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the chord length distribution (CLD) and its n th moments ( 4 n ≤ ) have been calculated for a set of 3D-convex bodies. From these data, an empirical relation between the CLD moments and the Minkowski functionals is proposed for the second and third order CLD moments based on the Cauchy formula initially established for the first and fourth order moments in three-dimensional space. The approximation is improved by considering an additional parameter as the number of body vertices. Moreover it is shown that the data set and the empirical expression respect the inclusion inequalities recently found by L.

Introduction

Chord Length Distribution appears in the modelling of the interaction between electromagnetic waves and matter. Applications can be found in the field of radiology, dosimetry [START_REF] Kellerer | Chord Length Distributions and related quantities for spheroids[END_REF] and particle sizing [START_REF] Gille | Particle and Particle systems characterization: Small-Angle Scattering (SAS) Applications[END_REF][START_REF] Jacquier | Application of scattering theories to the characterization of precipitation processes[END_REF]. Analytical calculations of CLD have been achieved for numerous 2D and 3D particle shapes by different investigators: disc, triangle, rectangle, regular polygon [START_REF] Ohanyan | Aharonyan Tomography of bounded convex domains[END_REF][START_REF] Bäsel | Random chords and point distances in regular polygons[END_REF], sphere, hemisphere [START_REF] Gille | The small-angle scattering correlation function of the hemisphere[END_REF], cylinders of various cross sections [START_REF] Gille | Chord length distributions of infinitely long geometric figures[END_REF][START_REF] Gille | Chord length distribution density of a triangular rod[END_REF], spheroids [START_REF] Garcia-Pelayo | Distribution of distance in the spheroid[END_REF], polyhedron [START_REF]Sukiasian Three-dimensional Pleijel identity and its application[END_REF][START_REF] Ciccariello | The chord-length probability density of the regular octahedron[END_REF].

CLD have been intensively studied by researchers in the field of the small angle scattering using X-rays (SAXS) [START_REF] Gille | Particle and Particle systems characterization: Small-Angle Scattering (SAS) Applications[END_REF]. Therefore we may compile the main results of the literature especially these ones concerning the SAXS theory. From these data, common characteristics of CLD may emerge. Moreover, additional properties have been discovered by the mathematicians. In the following, the CLD will be denoted ( ) l D l where l is the chord length.

We may consider the CLD of any convex body as the CLD of an equivalent spheroid or ellipsoid, i.e. a body with a smooth shape, modified by specific geometrical features. The latter ones are important for the shape of the CLD curve. They consist in flat faces as crystal facets, parallel (flat or curved) surfaces, parallel tangent planes, edges and corners.

They correspond to discontinuities of the distribution density or its derivative.

We begin by investigating the effect of the curvature on CLD. For a convex body with a smooth surface the series expansion of CLD around l=0 does not contain even terms. The first order term is an explicit function of the mean principal curvatures of the body [START_REF] Kirste | Röntgenkleinwinkelstreuung an Kolloiden Systemen. Asymptotisches Verhalten der Streukurven[END_REF][START_REF] Wu | Intersect distributions and small-angle X-ray scattering theory[END_REF].

Chords intersect the surface at two points in a convex body; some chords are perpendicular to the tangent planes at the two end points and thus the latter ones are parallel. These chords are termed extremal chords. For instance, spheroids have two extremal chords: one for l=2a and the other for l=2b, a and b being the semi-axes. A discontinuity of ( ) / l dD l dl will occur at these values. Wu and Schmidt [START_REF] Wu | The relation between the particle shape and the outer part of the small-angle X-ray scattering curve[END_REF] have investigated the properties of ( ) l D l when the chord is in the neighbourhood of an extremal chord. They give expressions for ( ) l D l around the extremal chord values denoted L. They show that ( ) l D l is continuous for l=L whereas ( ) / l dD l dl is not. Ciccariello [START_REF] Ciccariello | Deviations from the Porod law due to parallel equidistant interfaces[END_REF][START_REF] Ciccariello | Parametrizations of scattering intensities and values of the angularities and of the interphase surfaces for three-component amorphous samples[END_REF][START_REF] Ciccariello | The leading asymptotic term of the small-angle intensities scattered by some idealized systems[END_REF] generalized the work of Wu and Schmidt: he considers the property of parallelism between some parts of body boundaries. He studied the case where the locus of the extremal chord ends is a surface. For instance, this surface is a sphere for l=2R if the particle is a sphere with radius R. One can show that ( ) l D l becomes discontinuous for this chord length value. If the parallelism occurs between two partial surfaces of the body, a discontinuity of ( ) l D l occurs at l=L, L being the distance between the two parallel surfaces.

