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Abstract
We begin with a brief historical survey of discoveries of quasi-crystals and graphene, and then 
introduce the concept of transformation crystallography, which consists of the application 
of geometric transforms to periodic structures. We consider motifs with three-fold, four-fold 
and six-fold symmetries according to the crystallographic restriction theorem. Furthermore, 
we define motifs with five-fold symmetry such as quasi-crystals generated by a cut-and-
projection method from periodic structures in higher-dimensional space. We analyze elastic 
wave propagation in the transformed crystals and (Penrose-type) quasi-crystals with the finite 
difference time domain freeware SimSonic. We consider geometric transforms underpinning 
the design of seismic cloaks with square, circular, elliptical and peanut shapes in the context 
of honeycomb crystals that can be viewed as scaled-up versions of graphene. Interestingly, 
the use of morphing techniques leads to the design of cloaks with interpolated geometries 
reminiscent of Victor Vasarely’s artwork. Employing the case of transformed graphene-like 
(honeycomb) structures allows one to draw useful analogies between large-scale seismic 
metamaterials such as soils structured with columns of concrete or grout with soil and 
nanoscale biochemical metamaterials. We further identify similarities in designs of cloaks for 
elastodynamic and hydrodynamic waves and cloaks for diffusion (heat or mass) processes, 
as these are underpinned by geometric transforms. Experimental data extracted from field 
test analysis of soil structured with boreholes demonstrates the application of crystallography 
to large scale phononic crystals, coined as seismic metamaterials, as they might exhibit low 
frequency stop bands. This brings us to the outlook of mechanical metamaterials, with control 
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of phonon emission in graphene through extreme anisotropy, attenuation of vibrations of 
suspension bridges via low frequency stop bands and the concept of transformed meta-cities. 
We conclude that these novel materials hold strong applications spanning different disciplines 
or across different scales from biophysics to geophysics.

Keywords: computational methods, time domain simulations, geometric transforms, 
metamaterials, invisibility cloaks, morphing, geophysics

S  Supplementary material for this article is available online

(Some figures may appear in colour only in the online journal)

1.  Introduction

In 2011, the Israeli physicist Dan Shechtman received the 
Nobel Prize in chemistry for his discovery of a phase of an 
aluminum-manganese alloy (Al with 10–14 percent of Mn, 
Fe or Cr) with a five-fold symmetry originally carried out in 
1984. In this breakthrough article [1] Shechtman together with 
his colleagues Ilian Blech (an Israeli physicist), John Werner 
Cahn (an American scientist) and Denis Gratias (a French 
mathematical crystallographer) discovered that this crystal-
line-like substance goes beyond the crystallographic restric-
tion theorem, which states that the only rotational symmetries 
allowed for a crystalline pattern (i.e. a discrete system of points 
with a translational symmetry) display two-fold, three-fold, 
four-fold and six-fold symmetries. Five-fold rotational sym-
metry, as well as any other symmetry beyond six-fold, is for-
bidden in periodic structures, and was thought to not exist in 
nature, until the discovery of the icosahedrite (Al63Cu24Fe13), 
which is a mineral found by an international team led by Luca 
Bindi (an Italian geologist) and Paul Steinhardt (an American 
cosmologist). One year previous to Shechtman’s Nobel Prize, 
the Dutch-British physicist Sir Andrei Konstantinovich Geim 
and his Russian-British colleague Sir Konstantin Sergeevich 
Novolesov received the Nobel Prize in physics for their dis-
covery of graphene in 2004 [2]. Graphene is a one-atom thick 
layer of graphite (a crystalline form of carbon) with six-fold 
symmetry. A top view of graphene reveals a honeycomb lat-
tice as shown in figure 1(a), consisting of one atom of carbon 
at each vertex of the 6-ring structure. Geim and Novoselov 
demonstrated the difference between graphene and graphite 
by using adhesive to isolate graphene (less than one nanome-
ter thick) sheets away from graphite. Achieving single lay-
ers of graphene typically requires multiple exfoliation steps. 
Importantly, the acoustic and thermal properties of graphite, 
and thus graphene, are extremely anisotropic, since phonons 
propagate very fast along the tightly-bound planes, but much 
slower from one plane to another. This opens new vistas in 
wave physics as anisotropy is actually at the base of meta-
materials, which makes possible the control of wave trajec-
tories thanks to resonant subwavelengths elements (typically 
a few tenths of nanometers in size for visible light), enabling 
extreme effective tunable anisotropy.

The discoveries of quasi-crystals in 1984 and graphene in 
2004 have revolutionized material sciences and given birth 
to new research areas in chemistry, biosciences, mechanical 

sciences and optics, amongst many disciplines. Interestingly, 
graphene flakes, which can be as small as a few tenths of 
nanometres in size, self-organize like clay in stratified soils, 
as noted in [3], and allow enhanced control of diffusion pro-
cesses through effective anisotropic conductivity. On the other 
hand, recently characterized seismic metamaterials have dem-
onstrated a unique ability to control propagation of surface 
Rayleigh waves in soils structured on a metre scale [4], also via 
dynamic anisotropy. Such an anisotropy is induced by evenly 
spaced boreholes in soil, which form a large scale crystalline 
structure when viewed from the sky. The band structure of the 
dispersion curves associated with elastic waves that are allowed 
to propagate through the array of boreholes leads to vanishing 
group velocity of Rayleigh waves in certain crystallographic 
directions near stop band edges, while it remains finite in 
other directions, and this leads to strongly anisotropic features. 
Analogies of models of diffusion in graphene oxide flakes and 
clay proposed in [3], suggest models of small scale diffusion 
metamaterials and large scale wave (seismic) metamaterials are 
two sides of the same coin, and that knowledge gained in the 
former field can be used for research advances in the latter field. 
Bridging design of mechanical metamaterials across the scales 
is in fact the main focus of the present topical article.

The contents of the article are as follows: we firstly intro-
duce the concept of transformation crystallography and 
quasi-crystallography, and illustrate this with an example of 
transformed honeycomb (6-fold) and Penrose-type (5-fold) 
lattice in the plane. We then numerically investigate elastody-
namic wave propagation with finite-difference-time-domain 
(FDTD) software SimSonic in large scale structured soils 
deduced from transformation crystallography. Our graphene-
like seismic cloaks are also studied using a morphing algo-
rithm [5]. We then consider similarities between invisibility 
cloaks for mechanical waves (counterpart of Pendry’s electro
magnetic cloak [6]) and thermal diffusion processes that have 
been theorized and experimentally validated by our research 
group at Institut Fresnel in Marseille and the research group 
of Martin Wegener at Karlsruher Institut für Technologie 
(note in passing thermal cloak controls in fact diffusion of 
high frequency phonons). We further use transmission elec-
tron microscopy images of flakes of a modified form of gra-
phene (so-called graphene oxide, fabricated and characterized 
within the research group of Tania Puvirajesinghe at Institut 
Paoli-Calmettes in Marseille, for application in cancer therapy 
[3]), as a basis for numerical simulations of propagation and 
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localization of elastodynamic waves within a scaled up version  
(by a factor of one million) of graphene flakes that can be 
considered as a biochemical counterpart of seismic metamat
erial. We conclude our paper with a review of field experi-
ments carried out by the engineering group, Menard, with 
results obtained and analyzed by the soil dynamic laboratory 
of Stéphane Brûlé in 2012, followed by some simulations of 
bridge vibration suppression with inertial resonators and the 
concept of transformed meta-cities. All throughout this article, 
we draw analogies across disciplines of crystallography, biol-
ogy, wave physics and geophysics across different size scales.

2. Transformation crystallography  
and quasi-crystallography

In this section, we introduce new concepts of transformation 
crystallography (TC) and transformation quasi-crystallography 
(TQC). The power of this approach is illustrated in figure 1 
with designs of circular (b), elliptic (c), peanut (d) and square 
(e) graphene cloaks obtained by the mapping of a hexagonal 
(honeycomb) lattice of points (a).

