N

N

Chord Length Distribution: relationship between
Distribution Moments and Minkowski Functionals
Frédéric Gruy

» To cite this version:

Frédéric Gruy. Chord Length Distribution: relationship between Distribution Moments and
Minkowski Functionals . 2017. hal-01637703

HAL Id: hal-01637703
https://hal.science/hal-01637703v1

Preprint submitted on 17 Nov 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01637703v1
https://hal.archives-ouvertes.fr

Chord Length Distribution: relationship between

Distribution Moments and Minkowski Functionals

Frédéric Gruy

Ecole Nationale Supérieure des Mines, 158 Coursiétad2023, Saint-Etienne, France
gruy@emse.fr

Phone: 0033477420202

Corresponding author

Keywords: Chord Length Distribution, Minkowski'srfationals, Integral Geometry, Monte

Carlo Simulation, Electromagnetic Wave Scattering

Abstract: the chord length distribution (CLD) and it" moments fi<4) have been
calculated for a set of 3D-convex bodies. Fromehdsta, an empirical relation between the
CLD moments and the Minkowski functionals is progm$or the second and third order CLD
moments based on the Cauchy formula initially dsthéd for the first and fourth order
moments in three-dimensional space. The approximaits improved by considering an
additional parameter as the number of body vertiseseover it is shown that the data set
and the empirical expression respect the inclugiegualities recently found by L. Heinrich

(Applied Mathematical Sciences, 8(2014)8257-8269).



1. Introduction

Chord Length Distribution appears in the modelli§ the interaction between
electromagnetic waves and matter. Applications banfound in the field of radiology,
dosimetry [1] and particle sizing [2-3]. Analyticedlculations of CLD have been achieved for
numerous 2D and 3D particle shapes by differenestigators: disc, triangle, rectangle,
regular polygon [4,5], sphere, hemisphere [6], ndéirs of various cross sections [7-8],
spheroids [9], polyhedron [10-11].

CLD have been intensively studied by researcheihenfield of the small angle scattering
using X-rays (SAXS) [2]. Therefore we may compilee tmain results of the literature
especially these ones concerning the SAXS theapmRhese data, common characteristics
of CLD may emerge. Moreover, additional propertieave been discovered by the

mathematicians. In the following, the CLD will bertbtedD, (I) wherel is the chord length.

We may consider the CLD of any convex body as th® Gf an equivalent spheroid or
ellipsoid, i.e. a body with a smooth shape, moditiy specific geometrical features. The
latter ones are important for the shape of the Glubve. They consist in flat faces as
crystal facets, parallel (flat or curved) surfagesrallel tangent planes, edges and corners.
They correspond to discontinuities of the distritnitdensity or its derivative.

We begin by investigating the effect of the curvatan CLD. For a convex body with a
smooth surface the series expansion of CLD ardafdioes not contain even terms. The
first order term is an explicit function of the nmearincipal curvatures of the body [12-13].
Chords intersect the surface at two points in aszerrbody; some chords are perpendicular to
the tangent planes at the two end points and tieifatter ones are parallel. These chords are

termed extremal chords. For instance, spheroids haw extremal chords: one for2a and



the other fol=2b, a andb being the semi-axe#\ discontinuity ofdD, (I)/dl will occur at
these values. Wu and Schmidt [14] have investigttedoroperties oD, (I) when the chord

is in the neighbourhood of an extremal chord. These expressions fob,(I) around the
extremal chord values denotéd They show thatD,(l) is continuous forl=L whereas
dD, (I)/dl is not. Ciccariello [15-17] generalized the workVdu and Schmidt: he considers
the property of parallelism between some partsodfylboundaries. He studied the case where
the locus of the extremal chord ends is a surf&oe.instance, this surface is a sphere for
I=2R if the particle is a sphere with radiRsOne can show thdD, (1) becomes discontinuous
for this chord length value. If the parallelism ocx between two partial surfaces of the body,
a discontinuity ofD, (I) occurs at=L, L being the distance between the two parallel sagfac
The contribution of the parallelism 0, (1) for | — L is given by Ciccariello. The presence
of edges leads to additional terms (1) atl=0. Ciccariello et al. [16, 19] and Sobry et al.