The contribution of the parallelism to ( ) l D l for l L → is given by Ciccariello. The presence of edges leads to additional terms for ( ) l D l at l=0. Ciccariello et al. [START_REF] Ciccariello | Parametrizations of scattering intensities and values of the angularities and of the interphase surfaces for three-component amorphous samples[END_REF][START_REF] Ciccariello | Edge contributions to the Kirste-Porod formula: the truncated circular right cone case[END_REF] and Sobry et al. [START_REF] Sobry | Application of an extended Porod law to the study of the ionic aggregates in telechelic ionomers[END_REF][START_REF] Sobry | Extension of Kirste-Porod's law in the case of angulous interfaces[END_REF] dD l dl = [START_REF] Ciccariello | The vertex contribution to the Kirste-Porod term[END_REF]. However, it seems difficult to systemize this contribution.

These features may constitute a rule set for building an approximate CLD of a given convex body [START_REF] Gruy | Stochastic geometry for electromagnetic scattering modelling[END_REF]. It results that the variation of the chord length density against the chord length may be very non monotonic. At the same time, some of the previous authors have calculated the moments of such CLD (see for instance [START_REF] Kellerer | Chord Length Distributions and related quantities for spheroids[END_REF] for spheroids). General formula, called Cauchy formula, had been previously established by mathematicians [START_REF] Hyksova | Early history of geometric probability and stereology[END_REF]. They concern the first and the fourth CLD moments in the case of 3D body. These are expressed as a function of the volume and the surface area of the body. However there exists no such formula for the second and the third CLD moments. Whereas CLD is a characteristic of the body under the stochastic geometry, first and fourth moments are a function of quantities issued from integral geometry [START_REF] Santalo | Integral geometry and geometric probability[END_REF]. So, surface area and volume are the simplest components of a parameter set known as scalar Minkowski functionals (MF). The latter constitute a complete set of descriptors as shown by Hadwiger [START_REF] Hadwiger | Vorlesungen über Inhalt, Oberfläche und Isoperimetrie[END_REF]: any valuation of a convex body respecting certain mathematical properties, i.e. additivity, translation and rotation invariance, continuity, is a linear combination of the MF's. In 3D space, the four scalar Minkowski functionals are proportional to the surface area, the volume and the mean and Gaussian curvatures [START_REF] Schröder-Turk | Minkowski tensors of anisotropic spatial structure[END_REF][START_REF] Arns | Characterization of irregular spatial structures by parallel sets and integral geometric measures, Colloids and surfaces A: Physicochem[END_REF]. It is clear that the CLD's, and then their moments, do not respect the additivity property that would be
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. As a consequence, CLD moments cannot be written as a linear combination of MF's.

Voss and Cruz-Orive [START_REF] Voss | Second moment formulae for geometric sampling with test probes[END_REF] have studied the second moment of the random measure of the intersection between a compact set and a geometric probe, e.g. point, line or line segment.

More specifically, they propose an analytical expression between the second moment of CLD and the geometric covariogram of the body. Heinrich [START_REF] Heinrich | On lower bounds of second-order chord power integrals of convex discs[END_REF][START_REF] Heinrich | Some new results on second-order chord power integrals of convex quadrangles[END_REF][START_REF] Heinrich | Lower and upper bounds for chord power integrals of ellipsoids[END_REF] has considered the second-order moments of CLD for various bodies in any space dimension. He was precisely interested in searching lower and higher bounds, i.e. inclusion inequalities, for CLD moments. The so determined bounds are function of the volume, surface area and mean curvature of the body [START_REF] Heinrich | Lower and upper bounds for chord power integrals of ellipsoids[END_REF].

