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Abstract: the chord length distribution (CLD) and its nth moments ( 4n ≤ ) have been 

calculated for a set of 3D-convex bodies. From these data, an empirical relation between the 

CLD moments and the Minkowski functionals is proposed for the second and third order CLD 

moments based on the Cauchy formula initially established for the first and fourth order 

moments in three-dimensional space. The approximation is improved by considering an 

additional parameter as the number of body vertices. Moreover it is shown that the data set 

and the empirical expression respect the inclusion inequalities recently found by L. Heinrich 

(Applied Mathematical Sciences, 8(2014)8257-8269). 
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1. Introduction 

Chord Length Distribution appears in the modelling of the interaction between 

electromagnetic waves and matter. Applications can be found in the field of radiology, 

dosimetry [1] and particle sizing [2-3]. Analytical calculations of CLD have been achieved for 

numerous 2D and 3D particle shapes by different investigators: disc, triangle, rectangle, 

regular polygon [4,5], sphere, hemisphere [6], cylinders of various cross sections [7-8], 

spheroids [9], polyhedron [10-11]. 

CLD have been intensively studied by researchers in the field of the small angle scattering 

using X-rays (SAXS) [2]. Therefore we may compile the main results of the literature 

especially these ones concerning the SAXS theory. From these data, common characteristics 

of CLD may emerge. Moreover, additional properties have been discovered by the 

mathematicians. In the following, the CLD will be denoted ( )lD l  where l is the chord length. 

We may consider the CLD of any convex body as the CLD of an equivalent spheroid or 

ellipsoid, i.e. a body with a smooth shape, modified by specific geometrical features. The 

latter ones are important for the shape of the CLD curve. They consist in flat faces as 

crystal facets, parallel (flat or curved) surfaces, parallel tangent planes, edges and corners. 

They correspond to discontinuities of the distribution density or its derivative. 

We begin by investigating the effect of the curvature on CLD. For a convex body with a 

smooth surface the series expansion of CLD around l=0 does not contain even terms. The 

first order term is an explicit function of the mean principal curvatures of the body [12-13]. 

Chords intersect the surface at two points in a convex body; some chords are perpendicular to 

the tangent planes at the two end points and thus the latter ones are parallel. These chords are 

termed extremal chords. For instance, spheroids have two extremal chords: one for l=2a and 
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the other for l=2b, a and b being the semi-axes. A discontinuity of ( ) /ldD l dl  will occur at 

these values. Wu and Schmidt [14] have investigated the properties of ( )lD l  when the chord 

is in the neighbourhood of an extremal chord. They give expressions for ( )lD l  around the 

extremal chord values denoted L. They show that ( )lD l  is continuous for l=L whereas 

( ) /ldD l dl  is not. Ciccariello [15-17] generalized the work of Wu and Schmidt: he considers 

the property of parallelism between some parts of body boundaries. He studied the case where 

the locus of the extremal chord ends is a surface. For instance, this surface is a sphere for 

l=2R if the particle is a sphere with radius R. One can show that ( )lD l  becomes discontinuous 

for this chord length value. If the parallelism occurs between two partial surfaces of the body, 

a discontinuity of ( )lD l  occurs at l=L, L being the distance between the two parallel surfaces. 

The contribution of the parallelism to ( )lD l  for l L→  is given by Ciccariello. The presence 

of edges leads to additional terms for ( )lD l  at l=0. Ciccariello et al. [16, 19] and Sobry et al. 

[18, 20] have shown that ( )0lD  is a simple function of the dihedral angle and of the edge 

length. All the edges contribute to ( )0lD . Edges (and corners) also contribute to 
0

( ) /l l
dD l dl

=
 

[21]. However, it seems difficult to systemize this contribution. 