[18, 20] have shown théD, (O) is a simple function of the dihedral angle andh# edge

length. All the edges contribute @ (0). Edges (and corners) also contributel@ (1) /di| _

[21]. However, it seems difficult to systemize thantribution.

These features may constitute a rule set for mgldain approximate CLD of a given
convex body [22]. It results that the variationtloé chord length density against the chord
length may be very non monotonic. At the same tisoene of the previous authors have
calculated the moments of such CLD (see for ingtdhtfor spheroids). General formula,
called Cauchy formula, had been previously esthblisby mathematicians [23]. They
concern the first and the fourth CLD moments ind¢ase of 3D body. These are expressed
as a function of the volume and the surface areéaeobody. However there exists no such
formula for the second and the third CLD momentse¥éas CLD is a characteristic of the

body under the stochastic geometry, first and foambments are a function of quantities



issued from integral geometry [24]. So, surfaceaaend volume are the simplest
components of a parameter set known as scalar Misikofunctionals (MF). The latter
constitute a complete set of descriptors as shoyHRddwiger [25]: any valuation of a
convex body respecting certain mathematical pragseri.e. additivity, translation and
rotation invariance, continuity, is a linear comdtion of the MF’s. In 3D space, the four
scalar Minkowski functionals are proportional te $urface area, the volume and the mean
and Gaussian curvatures [26, 27]. It is clear tiatCLD’s, and then their moments, do not

respect the additivity property that would
be: D, [K, 0K,|=D/[K,]+D[K,]-D/[K,nK,] . As a consequence, CLD moments

cannot be written as a linear combination of MF’s.

Voss and Cruz-Orive [28] have studied the seconthemt of the random measure of the
intersection between a compact set and a geonetie, e.g. point, line or line segment.
More specifically, they propose an analytical esgren between the second moment of
CLD and the geometric covariogram of the body. Hen[29-31] has considered the
second-order moments of CLD for various bodies my apace dimension. He was
precisely interested in searching lower and hidhminds, i.e. inclusion inequalities, for
CLD moments. The so determined bounds are funafothe volume, surface area and
mean curvature of the body [31].

The aim of this paper is to examine the relatiotwben CLD moments and scalar
Minkowski’s functionals. This problem will be tagdd from the point of view of
physicists. It is restricted to 3D bodies. Previciied studies have shown that no rigorous
equations link the second and third moments of GLMF’s; only inclusion inequalities
have been derived. As a consequence, our goal psofmose an approximate expression
between CLD’s moments and MF’'s issued from the yamalof data set, obtained for

various body classes.



The paper is organized as follows: section 2 spcithe selected body classes, the
methods used for calculating CLD moments and M#fis, generated data set. Section 3
analyses the data and builds step by step the »x@pmate expression linking CLD

moments and MF’s. Section 4 concludes the paper.

2. Toolsand methods for data generation

Several shape sets have been considered: sphdnes(R), cylinders (base radius R, height
H), ellipsoids (semi-axes A, B, C), parallelepipgedge lengths A, B, C), triangular pyramids
(edge length A, height H) triangular bipyramidsdedength A, height H), triangular prism
(edge length A, height H), octahedron. All thesedibs are convex; certain (sphere,
ellipsoids) are smooth whereas the others aretéateind have linear or circular edges and
corners. The aspect ratio is within the [0.05;djge. The CLD moments and the Minkowski
functionals of these bodies have been calculatethéyrocedures described in sub-sections

2.1 and 2.2.

2.1. Calculation of the CLD moments
Our work focuses on CLD calculations with 3D unifoflow of lines.

Throughout the paper and the literature, the cHength distribution (density) is written

D, (1) whereO<lI<l,,. D, (I)dl is the number of chords within theange][l,I +dl]. D, (1)
Imax
is usually presented as normalized, !.eD, (d =1.
0
A software based on a Monte Carlo algorithm wasleysal to generate an isotropic uniform
random line across the geometric object, and tlectothe chord length segments. The same

framework for the Monte Carlo Simulations (MCS)tbé different particle shapes has been

used.