The aim of this paper is to examine the relation between CLD moments and scalar Minkowski's functionals. This problem will be tackled from the point of view of physicists. It is restricted to 3D bodies. Previous cited studies have shown that no rigorous equations link the second and third moments of CLD to MF's; only inclusion inequalities have been derived. As a consequence, our goal is to propose an approximate expression between CLD's moments and MF's issued from the analysis of data set, obtained for various body classes.

The paper is organized as follows: section 2 specifies the selected body classes, the methods used for calculating CLD moments and MF's, the generated data set. Section 3 analyses the data and builds step by step the approximate expression linking CLD moments and MF's. Section 4 concludes the paper. 

Tools and methods for data generation

Calculation of the CLD moments

Our work focuses on CLD calculations with 3D uniform flow of lines.

Throughout the paper and the literature, the chord length distribution (density) is written Consider a sphere with radius R MC larger than l max /2 and its centre located at the origin of the coordinate system. The body is located inside this sphere and its centre of mass matches the origin. The way used to define the random straight line is the following: A direction and a point belonging to the plane orthogonal to that direction and tangent to the sphere are considered. The coordinate system of the plane is composed of the point of tangency and the vectors from the usual spherical coordinate system. The line will be defined by the two angles, polar θ and azimuthal φ, and the two coordinates x P , y P of the point in the plane. Four random numbers [START_REF] Mazzolo | Monte Carlo simulation of the chord length distribution function across convex bodies, non convex bodies and random media[END_REF] are chosen for the values of the variables cosθ, φ, x P and y P . The line intersects the sphere at two points denoted M 1 and M 2 . This algorithm is known to provide a translation and rotation invariant density [START_REF] Jaynes | The well posed problem, Papers on Probability, Statistics and Statistical Physics[END_REF].

Depending on the body, the straight line between M 1 and M 2 may intersect the particle 0 or 2 times. The intersection points will be analytically determined and the corresponding distances calculated.

The MC sampling distribution may be visually represented as a discrete probability histogram.

The chord length between zero and the maximal possible length, i.e. 2R MC , is divided on mbins with the equal size of ∆l. The value of m is has been taken to 400. All simulation runs have been carried out by generating 10 8 unbiased random lines. Only a smaller number Nl lines cross the body. The sampling error is smaller than 10 -4 .

As already mentioned, the CLD is usually presented as normalized:

( ) ( )

/ l i i D l N Nl l = ∆
where N i is the number of chord with the length l i ( ( )

1/ 2 i l i l = - ∆ ).
The n th moments M n of the CLD are calculated from the expression:

( )

1 m n n i l i i M l D l l = = ∆ ∑ 2.

Calculation of the Minkowski functionals

We consider in this paper convex bodies. Integral geometry introduces scalar Minkowski Functionals (MF) as shape measures. The body K is a compact set bounded by a surface K ∂ .

The four Minkowski functionals are defined by: ( )

0 V W K V dV = = ∫ (1) 
( )

1 1 3 3 K S W K dA ∂ = = ∫ (2) 
( )

2 2 1 3 K W K G dA ∂ = ∫ (3) 
( )

3 3 1 3 K W K G dA ∂ = ∫ (4) 
V and S are the volume and the surface area of the body. The mean and Gaussian curvatures on K ∂ are G 2 and G 3 , respectively. They obey the relations:

( )

2 1 2 / 2 G k k = + (5) 3 1 2 G k k = (6)
k 1 and k 2 are the principal curvatures on K ∂ . The previous relations can be straightforwardly applied for smooth bodies. If the body has edges or corners, the MFs are calculated from the Steiner's formula [START_REF] Schröder-Turk | Minkowski tensors of anisotropic spatial structure[END_REF] that relies the volume of the dilated body K B ε ⊗ to the dilation factor ε by means of a polynomial:

( ) ( ) ( ) ( ) ( ) 2 3 0 0 1 2 3 3 3 W K B W K W K W K W K ε ε ε ε ⊗ = + + + ( 7 
)
B ε is a ball with radius ε.

For each selected body, one calculates the area, the volume, the W 2 and W 3 values, the CLD moments of order 1, 2, 3 and 4.