Before we explain how we do this, it is important to recall 
some counterintuitive properties of quasi-crystals, which had 
already been studied by mathematicians before Schechtman 
discovered them! A remarkable feature of the quasi-crystalline 

tiling patterns is that their assembly is obligatory non-local. 
Namely, in assembling the patterns, it is compulsory, in cer-
tain examples, to inspect the state of the pattern multiple 
atoms away from the point of assembly, so as to avoid defects 
(i.e. overlaps of motifs or empty spaces) when assembling the 
components together. In nature, a crystalline configuration 
is one that consists of the lowest energy status. With quasic-
rystal growth, the state of lowest energy is harder to reach 
than for periodic structures, and the optimal arrangement of 
the atoms cannot be unveiled by simply adding atoms sequen-
tially with the assumption that each individual atom can solve 
its own minimizing problem. The state of lowest energy is 
the solution of a global minimization problem. Such tilings 
were previously studied by Sir Roger Penrose, who found 
many interesting mathematical properties related, as we will 
briefly discuss, to arithmetic and logic. It should be noted that 
quasi-crystalline substances also exhibit forbidden symme-
tries in three-dimensions such as icosahedral symmetry (these 
analogues of the Penrose tilings had been found by Robert 
Amman in 1975). Numerous mathematicians spent time on 
such hobbies, pastimes and everyday activities, and amongst 
them, the great number theorist and philosopher Bertrand 
Russell, the 3rd Earl Russell.

In the early 1970s, Penrose was considering the mathemat-
ical problem of tiling the Euclidean plane with a finite number 

Figure 1.  Graphene-like honeycomb lattice and transformed honeycomb lattices: (a) honeycomb lattice; (b)–(e) transformed honeycomb 
lattice with a circular cloak (b), an elliptic cloak (c), a peanut cloak (d) and a square cloak (e).
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of polygonal shapes. The initial task was to determine whether 
to cover the plane completely or not, without empty spaces 
(gaps) or overlaps, using just these shapes and no others. It is 
well-known thanks to the crystallographic restriction theorem 
that such tilings are possible using only squares, or only equi-
lateral triangles, or only regular hexagons, but not only using 
regular pentagons. Alternative routes exist to tile the plane 
with single shapes such as irregular pentagons, but with a pair 
of shapes the tilings become more sophisticated. It is worth 
noting that more or less complex shapes can tile the Euclidean 
plane both periodically and non-periodically. However, can 
single or sets of tiles tile the plane in a non-periodical man-
ner? In 1971, the American mathematician Raphael Robinson 
exhibited a tiling with six shapes, which tiles the plane only 
in a non-periodic fashion. Roger Penrose found in 1974 an 
aperiodic tile made of only two tiles.

In fact, tiling the Euclidean plane aperiodically with a sin-
gle tile still remains an open question. A few potential paths 
to achieve this have been explored. For instance, Penrose sug-
gested to assign the vertices of such a tile as points in the 
complex plane, and these points may be given as algebraic 
numbers. This proposal was supported by the Dutch math-
ematician Nicolaas Govert de Bruijn who proposed that such 
quasi-periodic tilings with one tile could be built thanks to a 
cut and projection method that was developed, amongst oth-
ers, by the French Mathematical Physicists Michel Duneau 
and André Katz [5].

Let us briefly recall this cut and projection method, which 
is a special kind of geometric transform. Firstly, this mapping 
is not one-to-one (not an isomorphism), as we can see from 
the construction of a 1D quasi-crystal, say along a line E||, 
in figure 2(c). Indeed, the quasi-periodic structure of the line 
E|| is obtained as follows: take a strip generated by shifting a 
unit square Y2  =]0;1[2along E||. It is clear that for almost all 
positions of the line E||, this strip contains a unique broken 
line consisting of the lattice edges, which joins all the vertices 
inside the strip. If one considers the orthogonal projection P|| 
of the broken line on E||, this gives a tiling made of two tiles 
that are the orthogonal projections of the vertical and horizon-
tal edges of the unit square Y2. Consider now the slope of the 
line E|| with respect to the canonical basis of ℜ2. It should be 
checked if the tiling is periodic and if the slope is a rational 
number. Duneau and Katz [5] have noted that any finite patch 
of tiles that belongs to a tiling appears infinitely many times 
in any tiling defined through a strip with the same irrational 
slope (this is the so-called local isomorphism property). To 
prove this property, one has to consider the line E⊥  , orthogo-
nal to E||. Since a finite set of tiles in a given tiling is the pro-
jection of a finite broken line, then there exists a non-empty 
open set of translations in E⊥  that ensures the projection of 
the finite broken line remains inside the strip (the projection 
of the broken line on E⊥  is strictly smaller than the projection 
of the whole strip). Because the orthogonal projection P⊥  of 
the set of all pairs of integers Z2 on E⊥  is dense, Duneau and 

Figure 2.  Principle of TC and TQC: (a) a mapping from a periodic square lattice onto (b) a transformed square lattice with a circular cloak 
using equation (1.1) with a1  =  b1 and a2  =  b2  =  2a1; (c) cut and projection from a periodic upper dimensional space onto quasi-periodic 
(physical) space E||. (d) Result of geometric transform equation (1.1) applied to E|| in the case of a Penrose tiling.
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Katz [5] deduced that there are infinitely many translations 
of Z2 which map the finite broken line inside the strip. The 
translations generate infinitely many copies of the initial patch 
of tiles. In the same way, one can show that any finite patch 
of tiles that appears in a quasi-periodic tiling appears in all 
tilings obtained from a cut and projection with the same irra-
tional slope.

Secondly, besides from the local isomorphism, the mean 
distance between copies of a given patch gives rise to open 
mathematical questions. Intuitively the density of the cop-
ies of a patch in the quasi-periodic tiling should depend on 
arithmetical properties of the slope. Indeed, it can be seen that 
when the slope of E|| is given by an algebraic number, the 
mean distance between two copies is proportional to the area 
of the patch. On the contrary, when the slope is given by a 
Liouville number (non-algebraic irrational number), the dis-
tance can quickly grow arbitrarily. It should be noted that if 
the unit square is replaced by any other square cell of the crys-
tal lattice Z2 (say KY2, where K is a positive integer), one can 
generate ad libitum new tilings constructed from the projec-
tions of the two edges of this supercell. This property is akin 
to self-similarity of the Penrose tilings i.e. each fragmented 
geometric shape can be subdivided in parts, which is almost 
(but not exactly) a reduced-size copy of the whole. More gen-
eral strips also generate tilings involving a finite number of 
tiles via this projection method, and this led to a number of 
generalized cut-and-projection methods to generate miscella-
neous quasi-periodic tilings.

As it turns out, one can easily generalize this method to 
higher dimensions. To get a quasi-periodic pattern in ℜn 
issued from a projection of a periodic pattern in ℜm (m  >  n), 
one has to consider the subspace E||  =  ℜn and E⊥  its orthogo-
nal subspace in ℜm. The Penrose tilings are issued from a cut 
and projection of ℜ4 (or ℜ5) in ℜ2 and their 3D equivalents 
(the icosahedral structures) from a cut and projection of ℜ6 
(or ℜ12) in ℜ3. This has important physical consequences as 
it is well known that the width of stop bands associated with 
a phononic crystal can be enlarged by the symmetry of the 
structure. The restriction theorem forbids to go over six-fold 
symmetry for crystals, but as one can infer from the cut-and-
projection method, there is virtually no limit on the degree 
of symmetry one can achieve for a quasi-periodic structure. 
Because there is always a quasi-period of the same order as 
the wave wavelength (however large it might be), one can find 
arbitrarily low frequency stop bands [6, 7] in infinite photonic 
quasi-crystals, and similarly in phononic quasi-crystals [8]. 
Band diagrams of quasi-periodic structures can actually be 
computed using a generalized version of the Floquet–Bloch 
theorem in upper dimensional space [9]. Quasi-crystals hold 
strong promises for a range of photonic applications, espe-
cially those that require broadband, omnidirectional absorp-
tion of visible light [10], and we would like to stress that this 
is also true for mechanical waves, and among them earthquake 
waves propagating in soils structured in a quasi-periodic 
fashion.