Consider a sphere with radifc larger than /2 and its centre located at the origin of the
coordinate system. The body is located inside splsere and its centre of mass matches the
origin. The way used to define the random stralgt® is the following: A direction and a
point belonging to the plane orthogonal to thateclion and tangent to the sphere are
considered. The coordinate system of the planengposed of the point of tangency and the
vectors from the usual spherical coordinate systm.line will be defined by the two angles,
polar & and azimuthalg and the two coordinates, ¥/ of the point in the plane. Four random
numbers [32] are chosen for the values of the bletaco®, @ x» andype. The line intersects
the sphere at two points denoted &d M. This algorithm is known to provide a translation
and rotation invariant density [33].

Depending on the body, the straight line betwegrahl M may intersect the particle 0 or 2
times. The intersection points will be analyticallgtermined and the corresponding distances
calculated.

The MC sampling distribution may be visually remmt®d as a discrete probability histogram.
The chord length between zero and the maximal blest&ngth, i.e. Ryc, is divided on m-
bins with the equal size dl. The value ofm is has been taken to 400. All simulation runs
have been carried out by generatind Lifibiased random lines. Only a smaller numiler
lines cross the body. The sampling error is smétian 10",

As already mentioned, the CLD is usually preseatedormalized:
D, (I;) =N, /(NI Al)
whereN; is the number of chord with the lendtlfl, = (i —=1/2)Al ).

The " momentaMl, of the CLD are calculated from the expression:



2.2. Calculation of the Minkowski functionals
We consider in this paper convex bodies. Integesdngetry introduces scalar Minkowski
Functionals (MF) as shape measures. The body K@ypact set bounded by a surfate.

The four Minkowski functionals are defined by:

W, (K)=V =]dv 1)
Wl(K)=%ajKdA=§ 2)
w(K) = [ G.0n @
V\é(K):%aj;ngA (4)

V andS are the volume and the surface area of the boldg.nean and Gaussian curvatures
on dK areG; andGsg, respectively. They obey the relations:

G, =(k,+k,)/2 (5)

G, =kk, (6)

ki andk; are the principal curvatures @K . The previous relations can be straightforwardly
applied for smooth bodies. If the body has edgesoaners, the MFs are calculated from the

Steiner’s formula [26] that relies the volume oé ttlated bodyK U B, to the dilation factoe

by means of a polynomial:

W, (K OB,) =W, (K)+3W,(K)e&+3aN,(K)e® +W,(K) & ()

B: is a ball with radiug:.

For each selected body, one calculates the areajolame, theA, andWs values, the CLD

moments of order 1, 2, 3 and 4.

So, we have fo,:



ar

, = 3 R  for sphere (8)
T .
W, ZE(H +7R)  for cylinder 9)
W, = %T(A+ B+C) for parallelepiped (10)

For ellipsoids,W; andW, can be obtained from data compiled by Wolfram [84H Rivin
[35].

For polytopes, a dedicated software based on enuél) has been used for calculating,
W, andW.

As we are only dealing with bodies with convex hahd no holesW; is equal to
477/ 3following the Gauss-Bonnet theorem. Therefdfgis not a relevant parameter for the

shape set studied herein.

2.3 Data set

The table 1 contains the raw data after applyimgrttethods depicted in subsections 2.1 and
2.2. The geometrical parameters of the bodies ianersgsionless. The maximum lendthx of

the bodies is smaller than 4. The radRig: of the sphere enclosing the body is therefore
taken equal to 2. As the CLD is defined as nornedlizhe moment with null ordéW, is

equal to 1 for any body.