So, we have for W 2 :

2 4 3 W R π = for sphere (8) ( ) 2 3 W H R π π = + for cylinder (9) ( ) 2 3 W A B C π = + +
for parallelepiped [START_REF]Sukiasian Three-dimensional Pleijel identity and its application[END_REF] For ellipsoids, W 1 and W 2 can be obtained from data compiled by Wolfram [34] and Rivin [START_REF] Rivin | Surface area and other measures of ellipsoids[END_REF].

For polytopes, a dedicated software based on equation ( 7) has been used for calculating W 0 ,

W 1 and W 2 .
As we are only dealing with bodies with convex hull and no holes, W 3 is equal to 4 / 3 π following the Gauss-Bonnet theorem. Therefore W 3 is not a relevant parameter for the shape set studied herein.

Data set

The table 1 

Analysis and discussion

Introduction

The mean chord length of a convex body is related to V and S by means of the first Cauchy formula:

1 0 4 / M l V S M = = (11) 
The second Cauchy formula refers to the 4 th moment:

2 4 4 0 12 M V l M S π = = (12) 
The figure 1 presents the comparison between the Cauchy l value (Eq.11) and the MCS l value for the first order moment. This has been performed for the 28 selected bodies. The deviation is smaller than 10 -3 except for one triangular bipyramid for which the deviation is 2 10 -3 . The figure 2 presents the comparison between the Cauchy 4 l value (Eq.12) and the MCS 4 l value for the 4 th moment. The deviation is smaller than 310 -3 except for the most elongated triangular bipyramids and prisms for which the relative deviation may reach 0.06 (the dot corresponding to the body 26 is not represented on the figure 2). Considering all the selected bodies, the mean deviation is equal to 0.013. The larger deviation for the 4 th moment is due to an amplification of the MCS error related to the l-exponent in the moment expression.

Looking for an approximate expression between the n th moment and Minkowski functional, a first approach consists in evaluating the dimensionless ratio ( )

1/ 2 4 / 3 S C π = )
while a very thin disc or cylinder have a null E parameter. It may be underlined that / S E E and / S C C are simply related to the parameters f 1 and f 3 respectively as used by Redenbach et al. [START_REF] Redenbach | Beyond imaging: on the quantitative analysis of tomographic volume data[END_REF].

Knowing the CLD for a sphere, i.e.

( ) ( ) 2 / 2 l D l l R =
, the corresponding ratio 1 /

n n M M obeys the expression:

( ) ( ) 1 / 2 / 3 2 / 2 n n S nS M M n = + (13) 
It is the upper bound of 1 /

n n M M among the convex bodies.

From now on, we will consider the relation between the reciprocal dimensionless CLD moments ( ) ( ) 

Preliminary study

Firstly one consider a set of 16 spheroids prolate ( ) , , a b b and oblate ( )

, , a a b with 1<a/b<128 and a set of 16 cylinders long and flat with 1/128<H/2R<128. Moments have been calculated from analytical CLD's from Gille [START_REF] Gille | Particle and Particle systems characterization: Small-Angle Scattering (SAS) Applications[END_REF]. We have selected these bodies for the following reasons:

-Availability of analytical expressions for CLD -Comparison of smooth bodies (spheroids) with facetted bodies (cylinders) -Accurate calculation of distribution moments for bodies with strong geometric anisotropy (e.g. discs and needles) Calculation of the moments of the analytical CLDs needs a numerical integration. It has been checked that the zeroth order moment of the normalized CLD is equal to 1 and that the first order moment obeys the Cauchy formula (Eq.11).

The figure 3 represents Y against the ratio / S E E ( )

1 4 n ≤ ≤ . The dots for n=1 are trivial ( 1 / 1 n n M M = ).
One may observe that:

-The curves for spheroids and cylinders are very close -The curve for n=4 is monotonous. It is a consequence of the Cauchy's formula that can be expressed for any convex body:

( ) 2 / S Y E E = .
-The curves for n=2 and n=3 present two branches, one for elongated spheroids or cylinders and one for flat spheroids or cylinders. As a consequence, / S E E may not be the only variable determining Y. The behaviour of extreme cases (very thin disc and very long needle) suggests that the relevant variable could be