Now that we have set the scene of periodic and ape-
riodic tilings of the plane and their links with geometric 
transformations, we can turn our attention to transformation 

crystallography and quasi-crystallography. Firstly, we recall 
the geometric transform for invisibility cloaks with an ellipti-
cal shape [11]:

f : (r, θ) → (r′, θ′) = (αr + β, θ),

where ∀0 < r < R2(θ) =
√

a2
2cos

2θ + b2
2sin

2θ,

α(θ) = (R2 − β)/R2,β(θ) =
√

a2
1cos

2θ + b2
1sin

2θ,

�

(1.1)

which maps the area within the ellipsis of eccentricities a2, b2 
onto an elliptical corona delimited by ellipses of eccentrici-
ties a1, b1 and a2, b2. Note that this transform is a straightfor-
ward generalization of Pendry’s transform for circular cloaks  
[12, 13] that assumes a1  =  b1 and a2  =  b2.

Applying this geometric transform to the periodic struc-
ture shown in figure 1(a), we obtain figure 1(b) when a1  =  b1 
and a2  =  b2 and figure  1(c) when 2a1  =  b1 and 2a2  =  b2. 
Figures  1(d) and (e) are obtained by making the angular 
dependence of r more complex. Such invisibility cloaks of 
arbitrary shapes described by Fourier series have been pro-
posed in [14] and make use of

g : (r, θ) → (r′, θ′) = (αr + β, θ),

where ∀0 < r < R2(θ) =
n∑

k=1
ak

2 cos(kθ) + bk
2 sin(kθ),

α(θ) = (R2 − β)/R2,β(θ) =
n∑

k=1
ak

1 cos(kθ) + bk
1 sin(kθ),

� (1.2)

which maps the area within the closed curve of R2(θ) onto a 
corona delimited by closed curves R1(θ) and R2(θ).

One can then deduce the metric tensor T  =  J JT/det(J), 
in the transformed coordinates from the calculus of the 
Jacobian matrix J(r′,θ′)  =  ∂(r,θ)/∂(r′,θ′), its transpose JT and 
its determinant det(J). This metric T plays a prominent role 
in transform optics, and was already in use in computational 
electromagnetism twenty years ago [15, 16].

However, here we apply these transforms to crystalline and 
quasi-crystalline structures in order to generate a new class of 
transformed crystals and quasi-crystals.

In figure 1, we demonstrate the application of geometric 
transforms f (in (b) and (c)) and g (in (d) and (e)) to honey-
comb lattice (a).

We obtain a collection of transformed lattices reminiscent 
of paintings by Victor Vasarely [17], a renowned artist for 
his artwork on optical illusions. It could be considered that 
Vasarely initiated transformation crystallography in an art 
form at approximately the same period as Victor Veselago 
introduced negative refraction [12]. Although the painter 
performed his geometric transforms with a pen and a piece 
of paper, the result of our computations appears to be strik-
ingly similar to his paintings. It is important to precise at this 
point that other parallels have been drawn in [18] between 
complementary media and Vasarely’s paintings. Therein, the 
crystallographic restriction theorem was invoked to keep a 
balance between overall positively and negatively refracting 
index materials as its application implies that only checker-
boards with either rectangular, square or (equilateral) triangu-
lar cells can lead to perfect imaging devices associated with 
overall zero optical path-length. Although the authors of [18] 
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did not realize it at that time, they were essentially making 
use of transformational crystallography tools i.e. coordinate 
changes in periodic structures (in that case periodic sign-shift-
ing checkerboards). An important feature that unfortunately 
falls beyond the scope of the present article is the applica-
tion of the Floquet–Bloch theorem in transformed lattices, as 
already touched upon in [9] in the context of cut-and-projec-
tion method. A Floquet–Bloch wave function u would be of 
the form u( f (x+T)) = u( f (x)) exp(if (k ·T)), where 
i2  =  −1, x is the position vector and k and T are respectively 
the Bloch and lattice vectors in the periodic reciprocal space 
and f is the mapping onto the transformed reciprocal space. 
One can easily envision the richness of band diagrams in 
transformed periodic structures that would be controlled by 
the function f.

Interesting extensions of classical mathematical theorems 
and their applications to physics of transformation crystallog-
raphy will be addressed elsewhere.

3.  Numerical illustrations of TC and TCQ with FDTD

The computer software SimSonic, which we use in this sec-
tion to simulate propagation of elastic waves in crystals and 
transformed crystals is a freely available software designed 
by Emmanuel Bossy [19], which is based on finite-differ-
ence time-domain (FDTD) computations of the elastody-
namic wave equations. SimSonic already serves as a tool 
for communities of researchers, teachers and students, and 
this package consists of several compiled programs and C 
source codes, freely available, under the GNU GPL license 
[20]. SimSonic solves the Navier equations in the following 
form:

∂Tij

∂t
(x, t) =

d∑
j=1

d∑
i=1

Cijkl(x)
∂vk

∂xl
(x, t) + Θij(x, t)� (1.3)

ρ(x)
∂vi

∂t
(x, t) =

d∑
j=1

∂Tij

∂xj
(x, t) + Φi(x, t)� (1.4)

where Cijkl is the rank-four symmetric elasticity tensor with d4 
[4] entries (d  =  2 or 3), Tijthe rank-2 stress tensor and νi the 
particle velocity (vector) field. Besides from that, ρ(x) is the 
density, Φi(x, t) and Θij(x, t)the force (vector field) and strain 
rate (rank-2 tensor) sources, respectively, with x = (x1, ..., xd) 
the space variable and t  >  0 the time variable. In the present 
article, the dimension of the computation is d  =  2. This means 
we consider the case of coupled in-plane pressure and shear 
waves. We consider a pressure source with a sine cube signal 
as shown in figure 3(a). This pressure wave is then converted 
into shear wave (and vice-versa) at each inclusion boundary 
of the (large scale) crystalline structure which we consider. 
In fact, since we assume the structured medium is invariant 
along the third dimension, in-plane and out-of-plane problems 
decouple. It is interesting to note that if we apply a geomet-
ric transform f : (x1, x2) → (x′1, x′2) = (f1(x1, x2), f2(x1, x2)) 
to (1.3), then the transformed elasticity tensor has the form 

C′
ijkl

=
(

∂f1
∂x1

∂f2
∂x2

− ∂f1
∂x2

∂f2
∂x1

)−1
∂fi
∂xp

∂fk
∂xq

Cpjql , i,j,k,l,p,q  =  1,2, with  

summation implicit on repeated indices as noted in [21]. This 
elasticity tensor does not have in general the minor sym-
metries. The transformed density simply has a factor of the 
determinant of the Jacobian det(J) of f , so remains a scalar 
quantity.

In figure 3, we show some snapshots of SimSonic compu-
tations that reveal the wave pattern of the seismic wave propa-
gating within a graphene-like seismic metamaterial (a)–(c) 
with geometric parameters as in figure 1(a) and the same seis-
mic wave propagating in the graphene-like seismic metamat
erial after a stretch of coordinates has been made to achieve 
an elliptical cloak as in figure 1(c). It can be noted that this 
creates an exclusion zone in the center of the elliptical cloak, 
where the seismic wave magnitude is reduced by almost one 
half. For the bulk medium parameter, we consider a density 
of 103kg m−3 (very soft soil), whereas the density of inclu-
sions is 104kg m−3 (denser soil). These extreme parameters 
were chosen as we wanted to test the effect of a high-contrast 
in density on the wave propagation, inspired by 22,23. Note 
nonetheless that columns of concrete typically have density 
about 2.5 × 103kg m−3 and thin-walled steel tubes have den-
sity about 7.8 × 103kg m−3, so our parameters are in actuality 
achievable. The coefficients of the elasticity tensor used for 
the bulk medium (e.g. soft soil with an assumption of isotropic 
homogeneous medium) are given in Voigt notation




∂T11
∂t

∂T22
∂t

∂T12
∂t


 =




C11 C12 0
C12 C22 0
0 0 C66






∂v1
∂x1
∂v2
∂x2

∂v2
∂x1

+ ∂v1
∂x2


� (1.5)

and they are C11 = C22 = 0.25 GPa, C12 = 0.25 GPa, C66 = 0 
in soil and C11 = C22 = 25 GPa, C12 = 25 GPaand C66 = 0 
in inclusions (denser soil e.g. concrete with an assumption 
of isotropic homogeneous medium). Note that we consider a 
rather high Poisson ratio (close to 0.5), but we checked that 
increasing value of C66 = 0 in inclusions does not affect 
much the simulations. What prevails is that we have a large 
contrast between elasticity tensor in soil and inclusion to 
enhance wave control, just like what [22, 23] and other work 
on homogenization theories suggest.