N shape Geometrical |S=3W; | V=W |W, M1 [My [Msz [My
characteristics

1 sphere R=1 12.57 4.189 4.189 1.833 3.2 | 5.332

2 cylinder R=1 H=1 12.57] 3.1418.337 | 1 1.2941.893|2.994

3 cylinder R=1 H=2 18.85] 6.288 5.384 1.324236|4.119|8.003

4 cylinder R=0.5 H=2 7.854 1571 3.739 .8 80824 | 1.2

5 cylinder R=0.2 H=2 2.765 0.2513.752 | .3638§.1682|.102 | .0873

6 cylinder R=1 H=0.1 6.911 0.3142.395 | .1818.0605|.0444.0542

7 spheroid A=2 B=1 C=[121.48 | 8.377| 5.788 1.562.831/5.696|12.48

8 spheroid A=1 B=2 C=234.69 | 16.75| 7.165 1.934.410({11.22|30.95

9 spheroid A=2 B=0.23.966 | 0.335| 4.32 | .338315 |.0975.1076
C=0.z

10 | spheroid A=2 B=2|25.89 | 3.351| 6.617 .51814676|.7358|1.661
C=0.2

11 | ParallelepipegA=1 B=1 C=1|6 1 3.1416.6663|.5972| .5985| .6358

12 | parallelepipedA=2 B=1 C=1|10 2 4.189| .8009.8712/1.097/1.533

13 | parallelepipedA=2 B=2|12 2 4.712| .6668.6423|.8162|1.2738
C=0.5

14 | parallelepipedA=2 B=1|7 1 3.665 | .5716.4568|.4552|.5461
C=0.5

15 | parallelepipedA=3 B=0.3/3.78 | 0.27 | 3.770, .28561162|.07 |.0735
C=0.3

16 | octahedron Regular A=1 3.464 0.47241619 .5443|.3825|.2976|.245

Table 1: Minkowski functionals and CLD moments afious bodies.




N shape Geometrical |S=3W; |V=Wo |W, M1 M M3 My
Characteristics

17 Tetrahedron | Regular A=1 1.732 0.118 1911 .27R2117 | .0553.0306
18 T-pyramid A=1 H=3 49538 0.433 4.008 .3495 61961482|.1448
19 T-pyramid A=2 H=2/3 43778 0.3849 3.2362 .35172005 | .1477 .1293
20 T-prism A=1 H=1 3.866 | 0.433| 2.61§ .4481 .2902213|.1854
21 T-prism A=1 H=3 9.866 | 1.299| 4.7124 .526p .4214540|.6531
22 T-prism A=2 H=0.3 5.2641 0.5196 3.4558 .3949 318 | .1875.1959
23 T-prism A=1/4 H=3 2.3041 0.0812 3.5343 .141 103.0124|.0113
24 T-bipyramid | A=1 H=1.633| 2.5981 0.2357 2.250562%8 |.1910| .1187.0817
25 T-bipyramid | A=2 H=0.3266 3.6 0.1886 3.1453 209.0820 | .0482.0376
26 T-bipyramid | A=1/4 H=3.2661.2259 | 0.0295| 3.439| .0962 .0164 .0043029
27 T-bipyramid | A=1/4 H=2.04{10.7674 | 0.0184| 2.167¢ .0961 .0159 .0041017
28 T-bipyramid | A=3 H=0.245| 7.8718 0.3182 4.7138116Q7 | .0607| .0442.0492

Table 1 (con’t): Minkowski functionals and CLD monis of various bodies.
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3. Analysis and discussion
3.1 Introduction
The mean chord length of a convex body is relabed andS by means of the first Cauchy

formula:

|=—1=4V/S (11)

The figure 1 presents the comparison between th&:l@d value (Eg.11) and the MCIS
value for the first order moment. This has beerfopered for the 28 selected bodies. The

deviation is smaller than Toexcept for one triangular bipyramid for which dheviation is 2
103, The figure 2 presents the comparison betweelﬁl‘.atm':hyl_4 value (Eq.12) and the MCS

1* value for the # moment. The deviation is smaller than 3Hxcept for the most elongated
triangular bipyramids and prisms for which the tigka deviation may reach 0.06 (the dot
corresponding to the body 26 is not representetherfigure 2). Considering all the selected
bodies, the mean deviation is equal to 0.013. @gel deviation for the™¥moment is due to
an amplification of the MCS error related to threxponent in the moment expression.

Looking for an approximate expression between thenoment and Minkowski functional, a

first approach consists in evaluating the dimerls&s ratioM,'/M , (Egs.11-12). For the

selected bodie€).43<M2 /M, < 0.5, 0.10< M3 /M, < 0.74 0.015< M/ /M, < 0.59.. One

may conclude thaM /M, =(4V /S)" does not hold. Note thatl,'/M, is always smaller

than one.

11



As there are three non constant Minkowski functisnae. W=V, Wi=53, W, one may

define two dimensionless shape parameters. Therseaeral ways to define unscaled shape

factors. We choose the two following quantit@s:W, / S"? and E =V /S*?. The sphere is

-2,

the body having the largest valuesBfand C parameters Es =(3677) " ; Cg =(4n)1/2/ 3)
while a very thin disc or cylinder have a nklparameter. It may be underlined that E;and
C/Cg are simply related to the parametersarid § respectively as used by Redenbach et al.
[36].