( ) ( ) / / S S X E E C C α β = .
The figure 4 represents Y versus this new variable X. The standard deviation σ (i.e. the root mean square relative deviation) calculated from the data corresponding to the N=32 spheroids and cylinders, is defined as

( ) ( ) ( ) 2 1, 1 / / / / i S i S i i N E E C C Y N α β σ = = - ∑ (14) 
The (α, β) values, corresponding to the smallest σ, are gathered in the table 2; they depend on the moment order n: ( ) ( )

, , n n α β α β = .
However, the peculiarity of the CLD function for the highest values of chord length in the case of very elongated cylinders leads to a small deviation from Cauchy formula (Eq.12) caused by a tricky numerical integration. The relative 

/ / / / n n n n n S nS S S Y M M M M E E C C α β = = ( ) ( ) ( ) ( ) 1 1 / 
Our results may be compared with the inclusion inequalities of Heinrich [START_REF] Heinrich | Lower and upper bounds for chord power integrals of ellipsoids[END_REF] in the case of three-dimensional space. He proposed two inclusion expressions (( 15) and ( 17) in [START_REF] Heinrich | Lower and upper bounds for chord power integrals of ellipsoids[END_REF]) that are conjectures. The difference between the two expressions is located in the lower bound: one (Eq.15) is expressed by means of the volume and the surface area whereas the other one (Eq.17) is a function of the mean breadth ( ) ( )

2 1 / 3 / 1 n n S w E E Y - ≤ ≤ (15-Heinrich) (16) and ( ) ( ) ( ) ( 
)

2 1 / 3 2 4 / / / n n n n S n S S w E E Y v E E C C - - - ≤ ≤ (17-Heinrich) (17) 
With ( )

4 3 / 4 n n n v u π - = (18) ( ) ( ) ( ) 
2 1 / 3 4 / 3 3 3 4 / n n n n w u κ π -- -- = (19) 
And

2 2 2 3 3 2 3 3 n n n n n u κ κ κ κ κ κ +   =     (20) and ( ) 
/ 2 / 1 / 2 m m m κ π = Γ + (21) 
In this new formulation, the lower bounds are the same for (15-Heinrich) and (17-Heinrich), whereas the upper bounds are different. Following Heinrich ([31], page 8266), should be used as an optimal upper bound for n=2 and (17-Heinrich) for n=3. This conjecture is well verified for spheroids and cylinders for n=2 (Figure 5a) and n=3 (Figure 5b). In the figures 5a-b, the red dots correspond to the raw values ( , ,

i i i E C Y )
for each body. The approximation (Eq.15) corresponds to the bisector in the X-Y graph. The two branches of the lower and upper bounds correspond to prolate and oblate spheroids (long and flat cylinders).

Behaviour of bodies with any shape

The set of bodies described in section 2 is now considered. Table 1 contains all the raw data concerning these bodies: 10 spheroids and cylinders, 18 facetted bodies. CLD moments are calculated from CLD obtained by MCS. We will separately examine the set of facetted bodies.

The figure 6 represents the dimensionless moments Y versus the variable X for this set by keeping the ( ) , α β parameters values reported in table 2. The standard deviation σ is equal to 0.14 (n=2) and 0.167 (n=3). This large deviation does not correspond to a statistical scattering, but to a deterministic shift of the curve. This concerns all the dots in the graph. In order to identify the cause of this discrepancy, the ratio Y/X for all the bodies, including spheroids and cylinders, has been reported in the figure 7a. Y is obtained by MC simulations.

We may see the relationship between this ratio and the type of body shape. We suggest that this observation is due to the presence of edges and the vertices in the facetted bodies and we retain as relevant additional parameter the number of vertices N c . It must be kept in mind that the vertices do not contribute to W 2 . Figure 7b represents Y/X versus 1 c N -. It can be seen that Y/X is roughly a decreasing function of 1 c N -. Moreover, the results for the 3 rd order moment are close to the ones for the 2 nd order moment. So, a corrected expression 15 is considered:

( ) ( ) ( )( ) ( ) 1 1 / 
/ / / / n n n n n S nS c S S Y M M M M f N E E C C α β = = (22) 
The function f has to fulfil the following requirements:

-The Cauchy formula are respected: ( ) We choose the following expression for f:

1
( ) ( )( )

1 1 4 / c c f N n n A N = + - - (23) 
A is a fitting parameter.