These features may constitute a rule set for building an approximate CLD of a given 

convex body [22]. It results that the variation of the chord length density against the chord 

length may be very non monotonic. At the same time, some of the previous authors have 

calculated the moments of such CLD (see for instance [1] for spheroids). General formula, 

called Cauchy formula, had been previously established by mathematicians [23]. They 

concern the first and the fourth CLD moments in the case of 3D body. These are expressed 

as a function of the volume and the surface area of the body. However there exists no such 

formula for the second and the third CLD moments. Whereas CLD is a characteristic of the 

body under the stochastic geometry, first and fourth moments are a function of quantities 
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issued from integral geometry [24]. So, surface area and volume are the simplest 

components of a parameter set known as scalar Minkowski functionals (MF). The latter 

constitute a complete set of descriptors as shown by Hadwiger [25]: any valuation of a 

convex body respecting certain mathematical properties, i.e. additivity, translation and 

rotation invariance, continuity, is a linear combination of the MF’s. In 3D space, the four 

scalar Minkowski functionals are proportional to the surface area, the volume and the mean 

and Gaussian curvatures [26, 27]. It is clear that the CLD’s, and then their moments, do not 

respect the additivity property that would 

be: [ ] [ ] [ ] [ ]1 2 1 2 1 2l l l lD K K D K D K D K K∪ = + − ∩ . As a consequence, CLD moments 

cannot be written as a linear combination of MF’s. 

Voss and Cruz-Orive [28] have studied the second moment of the random measure of the 

intersection between a compact set and a geometric probe, e.g. point, line or line segment. 

More specifically, they propose an analytical expression between the second moment of 

CLD and the geometric covariogram of the body. Heinrich [29-31] has considered the 

second-order moments of CLD for various bodies in any space dimension. He was 

precisely interested in searching lower and higher bounds, i.e. inclusion inequalities, for 

CLD moments. The so determined bounds are function of the volume, surface area and 

mean curvature of the body [31].   

The aim of this paper is to examine the relation between CLD moments and scalar 

Minkowski’s functionals. This problem will be tackled from the point of view of 

physicists. It is restricted to 3D bodies. Previous cited studies have shown that no rigorous 

equations link the second and third moments of CLD to MF’s; only inclusion inequalities 

have been derived. As a consequence, our goal is to propose an approximate expression 

between CLD’s moments and MF’s issued from the analysis of data set, obtained for 

various body classes.    
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The paper is organized as follows: section 2 specifies the selected body classes, the 

methods used for calculating CLD moments and MF’s, the generated data set. Section 3 

analyses the data and builds step by step the approximate expression linking CLD 

moments and MF’s. Section 4 concludes the paper. 

 

2. Tools and methods for data generation 

Several shape sets have been considered: sphere (radius R), cylinders (base radius R, height 

H), ellipsoids (semi-axes A, B, C), parallelepipeds (edge lengths A, B, C), triangular pyramids 

(edge length A, height H) triangular bipyramids (edge length A, height H), triangular prism 

(edge length A, height H), octahedron. All these bodies are convex; certain (sphere, 

ellipsoids) are smooth whereas the others are facetted and have linear or circular edges and 

corners. The aspect ratio is within the [0.05; 1] range. The CLD moments and the Minkowski 

functionals of these bodies have been calculated by the procedures described in sub-sections 

2.1 and 2.2. 

 

2.1. Calculation of the CLD moments 

Our work focuses on CLD calculations with 3D uniform flow of lines.  

Throughout the paper and the literature, the chord length distribution (density) is written 

( )lD l  where max0 l l≤ ≤ . ( )lD l dl  is the number of chords within the l-range [ ],l l dl+ . ( )lD l  

is usually presented as normalized, i.e ( )
max

0

1
l

lD l dl =∫ . 