The transformation underpinning the cloak’s design is 
carried out on a region of area 225 × 131 m2 consisting of 
50 × 50 hexagons with circular inclusions located at each ver-
tex. The radius of each inclusion is 0.5 m and their spacing, 
center-to-center, is 1.5 m (so inclusions are close to touching, 
so as to increase their interaction). Each simulation runs for 
1000 ms with a snapshot taken every 10 ms. The computational 
domain is a rectangle of side lengths 898.2 × 524 m2 and it 
encompasses the transformed area (the cloak).

With all these assumptions, we satisfy the stability condi-
tion (CFL condition, from the initials of the German American 
mathematicians Richard Courant, Kurt Friedrichs and Hans 
Levy) for the numerical scheme:

∆t �
1√
d

∆x
cmax

� (1.6)
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where d  =  2 is the space dimension, ∆x = 0.2 m and 
∆t = 10µs are the space and the time discretizations, 

cmax =
√

C11/ρ =
√

E(1 − ν)/((1 + ν)(1 − 2ν)) =
√

25 × 109/104 = 
1580 ms−1 is related to the speed of pressure waves in denser 
soil.

In figure 4, we show similar snapshots for square (a), circu-
lar (b) and peanut (c) seismic graphene-like cloaks at 570 ms. 
In all three cases the displacement field has smaller ampl
itude within the exclusion area (seismic protection) than in 
figure 3(c): according to integral of out-of-plane displacement 
computed over the surface of the invisibility region (i.e. center 
of cloak) in figures  4(a)–(c) normalized by same in honey-
comb lattice in figure  3(c), about half of the seismic wave 
energy is smoothly detoured around the cloak. We refer the 
reader to supplementary material for movies (stacks.iop.org/
JPhysCM/29/433004/mmedia) showing there is indeed wave 
reduction inside the exclusion zone from 500 ms to 780 ms 
i.e. until the seismic wave has crossed the cloak. Importantly, 
there is virtually no reflection of the seismic wave by the 
cloak, hence protection of a given infrastructure with such 

a cloak would not be deleterious for surrounding infrastruc-
tures, unlike for the seismic shield discussed later on in this 
article.

In figure 5, we propose a concept of Penrose-like seismic 
cloak, which is based on a geometric transform in a Penrose 
lattice. The latter has been designed using cut-and-projection 
method, as discussed in section 2. However, we numerically 
observed that the level of protection displayed by this cloak 
is less prominent than for the graphene-like cloak in figures 5 
and 6 for the same source oscillating at 10 Hz, so we report 
here the result of SimSonic computation when the source 
oscillates (out of plane i.e. along x3) at frequency 20 Hz, in 
which case seismic protection is achieved in the (x1, x2) plane 
(in-plane seismic signal). We nevertheless are convinced that 
transformed quasi-periodic lattices offer a very promising 
route towards seismic cloaks, as one can generate such lat-
tices from cut-and-projection of periodic lattices in higher-
dimensional spaces (5 and 12 for instance) and then further 
choose the transform allowing for designs of quasi-periodic 
lattices (with 5-fold and 12-fold symmetries for instance) with 
an exclusion area for any given shape.

Figure 3.  Numerical simulations (SimSonic software) for a point force oscillating out-of plane (x3-direction orthogonal to (x1, x2) plane 
of computation) at frequency 10 Hz generating a seismic wave propagating in a graphene-like seismic metamaterial (representing soft 
soil with columns of denser soil arranged in a honeycomb fashion) like in figure 1(a) (upper panel) and the same with an elliptical cloak 
(highlighted with white boundaries for clarity) like in figure 1(c). Snapshots at t  =  100 ms ((a) and (d)), t  =  150 ms ((b) and (e)) and 
t  =  570 ms ((c) and (f)). Note the reduced wave amplitude in the center of the cloak in (f) compared to (c). The center to center spacing of 
columns is 1.5 m and their diameter is 0.5 m in (a)–(c), while in (d)–(f) the mapping has stretched these distances like in figure 1(c). Insert 
in (a) shows the chosen wave signal (sine cube). Linear color scale ranges from dark blue (vanishing) to red (maximum) displacement field.
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Let us now move to the morphing technique [24, 25], 
which can be viewed as a geometric transform of an elasti-
cally deformable model [24], and thus bears some resem-
blance with transformational physics techniques although in 
the present case, it is based on control points rather than an 
explicit mathematical formula, so one might be tempted to 
call this an ‘inverse engineering geometric transform’.

4.  Morphing and seismic metamaterials

The late 1980s saw a rise in the popular media use of the effect 
called ‘morphing’ which amounts to transforming an image 
into a second image via a series of intermediate images. This 
computer graphic technique, which rose to fame thanks to the 
film Willow of Ron Howard and the musical video clip Black or 

Figure 4.  Numerical simulations (SimSonic software) for a point force oscillating at frequency 10 Hz generating a seismic wave 
propagating in a graphene-like seismic metamaterial (soft soil with columns of denser soil) like in figure 1(e), a square cloak (a), 
figure 1(b), a circular cloak (b), and figure 1(e), a peanut cloak (c). Snapshots are taken at t  =  570 ms. Linear color scale ranges from dark 
blue (vanishing) to red (maximum) displacement field.

Figure 5.  Transformed Penrose lattices (five-fold symmetry): (a) Penrose lattice from cut-and-projection method; (b) and (c) transformed 
Penrose lattice with a circular cloak (b) and a square cloak; (d) and (e) same with vertices only; (f) numerical simulation (SimSonic 
software) for a point force located just above the cloak and oscillating at frequency 20 Hz along x3 generating a seismic wave propagating 
in Penrose-like seismic metamaterial (soft soil with columns of denser soil). Linear color scale ranges from dark blue (vanishing) to red 
(maximum) displacement field.

J. Phys.: Condens. Matter 29 (2017) 433004
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White of Michael Jackson could be helpful in transformation 
physics and wave simulations. Indeed, morphing and transfor-
mational optics bear some resemblance, since the two of them 
are underpinned by coordinate changes. Photonic research-
ers use coordinate changes to create artificial media ex nihilo 
(usually one maps vacuum onto a heterogeneous anisotropic 
medium). In this way, researchers achieve control of light tra-
jectories in transformed (metamaterial) media [11–15]. In the 
following paragraphs, we would like to show that morphing 

can be used as a design tool for certain types of metamaterials 
via a novel concept of transformational crystallography. By 
adopting such a radically different viewpoint (we no longer 
map free space on a metamaterial, but rather a periodic or ape-
riodic crystal), we unveil new classes of transformed media, 
and even intermediate transformed media (through morphing). 
Interestingly, computer assisted science becomes unavoidable 
for researchers from miscellaneous fields, including pho-
tonics, geophysics and biological sciences, and we believe 

Figure 6.  Seismic cloak (highlighted with white boundaries for clarity) generated by 75% morphing from figures 2(b) to (c); (a) is 
the resulting stretched image; (b)–(d) snapshots at 100 ms (b), 200 ms (c) and 520 ms (d) from SimSonic computations for a source at 
frequency 20 Hz. Blue pixels for soft soil and red pixels for denser soil. Note that protection becomes more effective at 520 ms, at which 
time step quantification of protection reaches around 50%. (e) Difference in gray scale between figure (a) and elliptical cloak with 75% of 
eccentricity corresponding to 0.0849 in L2 norm; (f) same as (e) for SSIM index [30] that gives 0.4461 of image difference. We point out 
that for error estimates in numerical results, the L2 norm is the natural tool of choice.

J. Phys.: Condens. Matter 29 (2017) 433004



Topical Review

10

morphing will find a growingly important place by their side 
in the coming years. In the sequel, we propose applications 
of morphing techniques as a design tool for transformational 
crystallography.

4.1.  Principle of morphing

Morphing literally speaking is an image transformation 
(underpinned by coordinate changes) that includes interpola-
tion of colors: the colors of the source’s image progressively 
fade away to reveal the colors of the destination’s image. To 
summarize, morphing is based on a double interpolation, 
both on shapes and on colors, between two images. There are 
many freeware softwares that are capable of doing just this, 
however, here we work with Sqirlz Morph [26].

