = O
(
x5
)
.

Following the same steps as in Section 4, we can establish the following theorems.

Theorem 5.6 (Estimates on the Fourier coefficients). Let N ∈ N∗ and d ≥ N . Let ̂̃ψm be
the m-th Fourier coefficient of ψ̃. Then, there exists a positive constant C such that for all
0 < η ≤ η0 and m ≥ 1

η ∣∣∣ ̂̃ψm∣∣∣ ≤ C
(
η2N∧5

m2 + 1
ηd−1md+1

)
,

where a ∧ b = min(a, b).

Theorem 5.7 (Estimates on the eigenvalues). Let N ∈ N∗ and d ≥ N . Let EηM be an eigenvalue
of the variational approximation of (5.2) in a basis of M plane-waves and for a cut-off radius
0 < η ≤ η0, and let E be the corresponding exact eigenvalue. There exists a constant C > 0
independent of η and M such that for all 0 < η ≤ η0 and M ≥ 1

η

|EηM − E| ≤ C
(
η4N∧10

M
+ 1
η2d−2

1
M2d−1

)
. (5.5)

Remark 5.8. The estimate (5.5) does not seem optimal as shown in Figure 10. It seems that
singularities of any order can be removed by the VPAW method.
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6 Numerical tests
The goal of this section is to compare the theoretical estimates determined in Sections 3 and 4
to numerical simulations and show that they are optimal.

All numerical simulations are carried out with Z0 = Za = 10 and a = 0.4. The Fourier
coefficients are evaluated by a very accurate numerical integration.

It is interesting to compare the results (Figure 1) obtained by a direct expansion of the wave
function ψ (here displayed by the points N = 0) and the VPAW method. Recall that N is the
number of pseudo wave functions used to build the operator T . The smoothness of the pseudo
wave functions is set to d = N .

(a) Error on the 8-th eigenvalue for M = 64
basis functions

(b) Error on the 8-th eigenvalue for M = 256
basis functions

Figure 1: The VPAW method compared to a direct calculation for the 8-th eigenvalue

Given a number M of basis functions, the VPAW method is much more accurate than the
direct method although it is quite sensitive to the choice of η. More comments on this behavior
will be made in Section 6.3. We do not report the computing times for the VPAW method
because in this study, each time a simulation is run, we generate all the pseudo wave functions
φ̃, the projector functions p̃ and compute their Fourier coefficients. In practice, these data are
precomputed and stored in a file. Thus, the only additional cost compared to the direct method
comes from the assembly of the matrices (Id + T )∗H(Id + T ) and (Id + T )∗(Id + T ).

6.1 Derivative jumps

Since ψ and the functions φi are known analytically, it is possible to evaluate the derivative
jumps of ψ̃ at 0 and ±η (Figures 2 and 3). The plots are given for the eigenfunction associated
to the lowest eigenvalue of H. The behavior is similar for other eigenfunctions.
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(a) First derivative jump at 0 as
a function of η in log-log scale
(d = N).

(b) d-th derivative jump at ±η as
a function of η in log-log scale
(N = 2).

Figure 2: Derivative jumps of the pseudo wave function ψ̃

N Numerics Theory
2 3.90 4
3 5.94 6
4 7.85 8
5 9.85 10

(a) Numerical and theoretical slopes for the first
derivative jump at 0.

d Numerics Theory
2 -1.005 -1
3 -2.000 -2
4 -3.000 -3
5 -4.000 -4

(b) Numerical and theoretical slopes for
the d-th derivative jump at ±η.

Figure 3: Comparison of the theoretical and numerical results for the derivative jumps

These numerical results are in remarkable agreement with Propositions 3.1 and 3.2.

6.2 Comparison of the PAW and VPAW methods in pre-asymptotic regime

The simulations are run for a fixed value of d = 6 and two different values of η (η = 0.1 and
η = 0.2). In Figure 4, E is the lowest eigenvalue of the 1D-Schrödinger operator H given by
(2.1).