A software based on a Monte Carlo algorithm was employed to generate an isotropic uniform 

random line across the geometric object, and to collect the chord length segments. The same 

framework for the Monte Carlo Simulations (MCS) of the different particle shapes has been 

used. 
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Consider a sphere with radius RMC larger than lmax/2 and its centre located at the origin of the 

coordinate system. The body is located inside this sphere and its centre of mass matches the 

origin. The way used to define the random straight line is the following: A direction and a 

point belonging to the plane orthogonal to that direction and tangent to the sphere are 

considered. The coordinate system of the plane is composed of the point of tangency and the 

vectors from the usual spherical coordinate system. The line will be defined by the two angles, 

polar θ and azimuthal φ, and the two coordinates xP, yP of the point in the plane. Four random 

numbers [32] are chosen for the values of the variables cosθ, φ, xP and yP. The line intersects 

the sphere at two points denoted M1 and M2. This algorithm is known to provide a translation 

and rotation invariant density [33]. 

Depending on the body, the straight line between M1 and M2 may intersect the particle 0 or 2 

times. The intersection points will be analytically determined and the corresponding distances 

calculated.  

The MC sampling distribution may be visually represented as a discrete probability histogram. 

The chord length between zero and the maximal possible length, i.e. 2RMC, is divided on m-

bins with the equal size of ∆l. The value of m is has been taken to 400. All simulation runs 

have been carried out by generating 108 unbiased random lines. Only a smaller number Nl 

lines cross the body. The sampling error is smaller than 10-4. 

As already mentioned, the CLD is usually presented as normalized: 

( ) ( )/l i iD l N Nl l= ∆  

where Ni is the number of chord with the length li ( ( )1/ 2il i l= − ∆ ). 

The nth moments Mn of the CLD are calculated from the expression: 

( )
1

m
n

n i l i
i

M l D l l
=

= ∆∑  
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2.2. Calculation of the Minkowski functionals 

We consider in this paper convex bodies. Integral geometry introduces scalar Minkowski 

Functionals (MF) as shape measures. The body K is a compact set bounded by a surface K∂ . 

The four Minkowski functionals are defined by: 

( )0

V

W K V dV= = ∫           (1) 

( )1

1

3 3K

S
W K dA

∂

= =∫           (2) 

( )2 2

1

3 K

W K G dA
∂

= ∫           (3) 

( )3 3

1

3 K

W K G dA
∂

= ∫           (4) 

V and S are the volume and the surface area of the body. The mean and Gaussian curvatures 

on K∂  are G2 and G3, respectively. They obey the relations: 

( )2 1 2 / 2G k k= +           (5) 

3 1 2G k k=            (6) 

k1 and k2 are the principal curvatures on K∂ . The previous relations can be straightforwardly 

applied for smooth bodies. If the body has edges or corners, the MFs are calculated from the 

Steiner’s formula [26] that relies the volume of the dilated body K Bε⊗ to the dilation factor ε 

by means of a polynomial: 

( ) ( ) ( ) ( ) ( )2 3
0 0 1 2 33 3W K B W K W K W K W Kε ε ε ε⊗ = + + +      (7) 

Bε  is a ball with radius ε. 

For each selected body, one calculates the area, the volume, the W2 and W3 values, the CLD 

moments of order 1, 2, 3 and 4. 

So, we have for W2: 
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2

4

3
W R

π=  for sphere         (8) 

( )2 3
W H R

π π= +  for cylinder        (9) 

( )2 3
W A B C

π= + +  for parallelepiped       (10) 

For ellipsoids, W1 and W2 can be obtained from data compiled by Wolfram [34] and Rivin 

[35]. 

For polytopes, a dedicated software based on equation (7) has been used for calculating W0, 

W1 and W2. 

As we are only dealing with bodies with convex hull and no holes, W3 is equal to 

4 / 3π following the Gauss-Bonnet theorem. Therefore W3 is not a relevant parameter for the 

shape set studied herein. 