4.2.  On the usefulness of control points

Whatever the choice of the morphing technique used, ‘control  
points’ need to be selected manually and assigned by the user, 
in the source and the destination images. These control points 
specify the important features of the two images, and should 
be such that each control point in one image corresponds 
to one control point in the second image (for a one-to-one 
mapping). Control points are essential for the shape’s trans-
formations. Their placement drives the series of intermedi-
ate images between the source and destination images. For 
instance, control points should neither be aligned nor too close 
to each other as morphing preserves proportions, and their 
number chosen judiciously (too few control points will pro-
duce a superposition of the source and destination images and 
too many control points might produce awkward transforma-
tions). Therefore, choosing the location of the control points 
requires consideration of many parameters, which means that 
this step is not easily amenable to automation [24, 25] (though 
this is a potential obstacle for acceleration of numerical simu-
lations through morphing [27]). This is a pivotal feature in 
morphing assisted transformation crystallography as human 
intervention leads to a subjective result: morphing will mostly 
lead to transformed media that are envisioned by the user.

4.3.  Application to design of seismic metamaterials

Let us consider panel (b)—a circular cloak—in figure 2 and 
further generate an elliptical cloak from the same square lat-
tice in panel (a). We would like to apply the morphing algo-
rithm between the circular and elliptical cloaks. We emphasize 
the importance of placing control points at the barycenters of 
transformed red inclusions in the two images, which leads to 
figure  6(a). The reader can easily create other designs with 
Sqirlz Morph, just by placing control points in specific posi-
tions. Also, it should be noted that when the number of control 
points is too small or too large the result of morphing can 
be quite surprising, the reader can also experience this. By 
doing so one can generate beautiful patterns that can serve 
the purpose of seismic metamaterials reminiscent of artwork 
of Vasarely [17]. In the present case, we have designed a 

seismic cloak, using Pendry’s transform [12], which serves 
our purpose. One can see that among the three snapshots taken 
from SimSonic simulations of an elastic wave propagating in 
soft soil (blue) with denser inclusions (red), the last one (d) 
at 520 ms shows a reduction of the elastic field magnitude in 
the exclusion zone of the cloak. We have checked that this 
remains the case at higher time points. However, at shorter 
times, it appears from (b) and (c) that the cloak is not yet effi-
cient for protection. Nevertheless, one notes that the elastic 
field displacement is nearly constant in the exclusion zone 
and the soil therein moves almost like a rigid body, which 
suggests some kind of trapped fundamental mode of a stress-
free cavity, as already observed in similar situations [28, 29]. 
Importantly, invisibility is already achieved at short times: a 
velocimetre placed behind the cloak would not detect any sig-
nificant change of the seismic signal compared with the case 
where there is no cloak: the wavefront is almost circular and 
its amplitude is close to that of the wave propagating in the 
medium shown in figure 2(a) i.e. without cloak.

It is illuminating to compute the difference between 75% 
morphing (figure 6(a)) and direct geometric transform between 
the circular cloak in figure  2(b) and its elliptic counterpart 
(not shown, see supplemental material) when we consider an 
elliptical cloak of eccentricity ¾ to that in arrival image (not 
shown). Figure 6(e) shows that difference in L2 norm com-
puted with the formula

F =

√√√√ 1
N

N∑
i=1

(
Ki

255

)2

� (1.7)

(where the sum is taken over all the pixels (K𝑖)=1,..,𝑁 in the 
image and each pixel K𝑖 has a value between 0 and 255) is less 
than 1% (for images converted in grayscale). Importantly, this 
formula only works for grayscale images (when applied to 
color images, one has to consider a vector valued function K𝑖 
with three components for red, green and blue colors, respec-
tively, and the approach breaks down). Interestingly, the struc-
tural similarity (SSIM) index [30], which is a method used for 
predicting the quality of digital images perceived by a human 
eye, gives a difference of almost 45%. Actually, one can see 
that figure 6(e) is almost black (vanishing L2 norm), whereas 
figure 6(f) clearly has striking instantly recognizable differ-
ences. SSIM is based on a complex mathematical formula that 
can be found in [30], but roughly speaking it is a mathematical 
model that quantifies the degradation of an image via a per-
ceived change in structural information.

We do not find such antagonistic results between L2 norm 
and SSIM in our previous investigations of morphing applied 
to transformation optics [27], which were based on coordi-
nate stretches in invisibility cloaks surrounded by homoge-
neous medium. In the present case, the homogeneous bulk 
is replaced by a periodic cladding, so the coordinate stretch 
is much more challenging to mimic with morphing (as one 
has to place many control points in the periodic cladding). 
We believe we are in presence here of configurations where 
these two estimates for image differences (L2 norm and SSIM 
[30]) cannot be reconciled (a whole class of transformational 
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crystallography based images would indeed face the same 
fate). However, regarding numerical simulations, it is usual 
to use L2 norm for error estimates, and we have checked that 
FDTD simulations of elastic waves propagating in morphing 
based medium in figure 6(a), see snapshots in figures 6(b) and 
(c), and corresponding snapshots for elastic waves propagating 
through the transformed medium from 75 percent stretching 
in figure 2(b) and its elliptic counterpart, are almost identical 
(less than one percent of difference in L2 norm).

4.4.  Field test experiments in seismic metamaterials

We now investigate the similarities between models of nano-
scale photonic and phononic crystals, and metre-scale seismic 
metamaterials, as introduced in recent papers [4]. We recall 
in figure 7 the scheme of the first large scale experiment on 
seismic metamaterials (left panels (a) and (c)), which was 

conducted by the dynamic soil laboratory team of Stéphane 
Brûlé at the Ménard company in August 2012. The exper
imental data (right panels (b) and (d)) shows that when a seis-
mic source oscillates at a frequency inside the stop band of 
the periodic structure, here 50 Hz, Rayleigh waves become 
reflected, just like a photonic crystal does for light.

A keen observer of civil engineering works can observe that 
certain artificial and buried structures in the soil seem to be a 
translation of crystallographic lattices (figure 8). The common 
structure is made of vertical and cylindrical inclusions (con-
crete, steel, etc) implemented in the soil, reproducing a square 
meshing in the plan (0, x, y). To achieve an improvement in the 
density of soil strengthening, the equivalent of a face-centered 
cubic system can be observed too in plan (0, x, y) with vertical 
concrete rods.

However the primarily objective of these worksites is to 
make the soil more resistant to shear strains induced by a 

Figure 7.  Scheme of the 2012 field test experiment conducted by the Ménard company in Grenoble (a): an oscillating probe generates 
acoustic waves at 50 Hz in front of a mesh of cylindrical boreholes. An array of sensors monitors the intensity of the waves at various 
positions. Experimental results (b): the map (black rectangles: sensors; white circles: boreholes; red-cross with black boundaries: source) 
plots the difference of energy J2–J1 after (J2) and before (J1) drilling the boreholes. The dark blue region behind the holes indicates that the 
presence of the mesh of boreholes results in a decrease of elastic energy transmitted to that area. The red region indicates the area close to 
the source in which the wave intensity increases because of reflection. (c) Photos of experiment crane with close-up on crane used to drill 
boreholes and used as source (left) and overview of site (right); (d) recorded data by sensor (vertical particle velocity versus time) located at 
black rectangle highlighted by white boundary in (b), before (J1, upper panel) and after (J2, lower panel) drilling the boreholes. One notes 
the reduced velocity in J2. Credit: Brûlé et al [4] and (c) courtesy of Ménard.
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simplified representation of the seismic disturbance, i.e. con-
sidering that the more devastating component of the seismic 
signal correspond to the horizontal component of the body 
shear-waves. The fascinating concept carried out by several 
authors and that has boomed in the past few years is the intro-
duction of the concept of photonic and phononic crystals in 
geophysics. As aforementioned, in August 2012, a first full-
scale field experiment was realized with a non-sub wavelength 
2D square grid of vertical empty cylindrical holes disturbed 
by a 50 Hz source, showing a characteristic Bragg’s effect 
[4] reminiscent of stop band properties of photonic crystals  
[31, 32] put forward by Eli Yablonovitch and Sajeev John 
in 1987. Such periodic dielectric structures, that were also 
studied by Stokes and Rayleigh towards the end of the nine-
teenth century [33], and by Bykov and Ohtaka in the 1970s  
[34, 35], allow for spontaneous emission of light and almost 
total reflection of light. The idea proposed, and experimentally 
demonstrated in [4], is to simply scale up photonic crystals 
(which have typically an array pitch on the order of a few hun-
dredth of nanometres) by a factor of 104 to 105, so as to reflect 
surface seismic wave a few metres in wavelength in structured 
sedimentary soils.