Knowing the CLD for a sphere, i.@, (1) =| /(ZRZ) , the corresponding ratiM,' /M, obeys
the expression:

M/ M =(2/3)"(n+2) /2 (13)

It is the upper bound o¥1;'/ M, among the convex bodies.

From now on, we will consider the relation betwede reciprocal dimensionless CLD
momentsY :(Ml”/Mn)/(Ml”S/MnS) and E/Eg and C/Cg. These three quantities are

within the range [0; 1]. The value 1 correspondghtsphere.

3.2. Preliminary study
Firstly one consider a set of 16 spheroids prolggb,b) and oblate(a,a,b) with
1<a/b<128 and a set of 16 cylinders long and flat witli28<H/2R<128. Moments have
been calculated from analytical CLD’s from Gillg.[2Ve have selected these bodies for the
following reasons:

- Availability of analytical expressions for CLD

- Comparison of smooth bodies (spheroids) with facettodies (cylinders)

12



- Accurate calculation of distribution moments fordes with strong geometric
anisotropy (e.g. discs and needles)
Calculation of the moments of the analytical CL2®ds a numerical integration. It has been
checked that the zeroth order moment of the nom@a@lCLD is equal to 1 and that the first

order moment obeys the Cauchy formula (Eq.11).

The figure 3 representg against the ratide/ Eg (1s n< 4). The dots fon=1 are trivial

(M;'/M, =1). One may observe that:

- The curves for spheroids and cylinders are veryec

- The curve fom=4 is monotonous. It is a consequence of the Caudbysula that can be
2

expressed for any convex body=(E/E)

- The curves fon=2 andn=3 present two branches, one for elongated sptearidylinders

and one for flat spheroids or cylinders. As a cgnsace,E/ E; may not be the only variable
determiningY. The behaviour of extreme cases (very thin digt\aary long needle) suggests
that the relevant variable could be=(E/E)" (C/C,)”. The figure 4 representversus

this new variableX. The standard deviatioa (i.e. the root mean square relative deviation)

calculated from the data corresponding toNk&2 spheroids and cylinders, is defined as

2

J:\/Z(l—(Ei/ES)”(Ci /CS)”/Yi) IN (14)

i=1,N
The (a, p) values, corresponding to the smallestre gathered in the table 2; they depend on
the moment orden: (a, B) =(a,.83,) . However, the peculiarity of the CLD function fisre

highest values of chord length in the case of wegngated cylinders leads to a small

deviation from Cauchy formula (Eq.12) caused byickyrnumerical integration. The relative

13



2
1-=2L Mo
mSM,

deviation remains smaller than 0.03 for the cylinder witBR=128. Therefore

the ovalue forn=4 (Table 2) is not equal to 0.

n/(ap |a 4 o
1 0 0 0
2 0.30 0.225 0.05
3 1.05 0.525 0.06
4 2 0 0.005

Table 2: exponentsa(f) in X =(E/E;)’ (C/CS)/} for the A" moments. cylinders and

spheroids (analytical CLD)ris the standard deviation (see text).

This leads to the following approximate expressmmnspheroids and cylinders:

Y =(M]IM,)/(M/M ) =(E/Es)™ (C/Cg)* (15)

Our results may be compared with the inclusion uradities of Heinrich [31] in the case of
three-dimensional space. He proposed two inclusipressions ((15) and (17) in [31]) that
are conjectures. The difference between the twoesspyns is located in the lower bound:
one (Eq.15) is expressed by means of the volumelendurface area whereas the other one

(Eg.17) is a function of the mean bread#3{\, / 2/7). If one writes the Heinrich’s equations
(hereinafter denoted 15-Heinrich and 17-Heinricly) roeans of the variableE/Eg and

C/Cg, they become:

14



w,(E/E)""™®<Y<1  (15-Heinrich) (16)

and
w, (E/Es) "™ <Y <v, (E/E)(CICs)™"  (17-Heinrich) (17)
With
v, =3"/(4nu,) (18)
w, =k, " (3\/57)_2(”_1)/3 Iu, (19)
And

:3L(K_j (20)

KKK, \ 3K,

and
Ky =1"2IT (1+m/2) (21)

In this new formulation, the lower bounds are thme for (15-Heinrich) and (17-Heinrich),
whereas the upper bounds are different. FollowiegHch ([31], page 8266), (15-Heinrich)
should be used as an optimal upper bound+$@ and (17-Heinrich) fon=3. This conjecture
is well verified for spheroids and cylinders for2 (Figure 5a) an#h=3 (Figure 5b). In the

figures 5a-b, the red dots correspond to the ralmega(E,C,,Y,) for each body. The

approximation (Eq.15) corresponds to the bisectdhénX-Y graph. The two branches of the

lower and upper bounds correspond to prolate ateteobpheroids (long and flat cylinders).