 

2.3 Data set 

The table 1 contains the raw data after applying the methods depicted in subsections 2.1 and 

2.2. The geometrical parameters of the bodies are dimensionless. The maximum length lmax of 

the bodies is smaller than 4. The radius RMC of the sphere enclosing the body is therefore 

taken equal to 2. As the CLD is defined as normalized, the moment with null order M0 is 

equal to 1 for any body. 
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N shape Geometrical 

characteristics 

S=3W1 V=W0 W2 M1 M2 M3 M4 

1 sphere R=1 12.57 4.189 4.189 1.333 2 3.2 5.332 

2 cylinder R=1  H=1 12.57 3.1416 4.337 1 1.294 1.893 2.994 

3 cylinder R=1  H=2 18.85 6.283 5.384 1.334 2.236 4.119 8.003 

4 cylinder R=0.5  H=2 7.854 1.571 3.739 .8 .8019 .924 1.2 

5 cylinder R=0.2  H=2 2.765 0.2513 2.752 .3638 .1682 .102 .0873 

6 cylinder R=1  H=0.1 6.911 0.3142 3.395 .1818 .0605 .0444 .0542 

7 spheroid A=2  B=1  C=1 21.48 8.377 5.788 1.561 2.831 5.696 12.48 

8 spheroid A=1  B=2  C=2 34.69 16.75 7.165 1.933 4.410 11.22 30.95 

9 spheroid A=2 B=0.2 

C=0.2 

3.966 0.335 4.32 .3383 .15 .0975 .1076 

10 spheroid A=2  B=2  

C=0.2 

25.89 3.351 6.617 .5181 .4676 .7358 1.661 

11 Parallelepiped A=1  B=1  C=1 6 1 3.1416 .6663 .5972 .5985 .6358 

12 parallelepiped A=2  B=1  C=1 10 2 4.189 .8009 .8712 1.097 1.533 

13 parallelepiped A=2  B=2  

C=0.5 

12 2 4.712 .6663 .6423 .8162 1.2738 

14 parallelepiped A=2  B=1  

C=0.5 

7 1 3.665 .5716 .4568 .4552 .5461 

15 parallelepiped A=3  B=0.3 

C=0.3 

3.78 0.27 3.770 .2856 .1162 .07 .0735 

16 octahedron Regular A=1 3.464 0.4714 2.4619 .5443 .3825 .2976 .245 

Table 1: Minkowski functionals and CLD moments of various bodies. 
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N shape Geometrical 

Characteristics 

S=3W1 V=W0 W2 M1 M2 M3 M4 

17 Tetrahedron Regular A=1 1.732 0.118 1.911 .2722 .1117 .0553 .0306 

18 T-pyramid A=1  H=3 4.9538 0.433 4.008 .3495 .1966 .1482 .1448 

19 T-pyramid A=2  H=2/3 4.3778 0.3849 3.2362 .3517 .2005 .1477 .1293 

20 T-prism A=1  H=1 3.866 0.433 2.618 .4481 .2904 .2213 .1854 

21 T-prism A=1  H=3 9.866 1.299 4.7124 .5266 .4217 .4540 .6531 

22 T-prism A=2  H=0.3 5.2641 0.5196 3.4558 .3949 .2318 .1875 .1959 

23 T-prism A=1/4  H=3 2.3041 0.0812 3.5343 .141 .0317 .0124 .0113 

24 T-bipyramid A=1  H=1.633 2.5981 0.2357 2.2505 .3629 .1910 .1187 .0817 

25 T-bipyramid A=2  H=0.3266 3.6 0.1886 3.1453 .2095 .0820 .0482 .0376 

26 T-bipyramid A=1/4  H=3.266 1.2259 0.0295 3.439 .0962 .0164 .0049 .0029 

27 T-bipyramid A=1/4  H=2.041 0.7674 0.0184 2.1676 .0961 .0159 .0041 .0017 

28 T-bipyramid A=3  H=0.245 7.8718 0.3182 4.7131 0.1617 .0607 .0442 .0492 

 

Table 1 (con’t): Minkowski functionals and CLD moments of various bodies. 
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3. Analysis and discussion 