Though this idea initially appears as far-fetched, leading 
to initial skepticism from certain research groups, it is now 
appears to be widely accepted, and further, experiments have 
been by the geophysics team of Philippe Roux on stop band 
properties of forest of trees [36] in the tracks of large-scale 
seismic metamaterials and tested by Menard engineering 
group [4]. Another interesting way to protect an area is actu-
ally to convert surface Rayleigh waves into shear bulk waves, 

which is precisely what the metawedge does [37]. Such con-
cepts of forbidden propagation bands might also find applica-
tions in design of bridge piles [38], as we shall see.

Apart from these features, the soil-liquefaction remedia-
tion in the case of earthquake could be achieved by incor-
porating a mesh of vertical concrete walls (shear-walls), or 
jointed piles or inclusions in the soil as depicted in figure 9 
(left). One can imagine to reproduce thus the graphene struc-
ture. It can be noted that in 2002, Takemiya and Shimabuku 
[38] suggested the realization of a ‘semi-honeycomb pattern’ 
around viaduct piles (figure 9(b)) with soil-cement mixed 
columns. Their objective was to improve the global stiffness 
without immensely modifying the mass of the system. These 
buried structure are expected to work not only for reducing the 
seismic input thanks to the cell stiffness but also for absorbing 
seismic energy by self-damaging in case of severe earthquake.

5.  Graphene flakes as bio-metamaterials for control 
of mass diffusion

In this section, we aim to begin to bridge concepts of seis-
mic wave physics and diffusion phenomena, in the present 
case mass diffusion (note that mass diffusion is governed 
by a Fick’s equation whereas heat diffusion is governed by 
Fourier’s equation), to broaden our horizon of the design 
of cloaks. In figure  10, one can see two numerical simula-
tions in the upper panel, placed next to each other in order 
to emphasize the similarities (and differences) between the 
wave and diffusion patterns. In both cases, a layered cloak 

Figure 8.  Illustration of high-density ground reinforcement with vertical, cylindrical lime inclusions arranged in a square grid (b).  
The horizontal spacing is comprised between 1.3 and 2.0 m and the diameter of the inclusions is around 0.3 m (courtesy of Ménard).  
(b) The nodes of the grid could be design in agreement with the graphene-sheet structure.

Figure 9.  Principle of a honeycomb (a) and ‘quasi-honeycomb’ (b) meshes made of jointed concrete inclusions (blue) and viaduct piles 
(black) in the soil (brown). Piles and soil-cement mixed columns [35] would act as protection for viaduct piles.
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simultaneously leads to invisibility and protection. From the 
seismic wave pattern in figure  10(a), which is a numerical 
simulation based on a scaled up version of [39], it appears 
clear that the center of the cloak is the ideal location to build 
a monument: the wave magnitude vanishes there. Similarly, 
from the chemical concentration distribution in figure 10(b), 
one could envision some delayed drug diffusion if the drug is 
placed in the center of the biocloak: the inner boundary of the 
cloak acts like a barrier for chemical species, it is difficult to 
get inside the invisibility region and by reciprocity the drug 
can be concentrated in this region.

These two cloaks, which are of very different scales 
(tenths of meters for the seismic cloak and tenths of nanome-
ters of the drug diffusion cloak), have been somewhat already 
experimentally validated, see lower panel for an illustra-
tion by Tolga Ergin (group of Martin Wegener at Karlsruhe 
Institute of Technology, that also produced magnificent 
computer based photorealistic views of carpet cloaks [42]) of 
the protection offered by an ocean cloak, which is a scaled up 
version of the water wave cloak designed and tested exper
imentally in [40].

The experimental measurements of Robert Schittny 
(Wegener’s group at KIT) for a thermal cloak studied in the 
time domain in [41], see figure 9(d), can be used to predict 
what can be achieved for control of drug diffusion with con-
cepts developed in [43]. In the same way, if one finds it legiti-
mate to draw analogies between water waves (ocean cloak), 
surface Rayleigh waves (seismic cloak) and heat and mass 
diffusion (biophysics cloak), the latter being solutions of the 
Fourier–Fick equation:

d∑
i=1

∂

∂xi

d∑
j=1

κij (x, t)
∂

∂xj
H (x, t) =

∂

∂t
(ρ (x, t) c (x, t)H (x, t))

� (1.8)
where κij is the conductivity tensor, which under geometric 
transform, as shown in [43] takes the form κ′ = JκJT/det (J) 
and ρ and c represent respectively the density and specific heat 
in the case of heat, a product which is equal to 1 for the case 
of mass diffusion, then another interesting parallel can be 
drawn between the biophysics at the nanoscale and the geo-
physics at the meter scale. At a nanometer scale, the diffusion 
of different types of macromolecules in matrix-based context 
is highly studied and is the basis for important biological 
measurements techniques such as fluorescence recovery after 
photobleaching and fluorescence correlation spectroscopy 
[44, 45]. It has recently been shown that the structures of 
materials such as graphene and derivatives of graphene, gra-
phene oxide can be exploited as molecular filters allowing the 
permeation of ions of certain hydrated radii to pass through  
[46, 47]. Matrix structures have already been describing which 
combine graphene and clay based structures, which both 
can be modelled to use condensed matter theory and effec-
tive medium approaches to describe the movement of aque-
ous media [43, 48–50]. Graphene-matrices using therapeutic 
molecules for human therapy have also been developed [3].  
Though graphene materials were initially used simply for 
chemical conjugation purposes, it has now been shown that 
graphene is able to produce retardation effects which are 
useful in the development of controlled or slow-release drug 
formulas [43, 51]. This is an important health application as 

Figure 10.  Mechanical versus thermal cloaking for invisibility and protection; (upper panel) numerical simulations for the propagation of a 
Rayleigh-like wave in a plate of thickness 40 m generated by a time-harmonic point source of frequency 10 Hz located in the close vicinity 
of a layered cloak (based on a scaled up version of cloak by Farhat et al [39]) of diameter 500 m (a) and diffusion of heat (from left to right) 
in a layered cloak (b) of diameter 10 cm; (lower panel) artistic view by Tolga Ergin (Martin Wegener’s team at KIT) of ocean wave cloak 
(based on a scaled up version of cloak by Farhat et al [40]) (c) that works in the same manner has the earthquake cloak (rigid pillars have 
the same geometry whether they are plunged in soil or water) and result of Robert Schittny (Martin Wegener’s team at KIT) experiment on 
control of heat diffusion [41] in false colors (d); note that the wave amplitude (left) and heat magnitude (right) vanish in the center of the 
wave and diffusion cloaks. Adapted figure with permission from [41], Copyright 2013 by the American Physical Society.
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controlled release drugs have the advantages of increasing 
the plasma half-life of therapeutic drugs which are associated 
with economic benefits such as fewer injections for patients 
[52] and corresponding reduced healthcare visits.

Upon inspection of figure 11, it can be noted that the house 
of card type configuration of graphene oxide flakes from 
transmission electron microscopy (a), which are in the scale 
of a few micrometers is similar to layers of clay in soils, which 
are in the scale of a few metres. Following image treatment 
with Matlab (b), one can export the house of cards geometry 
in SimSonic and simulate the propagation of a seismic signal 
upon change of scale by a factor 106. The house of cards con-
figuration in figure 10(a) can be exploited to build an effective 
porous diffusion model for drug diffusion through a graphene 
oxide membrane as achieved in [3] using mathematical anal-
ogies with diffusion models in porous soils, reminiscent of 
asymptotic techniques used in thin-walled domains, such as 
acoustic metamaterials [53, 54], if one replaces propagating 
waves by evanescent pseudo-waves. However, one can see 
in the present case that upon scaling by a factor one million, 
and change of the elastic properties for that of clay in soft 
soil, a seismic lens can be achieved, see figure 11(d). At the 

nanoscale, one notes that THz pulses excite acoustic phon-
ons [55] and one could thus envisage medical applications in 
cancer therapy using heat produced by the highly localized 
phonon field in figure 10(d). One can attribute this elastic field 
localization to a thin bridge of soft soil (white) between two 
denser regions of soil (black) at the location of the image, by 
comparisons of panels (b) and (d). Indeed, it is well known 
that acoustic and elastic fields oscillate faster in thin domains, 
see [53, 54] and references therein. We believe that interplay 
between models and experiments in geophysics and nanoscale 
biophysics could lead to major discoveries in the near future.