3.3. Behaviour of bodieswith any shape

The set of bodies described in section 2 is nowidensd. Table 1 contains all the raw data
concerning these bodies: 10 spheroids and cylind&dacetted bodies. CLD moments are
calculated from CLD obtained by MCS. We will sepalgexamine the set of facetted bodies.

The figure 6 represents the dimensionless moménisrsus the variabl& for this set by

15



keeping the(a, ) parameters values reported in table 2. The startéaridtionois equal to

0.14 @=2) and 0.167 ri=3). This large deviation does not correspond to aisstal
scattering, but to a deterministic shift of thevaurThis concerns all the dots in the graph. In
order to identify the cause of this discrepancy thtio Y/X for all the bodies, including
spheroids and cylinders, has been reported inigiueef 7a.Y is obtained by MC simulations.
We may see the relationship between this ratiotaadype of body shape. We suggest that
this observation is due to the presence of edgeshenvertices in the facetted bodies and we

retain as relevant additional parameter the nurobeerticesN.. It must be kept in mind that
the vertices do not contribute . Figure 7b representX versusN_". It can be seen that
Y/X is roughly a decreasing function bf*. Moreover, the results for thé’®rder moment
are close to the ones for th¥ @rder moment. So, a corrected expression 15 isidered:
Y=(M] M, )M /M ¢) = (N.)(E/E)™ (CICs)* (22)
The functionf has to fulfil the following requirements:

- The Cauchy formula are respectefd(N, ) =1 for n=1 andn=4

- f(N,) =1 for bodies without corner (spheroids and cylinjierthese bodies will be

considered as polyhedra with an infinite numbevestices

- (a,.B,) are the same for any convex body.
We choose the following expression for
f(N.)=1+(n-1)(n-4) A/N, (23)
Ais a fitting parameter.
The standard deviation corresponding to the setoétfed bodies becomes equal to 0.043

(n=2) and 0.064r{=3) for A=0.4 (Table 3). The standard deviation for the wiselieof bodies

studied by MCS is 0.0431€2) and 0.061=3) for A=0.4.

16



n/(ap |a &) o o o
(18) Facetted| (18) Facetted |All (28) bodies
bodies bodies deviation from
deviation deviation from | Eqs 22-23

Egs 22-23

from Eq. 15

1 0 0 0 0 0

2 0.30 0.225 0.14 0.043 0.043

3 1.05 0.525 0.167 0.064 0.06

4 2 0 0.013 0.013 0.013

Table 3: exponents(f) in X =(E/Es)” (C/C,)” for the i moments. bodies from Table 1

(CLD from MCS). Standard deviatiam related to different models (Eq.15 and Eqs.22-23).

The present results have been compared with thesiocl inequalities of Heinrich in figures

8a (=2) and 8b (=3). The red dots correspond to the raw valugs(,,Y,) for each body.

Our results are yet consistent with the findingsieinrich.

4. Conclusion

We have shown that the CLD moments are relatedetdviinkowski functionals by means of
an empirical expression. However, if this approxioraworks reasonably well for rounded
bodies, it is less applicable to polytopes. A bedigoroximation must consider an additional
parameter as the vertex number of the body. Asi\aarpuence, we propose a simple empirical
expression relatingl, to n, S V, W,, N; that represents MCS data with an accuracy of 5%.
CLD is a non monotone function; it can have distanties. So, it is not so surprising that

the Minkowski functional set is not sufficient tepresent the CLD moments. As it is, we

17



have no explanation about the form of the empirgairession and the values of the fitting

parameters ¢, 3,,A) as well. This is a challenging task to give ansaerthese questions.

At this stage the empirical expression can be asbd to evaluate the second and third order

CLD moments of convex bodies for practical appiora.
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