3.1 Introduction 

The mean chord length of a convex body is related to V and S by means of the first Cauchy 

formula: 

1

0

4 /
M

l V S
M

= =           (11) 

The second Cauchy formula refers to the 4th moment: 

2
4 4

0

12M V
l

M Sπ
= =           (12) 

The figure 1 presents the comparison between the Cauchy l  value (Eq.11) and the MCS l  

value for the first order moment. This has been performed for the 28 selected bodies. The 

deviation is smaller than 10-3 except for one triangular bipyramid for which the deviation is 2 

10-3. The figure 2 presents the comparison between the Cauchy 4l value (Eq.12) and the MCS 

4l value for the 4th moment. The deviation is smaller than 310-3 except for the most elongated 

triangular bipyramids and prisms for which the relative deviation may reach 0.06 (the dot 

corresponding to the body 26 is not represented on the figure 2). Considering all the selected 

bodies, the mean deviation is equal to 0.013. The larger deviation for the 4th moment is due to 

an amplification of the MCS error related to the l-exponent in the moment expression. 

Looking for an approximate expression between the nth moment and Minkowski functional, a 

first approach consists in evaluating the dimensionless ratio 1 /n
nM M (Eqs.11-12). For the 

selected bodies, 2
1 20.43 / 0.9M M< < , 3

1 30.10 / 0.74M M< < , 4
1 40.015 / 0.595M M< < . One 

may conclude that ( )0/ 4 /
n

nM M V S=  does not hold. Note that 1 /n
nM M  is always smaller 

than one. 
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As there are three non constant Minkowski functionals, i.e. W0=V, W1=S/3, W2 one may 

define two dimensionless shape parameters. There are several ways to define unscaled shape 

factors. We choose the two following quantities: 1/2
2 /C W S=  and 3/ 2/E V S= . The sphere is 

the body having the largest values of E and C parameters ( ( ) 1/ 2
36SE π −= ; ( )1/ 2

4 / 3SC π= ) 

while a very thin disc or cylinder have a null E parameter. It may be underlined that / SE E and 

/ SC C  are simply related to the parameters f1 and f3 respectively as used by Redenbach et al. 

[36]. 

 Knowing the CLD for a sphere, i.e. ( ) ( )2/ 2lD l l R= , the corresponding ratio 1 /n
nM M  obeys 

the expression: 

( ) ( )1 / 2 / 3 2 / 2
nn

S nSM M n= +         (13) 

It is the upper bound of 1 /n
nM M  among the convex bodies. 

From now on, we will consider the relation between the reciprocal dimensionless CLD 

moments ( ) ( )1 1/ / /n n
n S nSY M M M M=  and / SE E  and / SC C . These three quantities are 

within the range [0; 1]. The value 1 corresponds to the sphere. 

 

3.2. Preliminary study 

Firstly one consider a set of 16 spheroids prolate ( ), ,a b b  and oblate ( ), ,a a b  with 

1<a/b<128 and a set of 16 cylinders long and flat with 1/128<H/2R<128. Moments have 

been calculated from analytical CLD’s from Gille [2]. We have selected these bodies for the 

following reasons: 

- Availability of analytical expressions for  CLD 

- Comparison of smooth bodies (spheroids) with facetted bodies (cylinders) 
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- Accurate calculation of distribution moments for bodies with strong geometric 

anisotropy (e.g. discs and needles) 

Calculation of the moments of the analytical CLDs needs a numerical integration. It has been 

checked that the zeroth order moment of the normalized CLD is equal to 1 and that the first 

order moment obeys the Cauchy formula (Eq.11). 

The figure 3 represents Y against the ratio / SE E ( )1 4n≤ ≤ . The dots for n=1 are trivial 

( 1 / 1n
nM M = ). One may observe that: 

- The curves for spheroids and cylinders are very close 

- The curve for n=4 is monotonous. It is a consequence of the Cauchy’s formula that can be 

expressed for any convex body: ( )2
/ SY E E= . 