In the present work, we emphasize that in the near future, 
it would be interesting to identify the possibilities to value the 
properties of the graphene-sheet structure in civil engineering. 
Indeed, graphene has a unique band structure with so-called 
Dirac cones, which are frequencies where the periodic struc-
ture behaves like an effective medium with less than ordinary 
properties, such as a near-zero refractive index allowing for 
Dirac cone cloaking [56–59]. Thus far, only transmission prop-
erties have been studied near Dirac cones, but there may well 
be also protection features. Let us now move to an outline of 
what the future of mechanical metamaterials might look like.

Figure 11.  Seismic lens as a scaled up version from TEM images: (a) TEM images of a modified form of graphene, graphene oxide (GO). 
Images are acquired using a Morgagni FEI 80KV Camera digital View III Olympus camera. Multiple sheets show a sharp increase in the 
contrast when many GO flakes are stacked together, thereby substantially increasing the gray scale of the images. Scale bar is 2 µm. Dark 
regions correspond to folded layers of GO sheets, which are capable of folding over though remaining intact thanks to their high flexibility; 
(b) same image after treatment, with white pixels for soft soil and black pixels for denser soil (image with 1139 pixels  ×  750 pixels and 
each pixel is 0.2 m  ×  0.2 m); (c) and (d) snapshots at 125 ms (c) and 250 ms (d) from SimSonic computations for a source at frequency 20 
Hz. One notes the focusing of seismic wave in (d). Alternatively, one might consider applications in ultrasound imaging, with e.g. a source 
at 2 MHz, and rescale accordingly space and time by a factor 105.

J. Phys.: Condens. Matter 29 (2017) 433004



Topical Review

15

6.  Future of mechanical metamaterials across  
the scales: graphene, bridges and metacities

We have mentioned that acoustic phonons in graphene could 
have medical applications. Let us now numerically demon-
strate an extreme control of an elastic wavefield emitted in a 
thin plate periodically pinned at vertices of a honeycomb array. 
We show in figure 12(a) a source oscillating at 100 THz that 
generates wave pattern with three-fold symmetry, whereas the 
same source at 110 THz (b) gives rise to six-fold symmetry. 
Such extreme anisotropy has been unveiled in [57] wherein 
a mathematical treatment of the Kirchhoff-Love equation led 
to dynamic effective equations. Here, we apply this result to 
a graphene sheet treated like an atomically thin plate with 
parameters as in [58]. Such extreme anisotropy might prove 
useful in nano-antennae and sensors. A graphene-like pinned 
plate could also be used to generate highly-directive surface 
plasmon polaritons when coupling light to it, as proposed in a 
similar situation in [58].

If we now change scale, and consider soil parameters, 
we can think of using concrete columns clamped to a bed-
rock and arranged in a honeycomb fashion to structure soil 
and create highly directive seismic wave signals. The idea of 
seismic metamaterials with clamped inclusions has been put 
forward in [59] and might lead to important applications in 
civil engineering.

If we now consider 1D periodic structures, low frequency 
stop bands of inertial resonators like in figure 13(b), which 
are steel masses connected to a reinforced concrete suspended 
bridge via steel beams, can disallow propagation of flexural 
waves along the bridge and thus prevent wobbling of the struc-
tures around 3.5 Hz. On the other hand, in panel (a) concrete 
masses do not match the fundamental mode of the bridge and 
thus do not prevent its swaying. Indeed, the Millenium bridge 
was closed down after walk of pedestrians happened to excite 
one of its fundamental eigenfrequencies [60]. If we assume a 
time harmonic dependence e−iωt in (1.3) and (1.4), with ω  the 
angular wave frequency (rad · s−1), a spectral analysis can be 

performed for so-called Floquet–Bloch waves (ν1, ν2) of the 
form νj (x1 + d, x2) = νj (x1, x2) exp (ikd), j = 1, 2 propagat-
ing in a bridge which can be considered as a periodic structure 
with periodicity d  along x1. A closed form representation of 
the Green’s function corresponding to the upper deck of the 
bridge as in figure 13(a) provides dispersion curves for flex-
ural waves like in panel (c), which are computed here using the 
commercial finite element package COMSOL Multiphysics. 
According to [61], the Green’s function writes as

G(ω, k) = − 1
4Dα3

(
1 +

cos(kd)− exp(−αd)
cosh(αd)− cos(kd)

− sin(αd)
cos(αd)− cos(kd)

)

� (1.9)
where α = (ρω2/D)

1/4
, with D the normalized flexural rigid-

ity of the beam representing the upper deck of the bridge. We 
have checked that we retrieve the dispersion curves of figure 3 
in [62] for a slender bridge that were computed with the indus-
trial finite element package Strand7 by Dr Giaccu.

The solution proposed in [62] to avoid bridge swaying is a 
unit cell with two types of masses connected to the upper-deck 
of the bridge by thin beams and the two-masses are them-
selves connected by a thin beam. Here, we simply follow the 
proposal in [63] that was to place underneath the bridge a 1D 
phononic crystal like in figure 13(e). Unlike for [62], there is 
a single mass in each unit cell, and an analysis of associated 
resonant modes reducing unwanted vibrations of the bridge 
has been performed in [63], notably based on asymptotic esti-
mates of inertial resonators [64, 65]

ω2 � µε3h3

πρR2l3
(λ+ µ)

3 (λ+ 2µ)
� (1.10)

where λ = Eν/[(1 + ν)(1 − 2ν)] and µ = E/[2(1 + ν)] are 
the Lamé constants of reinforced concrete estimated to be 
2.8 GPa and 6.6 GPa, respectively, assuming a Young’s modu-
lus E = 2 GPa and a Poisson’s ratio ν = 0.33 in each beam of 
length l = 0.4 m connecting the bridge to the steel resonators. 
The latter have density ρ = 7.5 × 103 kg m−3 and their radius 
is R = 0.1 m, with all geometric parameters as in panel (e).

Figure 12.  Acoustic source at 100 THz (a) and 110 THz (b) in an atomically thin-plate (0.3 nm) density ρ = 2.3 × 103 kg m−3, Young’s 
modulus E = 1012 Pa, Poisson ratio ν = 0.2 and flexural plate rigidity D = 2.34 × 10−18 Pa × m3 (see [58] for same parameters used in 
coupling of light and sound in graphene) with clamped inclusions arranged in a honeycomb fashion.
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We find a resonant frequency f = ω/(2π) � 3Hz  for the 
eigenmode shown in figure 13(f), which corresponds to the 
second flat band in panel (d), which lies on the lower edge of 
the phononic band gap.

This design of mechanical metamaterial to avoid bridge 
swaying could be improved by considering a quasi-peri-
odic chain of resonators, instead of a periodic one, with an 
expected increase of width and number of low frequency stop 
bands, and thus a broader frequency range for suppression of 
unwanted resonances of the bridge. This would make a con-
cept of acoustic rainbow similar to [66]. We note that 3D reso-
nators like in [67] are also good candidates to avoid swaying 
of the bridge of all sort (lateral, transversal etc).

One could also envisage placing more complex phononic 
crystals with double or triple periodicity in buildings and 
other large scale infrastructures to reduce unwanted vibra-
tions caused by traffic noise or earthquakes. For instance, it 
has been proposed that large scale auxetic metamaterials with 
dynamically tunable Poisson ratio can make earthquake resist-
ant foundations for buildings in [68].

The proposal in [69] is even more radical as this research 
group has proposed to use periodic arrays of large scale isoch-
ronous resonators as seismic protection. Other types of seis-
mic metamaterials [70, 71] include a large scale version of 
periodic arrays of inertial resonators inspired by the proposal 
of Bigoni et al [54]. In our opinion, their future will mostly 
depend upon cost versus seismic protection efficiency.