The standard deviation corresponding to the set of facetted bodies becomes equal to 0.043 (n=2) and 0.064 (n=3) for A=0.4 (Table 3). The standard deviation for the whole set of bodies studied by MCS is 0.043 (n=2) and 0.06 (n=3) for A=0. Our results are yet consistent with the findings of Heinrich.

Conclusion

We have shown that the CLD moments are related to the Minkowski functionals by means of an empirical expression. However, if this approximation works reasonably well for rounded bodies, it is less applicable to polytopes. A better approximation must consider an additional parameter as the vertex number of the body. As a consequence, we propose a simple empirical expression relating M n to n, S, V, W 2 , N c that represents MCS data with an accuracy of 5%.

CLD is a non monotone function; it can have discontinuities. So, it is not so surprising that the Minkowski functional set is not sufficient to represent the CLD moments. As it is, we have no explanation about the form of the empirical expression and the values of the fitting parameters ( , ,

n n A α β
) as well. This is a challenging task to give answers to these questions.

At this stage the empirical expression can be only used to evaluate the second and third order CLD moments of convex bodies for practical applications. ) ( ) ) ( ) black: lower bound (Heinrich [START_REF] Heinrich | Lower and upper bounds for chord power integrals of ellipsoids[END_REF], Eq.15-17); blue: upper limit. (Heinrich [31], Eq.17); green: upper limit. (Heinrich [31], Eq.15) black: lower bound (Heinrich [START_REF] Heinrich | Lower and upper bounds for chord power integrals of ellipsoids[END_REF], Eq.15-17); blue: upper limit. (Heinrich [31], Eq.17); green: upper limit. (Heinrich [31], Eq.15) ; n is the order of the moment; n=2. bodies from table 1. red: this work; black: lower bound (Heinrich [START_REF] Heinrich | Lower and upper bounds for chord power integrals of ellipsoids[END_REF],

1 1 / / / n n n S nS Y M M M M = versus ( ) ( ) / / S S X E E C C α β = ; n
Eq.15-17); blue: upper limit. (Heinrich [31], Eq.17); green: upper limit. (Heinrich [31], Eq.15)

0 Eq.15-17); blue: upper limit. (Heinrich [31], Eq.17); green: upper limit. (Heinrich [31], Eq.15)

  function of the dihedral angle and of the edge length. All the edges contribute to

  is the number of chords within the l-range [ ] on a Monte Carlo algorithm was employed to generate an isotropic uniform random line across the geometric object, and to collect the chord length segments. The same framework for the Monte Carlo Simulations (MCS) of the different particle shapes has been used.

  / S C C . These three quantities are within the range [0; 1]. The value 1 corresponds to the sphere.

  one writes the Heinrich's equations (hereinafter denoted 15-Heinrich and 17-Heinrich) by means of the variables / S E E and / S C C , they become:

(

  

c f N = for n=1 and n=4 -

 n=4 for bodies without corner (spheroids and cylinders) ; these bodies will be considered as polyhedra with an infinite number of vertices -the same for any convex body.
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 1 Figure 1: CLD 1 st order moment; ratio between Cauchy value and the one coming from Monte
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 2 Figure 2: CLD 4 th moment; ratio between Cauchy value and the one coming from Monte
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  the order of the moment; n=2. + corresponds to cylinders, o corresponds to spheroids. red: this work;

  Figure 5b: ratio

  the order of the moment; n=3. + corresponds to cylinders, o corresponds to spheroids. red: this work;

Figure 7a :

 7a Figure 7a: Y (MCS) /X versus the number of the body : N=1(sphere); N=2-6(cylinders); N=7-

Figure 7b :

 7b Figure 7b: Y (MCS) /X versus the reciprocal of vertex number : * black: n=2; + red: n=3. The

  Figure 8a: ratio

Table 1 :