- The curves for n=2 and n=3 present two branches, one for elongated spheroids or cylinders 

and one for flat spheroids or cylinders. As a consequence, / SE E  may not be the only variable 

determining Y. The behaviour of extreme cases (very thin disc and very long needle) suggests 

that the relevant variable could be ( ) ( )/ /S SX E E C C
α β= . The figure 4 represents Y versus 

this new variable X. The standard deviation σ (i.e. the root mean square relative deviation) 

calculated from the data corresponding to the N=32 spheroids and cylinders, is defined as  

( ) ( )( )2

1,

1 / / / /i S i S i
i N

E E C C Y N
α βσ

=

= −∑        (14) 

The (α, β) values, corresponding to the smallest σ, are gathered in the table 2; they depend on 

the moment order n: ( ) ( ), ,n nα β α β= . However, the peculiarity of the CLD function for the 

highest values of chord length in the case of very elongated cylinders leads to a small 

deviation from Cauchy formula (Eq.12) caused by a tricky numerical integration. The relative 
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deviation 
2

0

4

12
1

MV

S Mπ
−  remains smaller than 0.03 for the cylinder with h/2R=128. Therefore 

the σ value for n=4 (Table 2) is not equal to 0. 

 

n / (α,β) α β σ 

1 0 0 0 

2 0.30 0.225 0.05 

3 1.05 0.525 0.06 

4 2 0 0.005 

 

Table 2: exponents (α,β) in ( ) ( )/ /S SX E E C C
α β=  for the nth moments. cylinders and 

spheroids (analytical CLD). σ is the standard deviation (see text). 

 

This leads to the following approximate expression for spheroids and cylinders: 

( ) ( ) ( ) ( )1 1/ / / / /n nn n
n S nS S SY M M M M E E C C

α β= =       (15) 

Our results may be compared with the inclusion inequalities of Heinrich [31] in the case of 

three-dimensional space. He proposed two inclusion expressions ((15) and (17) in [31]) that 

are conjectures. The difference between the two expressions is located in the lower bound: 

one (Eq.15) is expressed by means of the volume and the surface area whereas the other one 

(Eq.17) is a function of the mean breadth ( 23 / 2W π= ). If one writes the Heinrich’s equations 

(hereinafter denoted 15-Heinrich and 17-Heinrich) by means of the variables / SE E  and 

/ SC C , they become: 
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( ) ( )2 1 /3
/ 1

n

n Sw E E Y
− ≤ ≤  (15-Heinrich)       (16) 

and 

( ) ( ) ( ) ( )2 1 /3 2 4
/ / /

n n n

n S n S Sw E E Y v E E C C
− − −≤ ≤  (17-Heinrich)    (17) 

With 

( )43 / 4n
n nv uπ−=           (18) 

( ) ( ) ( )2 1 /34 /3
3 3 4 /

nn
n nw uκ π

− −− −=         (19) 

And 

2 2

2 3 3

2
3

3

nn
n

n
n

u
κ κ

κ κ κ κ
+  

=  
 

           (20) 

and  

( )/ 2 / 1 / 2m
m mκ π= Γ +          (21) 

In this new formulation, the lower bounds are the same for (15-Heinrich) and (17-Heinrich), 

whereas the upper bounds are different. Following Heinrich ([31], page 8266), (15-Heinrich) 

should be used as an optimal upper bound for n=2 and (17-Heinrich) for n=3. This conjecture 

is well verified for spheroids and cylinders for n=2 (Figure 5a) and n=3 (Figure 5b). In the 

figures 5a-b, the red dots correspond to the raw values ( , ,i i iE C Y ) for each body. The 

approximation (Eq.15) corresponds to the bisector in the X-Y graph. The two branches of the 

lower and upper bounds correspond to prolate and oblate spheroids (long and flat cylinders). 