Finally, one could even consider metamaterials on a larger 
scale, and think of building meta-cities like in figure 14. This is 
not a wholly unrealistic idea as the group of Philippe Guéguen 
in the Institute of Earth Sciences ISTERRE in Grenoble has 
already put forward the concept of meta-city where buildings 
play the role of Helmholtz resonators and this bold idea opens 
a whole new research area in geophysics [72–75].

7.  Concluding remarks

In this review article, we have explained how geometric trans-
forms and morphing work and their concepts can be applied to 
different contexts, such as transformation crystallography, and 
quasi-crystallography (for which we have recalled the method 
of cut-and-projection to generated ad libitum quasi-periodic 
structures). Crystallography is at the base of photonic and 
phononic crystals, but we stress that it remains valid across 
scales for large scale seismic metamaterials. Notwithstanding 
the 1888 theoretical contribution of Lord Rayleigh to crys-
tallography [33], it is widely accepted that this science was 
boosted over a century ago, by the British physicist, chemist 
and mathematician Sir William Henry Bragg and his son Sir 
William Lawrence Bragg. These pioneers in surface science 
shared the 1915 Nobel Prize in Physics for their discovery of 
Bragg’s law of x-ray diffraction [76], 2d sinθ  =  nλ for con-
structive interference within an atomic lattice (where d is the 
atomic spacing in the crystal lattice, n is a positive integer,  

Figure 13.  Supercell (10 m) of a periodic array of steel resonators (Young modulus E = 2 × 1011 Pa and density ρ = 7.5 × 103 kg m−3) 
placed underneath a 100 m long beam of reinforced concrete (Young modulus E = 2 × 1010 Pa and density ρ = 2.5 × 103kg m−3) simply 
supported at both ends. The chain of masses connected by steel ligaments to the beam (that consists of 20 supercells, only one is shown) is 
used as a simplified model for a phononic crystal that suppresses swaying for a bridge that wobbles between 2.9 and 4.5 Hz for a torsional 
constant of beam section of 2.25 m [4] (i.e. close to the excitation frequency produced in the bridge by a pedestrian walk); (a) unsuppressed 
vibration of bridge for resonators made of concrete; (b) reduced vibrations of bridge for tuned resonators made of a mass of steel connected 
to the bridge with concrete ligaments that resonate around 3 Hz; (c) band diagram for the bridge without resonators; (d) band diagram for 
the bridge with a periodic array of resonators; (e) unit cell used for (d), with ε  =  0.08 m small compared to the diameter 0.2 m of the mass; 
(e) and (f) modes associated with the lower and upper edges of stop band in (d).
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θ the scattering angle and λ the wavelength of incident wave, 
which is typically a few angstroms like atomic bonds, so three 
orders of magnitude shorter than that of light).

Interestingly, Sir William Lawrence Bragg was head of 
the Cavendish laboratory when the discovery of structure of 
DNA (deoxyribonucleic acid) was reported by the American 
biologist James Dewey Watson and his British molecular biol-
ogist colleague Francis Crick in 1953. DNA discovery was 
made possible thanks to scientific discussions with Rosalind 
Franklin, an English chemist and x-ray crystallographer, who 
suggested the double helix nature of DNA while working at 
King’s College London.

One can therefore see that crystallography and biology 
have had a long lasting fruitful joint history, which is certainly 
due to the similar scales involved (a few nanometers down to 
angstroms). Graphene, photonic crystals and indeed metamat
erials have renewed the interest in crystallography, the former 
since it (re)opens a door to material science at sub-nanometer 
scale, the latter since Bragg’s scattering is intimately linked to 
stop bands. However, when viewed from the sky, soils struc-
tured at the meter and decameter scale (either through man-
made civil engineered techniques or simply arising from in 
nature, like with forests of trees) display a geometry akin to 
crystals. We therefore proposed in this article to draw analo-
gies between seismic metamaterials and nanoscale crystalline 
structures to point out the rich history behind the young sci-
ence of large scale mechanical metamaterials.

We also performed some numerical simulations in elasto-
dynamic wave physics with some mention of applications in 
mass diffusion, a concept put forward by two of us in [43], 
which is supported by experiments for an extreme control of 
heat diffusion process with a thermodynamic cloak, which 
looks strikingly similar to the mechanical cloak for Lamb 
waves in plates [39, 77]. A concise graphical summary of 

the power of morphing is depicted with the comparison of 
the images in figure 6: The left and right images are almost 
indistinguishable by the naked eye from a distance i.e. one 
might think that the corresponding effective media should 
share many features. However, this is the marked difference 
between a periodic seismic metamaterial and a transformed 
seismic metamaterial. The latter wishes to mimic nature’s bio-
logical structures in order to reproduce some of the (many) 
interesting features that nature offers. For instance, the famous 
Morpho butterflies whose wings with an inner grating give 
their unique structural colors [78, 79]. In the course of this 
article we have described how morphing can be used to unveil 
new functionalities by mixing two known transformation-
based metamaterials to get a new one which is reminiscent 
of a complex medium in living cells, which is a form of bio-
mimetism. Morphing may thus prove to be an invaluable tool 
for the exploration of transformation-based metamaterials 
from the nanoscale to the metre scale worlds. For instance, 
as first envisioned in a review paper [80], the group of Martin 
Wegener proposed to cloak a city, which could be achieved in 
our case by using the exact same geometric transforms as in 
figure 1, see figure 14.

The potential research area in seismic metamaterials is 
vast, looking around for inspiration one notes impressively 
beautiful quasi-periodic patterns in medieval architecture 
[81] and we have only touched upon the richness of cloak-
ing phenomenon in the time domain. As stated in [82]: In the 
natural world, rays of light are sometimes bent when they pass 
through air layers of different temperatures, for example one 
of the most unusual mirages (called the Fata Morgana after 
the fairy Morgana from the Arthurian Legend) bends light 
rays in such an extreme way that on hot days boats appear 
to levitate above the sea […] The beauty of Pendry’s idea is 
that it allows matter to be engineered in such a way that light 

Figure 14.  Kilometer scale geometric transforms applied to the schematic representation of a buildup city (a) could be used as a design 
tool for cities, with an exclusion zone of elliptical (b), square (c) and peanut (d) shapes. This exclusion zone could serve as a safety area for 
people living in the city in case of earthquakes, and could potentially be landscaped as a park with a lake. Inspired by Martin Wegener’s 
group visionary infography [48].
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follows curved trajectories in metamaterials which are asso-
ciated with geodesics in a transformed space. In the realm 
of transformational optics, one can envision many kinds of 
mirages, simply by distorting the space metric in what amounts 
to fabricating heterogeneous anisotropic media (also called 
metamaterials since they have been conceptualized and engi-
neered by mankind). We believe the exciting fields of transfor-
mation optics, acoustics, elastodynamics and crystallography 
are still in their infancy and will lead to unforeseen paradigms. 
For instance, negative refraction for a flat convergent lens [83] 
which is a concept arising from optics, has been translated in 
the area of seismic waves [84]. Amongst new concepts, urban 
metamaterials [70] may prove a complementary tool to design 
soundproof and earthquake-resistant civil engineering cloaks 
in soft soils structured on the metre-scale by columns of con-
crete. Moreover, it is possible to also control water wave tra-
jectories with similar metamaterial design [85–87]. This was 
an inspiration for the concept urban city with control of sound 
waves for reduction of traffic noise [88], as well as seismic 
metawaveguide put forward in [89]. Last but not least, light, 
sound and heat interplay might form the essence of soon to 
come multiphysics small and large-scale metamaterials based 
on geometric transforms that have proved their utilities for 
understanding the structure of elements deriving from micro-
scale and very large worlds [90]. The analogies used to trans-
late knowledge gained in one area to another, much smaller 
or larger, should nonetheless be used wisely, as for instance 
scalability of phononic crystals breaks down at atomically 
thin scales [91], so in-depth analysis of elastic waves prop-
agating in graphene such as illustrated in figure 12 requires 
more advanced models, and models of interactions between 
soil and structures during earthquakes are highly complex 
phenomena [92, 93]. We would also like to mention that work 
on multiscale metamaterials inspired by biomimetism [94] is 
also emerging with notably fascinating results on spider web-
inspired labyrinth acoustic metamaterials [95], that could be 
further scaled up at the meta-city scale. Transformation-based 
elastic metamaterials lie somewhere in between these two 
frontiers (namely the scales of atom and Earth sciences).
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