 1 Minkowski functionals and CLD moments of various bodies.

	N	shape	Geometrical	S=3W 1 V=W 0 W 2	M 1	M 2	M 3	M 4
			characteristics				
		sphere	R=1		12.57 4.189 4.189 1.333 2	3.2	5.332
		cylinder	R=1 H=1	12.57 3.1416 4.337 1	1.294 1.893 2.994
		cylinder	R=1 H=2	18.85 6.283 5.384 1.334 2.236 4.119 8.003
		cylinder	R=0.5 H=2	7.854 1.571 3.739 .8	.8019 .924 1.2
		cylinder	R=0.2 H=2	2.765 0.2513 2.752 .3638 .1682 .102 .0873
		cylinder	R=1 H=0.1	6.911 0.3142 3.395 .1818 .0605 .0444 .0542
		spheroid	A=2 B=1 C=1 21.48 8.377 5.788 1.561 2.831 5.696 12.48
		spheroid	A=1 B=2 C=2 34.69 16.75 7.165 1.933 4.410 11.22 30.95
		spheroid	A=2	B=0.2	3.966 0.335 4.32	.3383 .15	.0975 .1076
			C=0.2					
		spheroid	A=2	B=2	25.89 3.351 6.617 .5181 .4676 .7358 1.661
			C=0.2					
		Parallelepiped A=1 B=1 C=1 6	1	3.1416 .6663 .5972 .5985 .6358
		parallelepiped A=2 B=1 C=1 10	2	4.189 .8009 .8712 1.097 1.533
		parallelepiped A=2	B=2	12	2	4.712 .6663 .6423 .8162 1.2738
			C=0.5					
		parallelepiped A=2	B=1	7	1	3.665 .5716 .4568 .4552 .5461
			C=0.5					
		parallelepiped A=3	B=0.3	3.78	0.27	3.770 .2856 .1162 .07	.0735
			C=0.3					
		octahedron	Regular A=1	3.464 0.4714 2.4619 .5443 .3825 .2976 .245

contains the raw data after applying the methods depicted in subsections 2.1 and 2.2. The geometrical parameters of the bodies are dimensionless. The maximum length l max of the bodies is smaller than 4. The radius R MC of the sphere enclosing the body is therefore taken equal to 2. As the CLD is defined as normalized, the moment with null order M 0 is equal to 1 for any body.

Table 1 (

 1 con't): Minkowski functionals and CLD moments of various bodies.

  As there are three non constant Minkowski functionals, i.e. W 0 =V, W 1 =S/3, W 2 one may define two dimensionless shape parameters. There are several ways to define unscaled shape factors. We choose the two following quantities:

																	2 / C W S =	1/ 2		and	/ E V S =	3/ 2	. The sphere is
	the body having the largest values of E and C parameters (	E	S	=	( ) 36 π	1/ 2 -	;
																							n M M (Eqs.11-12). For the n
	selected bodies,	0.43	<	2 1 M M /	2	<	0.9	,	0.10	<	3 1 M M /	3	<	0.74	,	0.015	<	4 1 M M /	4	<	0.595	. One
	may conclude that	/ M M n	0	=	(	4 / V S	)	n	does not hold. Note that 1 / n M M is always smaller n
	than one.																					

1 /

  Therefore the σ value for n=4 (Table2) is not equal to 0.

	deviation remains smaller than 0.03 for the cylinder with h/2R=128. n / (α,β) α 2 0 4 12 1 M V S M π -β σ
	1	0	0						0			
	2	0.30	0.225					0.05		
	3	1.05	0.525					0.06		
	4	2	0						0.005		
	Table 2: exponents (α,β) in	X	=	(	/ E E	S	) ( α	/ C C	S	)	β	for the n

th moments. cylinders and spheroids (analytical CLD). σ is the standard deviation (see text). This leads to the following approximate expression for spheroids and cylinders:

Table 1 (

 1 CLD from MCS). Standard deviation σ related to different models (Eq.15 and Eqs.[START_REF] Gruy | Stochastic geometry for electromagnetic scattering modelling[END_REF][START_REF] Hyksova | Early history of geometric probability and stereology[END_REF].

	4.
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; n is the order of the moment; n=2,3 or 4; red,+: n=2; blue,x: n=3; green,o: n=4. Facetted bodies from Table 1.