Recall that our theoretical estimate on the eigenvalue given by the VPAW method is :

|EηM − E| ≤ C
(
η4N

M
+ 1
η2d−2

1
M2d−1

)
. (6.1)

To transpose the PAW method to our one-dimensional setting, we need to account for the
use of a pseudo-potential. For this purpose, we replace the Dirac delta potential by some smooth
function in Equation (2.1). We choose the 1-periodic function χε such that

χε(x) =


C
ε exp

(
− 1

1−(xε )
2

)
, x ∈ [−ε, ε],

0, x ∈ [−1/2, 1/2] \ [−ε, ε].

where C ensures that
∫ ε
−ε χε = 1. As ε goes to 0, χε converges to the 1-periodized Dirac potential

in H−1
per(0, 1).
As expected, the PAW method quickly converges to a wrong value of E. It is interesting

to notice that asymptotically, the VPAW convergence is of order O
(

1
M

)
but for small enough

values of M and η, the second term in the RHS of (6.1) dominates.
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Figure 4: Comparison between the PAW and VPAW methods for the lowest eigenvalue

6.3 Asymptotic regime

6.3.1 Behavior in the plane-wave cut-off M

The next numerical tests (Figures 5 and 6) are run with d = N and N = 2, N = 3. The pseudo
wave function ψ̃ is expanded in M = 2m plane-waves, m = 7 to 9.

(a) Error on the 9-th eigenvalue with N = 2 (b) Error on the 9-th eigenvalue with N = 3

Figure 5: Error on the eigenvalue for different values of M

Here, we can clearly see two regimes : for η small (resp. η large), the leading term in the
error is dominated by the d-th derivative jumps at k ± η and k + a ± η, k ∈ Z (resp. the first
derivative jump at k and k + a, k ∈ Z). In each regime, the gaps between the decreasing and
increasing slopes seem constant and their evaluation gives the correct orders of convergence in
M (see Figure 6).
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Numerics Theory
Decreasing lines 0.30 log(2) ' 0.30
Increasing lines 0.90 3 log(2) ' 0.90

(a) Gaps for N = 2

Numerics Theory
Decreasing lines 0.32 log(2) ' 0.30
Increasing lines 1.50 5 log(2) ' 1.50

(b) Gaps for N = 3

Figure 6: Estimation of the order of convergence in M

6.3.2 Dependence of the convergence rate in η on N and d

In each graph of Figure 7, we have kept M constant to track the dependence of the convergence
rate in η. By Theorem 3.4, the logarithm of error on the eigenvalue is given by

log(EηM − E) = log(C) + log
(
η4N

M
+ 1
η2d−2M2d−1

)
.

Hence, when η is large, we have

log(EηM − E) ' log(C) + 4N log η − log(M),

and when η is small, we have

log(EηM − E) ' log(C)− (2d− 2) log η − (2d− 1) logM.

(a) Error on the 8-th eigenvalue with N = 2,
M = 256

(b) Error on the 8-th eigenvalue with N = 3,
M = 128

Figure 7: Error on the eigenvalue for different values of d

Notice that in each graph, for η large, the parameter d has a negligible effect on the error
on the eigenvalues, in agreement with our theoretical estimates.

d Numerics Theory
2 6.5 8
3 6.9 8
4 7.2 8

(a) N = 2

d Numerics Theory
3 10.6 12
4 10.7 12
5 10.9 12

(b) N = 3

Figure 8: Estimation of the increasing slopes in Figure 7

There is a small discrepancy between the theoretical and numerical values of the increasing
slope. A possible explanation could be that the estimates we have given for the first derivative
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d Numerics Theory
2 -1.6 -2
3 -3.6 -4
4 -6.0 -6

(a) N = 2

d Numerics Theory
3 -3.8 -4
4 -5.4 -6
5 -7.8 -8

(b) N = 3

Figure 9: Estimation of the decreasing slopes in Figure 7

jumps are valid asymptotically as η goes to 0, but the increasing slopes are observed for relatively
large values of η.

For the decreasing slopes, our estimate is in very good agreement with the numerical simu-
lations.

6.4 Perturbation by a continuous potential

In this subsection, we study the VPAW method applied to the Hamiltonian (5.1) with
W (x) = 10 sin(2πx + 0.2). Since this model is not exactly solvable, we use a P2 finite ele-
ments method to compute very accurately the eigenvalues (the relative error on the computed
eigenvalue is less than 10−10).

Figure 10: Error on the first eigenvalue as a function of η (M = 128, d = 4)

N Numerics Theory
2 8.2 8
3 12 10

(a) Increasing slopes

Numerics Theory
N = 2 and N = 3 -5.7 -6

(b) Decreasing slopes

Figure 11: Estimation of the slopes in Figure 10

For N = 3, the increasing part of the curve has a slope which is very close to the theoretical
estimation of Theorem 3.4 (that is withW = 0). This seems to indicate that the VPAW method
removes the singularity at the nucleus up to the fifth order, but we are unable to support this
observation with rigorous numerical analysis arguments.
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