 

3.3. Behaviour of bodies with any shape 

The set of bodies described in section 2 is now considered. Table 1 contains all the raw data 

concerning these bodies: 10 spheroids and cylinders, 18 facetted bodies. CLD moments are 

calculated from CLD obtained by MCS. We will separately examine the set of facetted bodies.  

The figure 6 represents the dimensionless moments Y versus the variable X for this set by 
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keeping the ( ),α β  parameters values reported in table 2. The standard deviation σ is equal to 

0.14 (n=2) and 0.167 (n=3). This large deviation does not correspond to a statistical 

scattering, but to a deterministic shift of the curve. This concerns all the dots in the graph. In 

order to identify the cause of this discrepancy, the ratio Y/X for all the bodies, including 

spheroids and cylinders, has been reported in the figure 7a. Y is obtained by MC simulations. 

We may see the relationship between this ratio and the type of body shape. We suggest that 

this observation is due to the presence of edges and the vertices in the facetted bodies and we 

retain as relevant additional parameter the number of vertices Nc. It must be kept in mind that 

the vertices do not contribute to W2. Figure 7b represents Y/X versus 1
cN − . It can be seen that 

Y/X is roughly a decreasing function of 1
cN − . Moreover, the results for the 3rd order moment 

are close to the ones for the 2nd order moment. So, a corrected expression 15 is considered: 

( ) ( ) ( )( ) ( )1 1/ / / / /n nn n
n S nS c S SY M M M M f N E E C C

α β= =      (22)  

The function f has to fulfil the following requirements: 

- The Cauchy formula are respected: ( ) 1cf N =  for n=1 and n=4 

- ( ) 1cf N =  for bodies without corner (spheroids and cylinders) ; these bodies will be 

considered as polyhedra with an infinite number of vertices  

- ( ),n nα β  are the same for any convex body. 

We choose the following expression for f: 

( ) ( )( )1 1 4 /c cf N n n A N= + − −         (23) 

A is a fitting parameter. 

The standard deviation corresponding to the set of facetted bodies becomes equal to 0.043 

(n=2) and 0.064 (n=3) for A=0.4 (Table 3). The standard deviation for the whole set of bodies 

studied by MCS is 0.043 (n=2) and 0.06 (n=3) for A=0.4.  
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n / (α,β) α β σ   
(18) Facetted 
bodies 
deviation 

from Eq. 15 

σ   
(18) Facetted 
bodies 
deviation from 
Eqs 22-23 

σ   
All (28) bodies 
deviation from 
Eqs 22-23 

1 0 0 0 0 0 

2 0.30 0.225 0.14 0.043 0.043 

3 1.05 0.525 0.167 0.064 0.06 

4 2 0 0.013 0.013 0.013 

 

Table 3: exponents (α,β) in ( ) ( )/ /S SX E E C C
α β=  for the nth moments. bodies from Table 1 

(CLD from MCS). Standard deviation σ  related to different models (Eq.15 and Eqs.22-23). 

 

The present results have been compared with the inclusion inequalities of Heinrich in figures 

8a (n=2) and 8b (n=3). The red dots correspond to the raw values (, ,i i iE C Y ) for each body. 

Our results are yet consistent with the findings of Heinrich.  

 

4. Conclusion 

We have shown that the CLD moments are related to the Minkowski functionals by means of 

an empirical expression. However, if this approximation works reasonably well for rounded 

bodies, it is less applicable to polytopes. A better approximation must consider an additional 

parameter as the vertex number of the body. As a consequence, we propose a simple empirical 

expression relating Mn to n, S, V, W2, Nc that represents MCS data with an accuracy of 5%. 

CLD is a non monotone function; it can have discontinuities. So, it is not so surprising that 

the Minkowski functional set is not sufficient to represent the CLD moments. As it is, we 



 18

have no explanation about the form of the empirical expression and the values of the fitting 

parameters ( , ,n n Aα β ) as well. This is a challenging task to give answers to these questions. 

At this stage the empirical expression can be only used to evaluate the second and third order 

CLD moments of convex bodies for practical applications. 

 

Acknowledgments: The authors would like to thank the professor Debayle for his valuable 
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Figure 1: CLD 1st order moment; ratio between Cauchy value and the one coming from Monte 

Carlo Simulation versus the number N of the body; the numbering corresponds to the raw 

position in table 1. 
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Figure 2: CLD 4th moment; ratio between Cauchy value and the one coming from Monte 

Carlo Simulation versus the number N of the body; the numbering corresponds to the raw 

position in table 1. 
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Figure 3: ratio ( ) ( )1 1/ / /n n
n S nSY M M M M=  versus / SE E ; n is the order of the moment; n=1, 

2, 3 or 4. + corresponds to cylinders, o corresponds to spheroids. n=1: black; red: n=2; blue: 

n=3; green: n=4. 
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Figure 4: ratio ( ) ( )1 1/ / /n n
n S nSY M M M M=  versus ( ) ( )/ /S SX E E C C

α β= ; n is the order of 

the moment; n=2,3 or 4; red,+: n=2; blue,x: n=3; green,o: n=4. Cylinders and Spheroids. (α,β) 

from table 2. 
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Figure 5a: ratio ( ) ( )1 1/ / /n n
n S nSY M M M M=  versus ( ) ( )/ /S SX E E C C

α β= ; n is the order of 

the moment; n=2. + corresponds to cylinders, o corresponds to spheroids. red: this work; 

black: lower bound (Heinrich [31], Eq.15-17); blue: upper limit. (Heinrich [31], Eq.17); 

green: upper limit. (Heinrich [31], Eq.15) 
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Figure 5b: ratio ( ) ( )1 1/ / /n n
n S nSY M M M M=  versus ( ) ( )/ /S SX E E C C

α β= ; n is the order of 

the moment; n=3. + corresponds to cylinders, o corresponds to spheroids. red: this work; 

black: lower bound (Heinrich [31], Eq.15-17); blue: upper limit. (Heinrich [31], Eq.17); 

green: upper limit. (Heinrich [31], Eq.15) 
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Figure 6: ratio ( ) ( )1 1/ / /n n
n S nSY M M M M=  versus ( ) ( )/ /S SX E E C C

α β= ; n is the order of 

the moment; n=2,3 or 4; red,+: n=2; blue,x: n=3; green,o: n=4. Facetted bodies from Table 1.   
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Figure 7a: Y(MCS)/X versus the number of the body : N=1(sphere); N=2-6(cylinders); N=7-

10(spheroids); N=11-15(parallelepipeds); N=16(octahedron); N=17-19(pyramids); N=20-

23(prisms); N=24-28(bipyramids). * black: n=2; + red: n=3. 
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Figure 7b: Y(MCS)/X versus the reciprocal of vertex number : * black: n=2; + red: n=3. The 

dots for n=3 are shifted to the right for greater clarity. The second column, shifted to the right 

for greater clarity, corresponds to cylinders. 
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Figure 8a: ratio ( ) ( )1 1/ / /n n
n S nSY M M M M=  versus ( ) ( )/ /S SX E E C C

α β= ; n is the order of 

the moment; n=2. bodies from table 1. red: this work; black: lower bound (Heinrich [31], 

Eq.15-17); blue: upper limit. (Heinrich [31], Eq.17); green: upper limit. (Heinrich [31], Eq.15) 
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Figure 8b: ratio ( ) ( )1 1/ / /n n
n S nSY M M M M=  versus ( ) ( )/ /S SX E E C C

α β= ; n is the order of 

the moment; n=3. Bodies from table 1. red: this work; black: lower bound (Heinrich [31], 

Eq.15-17); blue: upper limit. (Heinrich [31], Eq.17); green: upper limit. (Heinrich [31], Eq.15) 

 

 

 

 

 


