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The present study investigates a way to design dikes which can filter the wavelengths of ocean surface waves.
This offers the possibility to achieve a structure that can attenuate waves associated with storm swell, without
affecting coastline in other conditions. Our approach is based on low-frequency resonances in metamaterials
combined with Bragg frequencies for which waves cannot propagate in periodic lattices.
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Over the last decade, major natural disasters due to large
storms have impacted coastal zones, leading to important
flooding with material and human losses. The water levels
associated with storms, at coastal locations, are a combination
of storm surges, local tides, and storm waves.

In contrast with the storm surge and the tide which are long
waves (several hours), the storm swell consists of short waves
(10 – 20 s) and can be characterized by large significant wave
heights and, in most cases, an increase of their periods with
respect to the case without a storm. Those waves can contribute
to the surge by transferring their energy when breaking, and,
they can impact structure inundated by the surge which can
be extremely destructive. Moreover, even with a small surge
event, short waves can be severe and significant leading to a
strong impact on the coastline with possibly the occurrence of
overflow [1].

Under those observations, we propose a way to conse-
quently reduce the contribution of storm swell, in order to
protect coastal zones.

Our study is built upon the works on periodic structures
in the area of metamaterials and more specifically on low-
frequency stop bands and band gaps [2].

In the context of metamaterials for water waves, some
works have been done in recent years in order to render objects
invisible to waves. This cloaking approach has allowed one to
propose some developments to protect structures or areas in
the open sea [3–10] for most of the cases, but also to control
the trajectories of waves. Regarding the control of water
wave trajectories, periodic structures present some interesting
properties. The study of such structures in solid-state physics
and optics has emerged in the area of photonic crystals [2],
and has been translated in water wave physics [11–17].

In our study, we propose to use a periodic array of C-shaped
cylinders (split tubes), also known as split-ring resonators for
artificial magnetism in optics [18]. Such a lattice has already
been used to observe negative effective gravity [19]. However,
another important feature of this kind of lattice is to have a
low-frequency band gap and low-frequency stop band [20],
at variance with plain cylinder arrays. Thus, it is possible to
define a periodic array with constituents of reasonable size
with regard to wavelength that can attenuate waves associated
with storm swell (where the period is increased relative to mild
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sea state) but not the waves associated with normal sea state.
This means that the coastline is not impacted by the presence
of the structure in the case of normal sea state but that the
structure is “active” only when the wave period is long.

In this Rapid Communication, we demonstrate numerically
and experimentally in the case of linear water wave theory the
efficiency of a periodic lattice composed of C-shaped cylinders
to protect coastal zones. The numerical study is used as a
starting point to give directions and it is sufficient to emphasize
the general behavior of the structure for linear waves, so we do
not reflect the dissipative contribution. In addition, we show
that such a structure remains efficient when the amplitude of
waves increases (i.e., when the nonlinearities become non-
negligible).

We consider a fluid domain of water depth h with an infinite
periodic lattice of rigid, vertical and bottom mounted objects.
The Cartesian coordinate system is chosen with x and y as
horizontal directions and z the vertical upward direction with
origin taken at the mean free surface. We assume linearized
potential flow theory of water waves, where the fluid is taken as
inviscid, incompressible with irrotational flow, to describe the
propagation of water waves with angular frequency ω through
the array. Under these assumptions, the velocity potential can
be written as

�(x,y,z,t) = Re

{
φ(x,y)

cosh (k(z + h))

cosh(kh)
e−iωt

}
. (1)

φ satisfies the Helmholtz equation

(∇2 + k2)φ = 0 (2)

in the fluid domain, with ∇ = (∂/∂x,∂/∂y)T and the wave
number k solution of the dispersion equation

ω2 = gk tanh(kh) (3)

with g the gravitational acceleration.
In addition, Neumann boundary conditions

∇φ · n = 0 (4)

are assumed on the rigid object surfaces, where n is outward
unit normal vector.

The lattice consists of an array of C-shaped cylinders
defined by the two lattice vectors a1 and a2 [see Fig. 1(a)]
so that it can be represented by all the translations R of a
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FIG. 1. (a) Top view of a two-dimensional rectangular lattice
with lattice vectors a1 and a2, composed of C-shaped cylinders.
(b) Periodic cell of the lattice spanned by a1 and a2, with do the
outer diameter, di the inner diameter, and lsr the width of the slit of
cylinders. The points �XMX′ denote the extrema of the irreducible
Brillouin zone and the dashed lines denote directions that bound this
zone.

periodic pattern displayed in Fig. 1(b), with

R = n1a1 + n2a2, (5)

where n1 and n2 are integers.
Following the theory used in the study of crystal structures

in solid-state physics [21] and in the photonic crystals area
[2], we look for solutions of problem (2) using Bloch waves
decomposition. In this context, a solution φ of (2) can be
written as the product of a plane wave with a function ψ

which has the periodicity of the lattice:

φ(r) = eiq·rψ(r) with ψ(r) = ψ(r + R), (6)

which is equivalent to

φ(r + R) = eiq·Rφ(r), (7)

where q is the Bloch (real-valued) vector defined in the
Brillouin zone.

In our case, the Brillouin zone defines a rectangu-
lar cell in reciprocal space with q ∈ [−π/L1 ; π/L1] ×
[−π/L2 ; π/L2], which can be further reduced to the irre-
ducible Brillouin zone with q ∈ [0 ; π/L1] × [0 ; π/L2] [see
Fig. 1(b)].

Solving the eigenvalue problem (2) with the condition (7)
amounts to defining values of q irreducible Brillouin zone and
solving for all q. This method leads to nontrivial eigensolutions
φ for any pair (k,q), which are plotted on a band diagram.

In the present study we consider square lattices with
L1 = L2 = L, composed of rigid vertical and bottom mounted
cylinders with C shape [see Figs. 1(a) and 1(b)]. We study
three different configurations where geometric parameters
are reported in Table I, with H/λ the waves steepness
(H/λ = 2a/λ with a and λ, respectively, the amplitude and

TABLE I. Set of geometric parameters corresponding to the
studied configurations.

L (m) di (m) do (m) lsr (m) H/λ (%)

cfg. 1 0.325 0.144 0.150 0.025 2; 5
cfg. 2 0.650 0.290 0.300 0.050 2
cfg. 3 0.650 0.290 0.300 0.160 2; 3.5
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FIG. 2. Band diagrams corresponding to the configurations men-
tionned in Table I. The dashed lines stand for bands associated
with a square lattice L = 0.325 m of plain cylinders with diameter
do = 0.150 m.

the wavelength of incoming waves). The configuration 2 is
quite close to the configuration 1 where all the parameters
have been multiplied by a factor ∼2. This will illustrate that
the approach is valid from deep to shallow water. We note that
the only difference between configurations 2 and 3 is the size
of the slit lsr .

As a first step, the eigenvalue problem given by Eqs. (2)
and (4) is solved using a finite element (FE) Galerkin method,
for Bloch waves, for each of the configurations. The results are
shown in Fig. 2, according to the normalized wave number kL.
We first notice the quasi-identical results for configurations
1 and 2, which means that a scale factor on the lattice is
passed on the wave number, that is, on the wavelength. For
all cases, a band gap is observed between the first two bands
corresponding to low frequencies, which is due to the presence
of the slit (note that an extra path along �X′ is required in the
band diagram [22]). This behavior is not observed in the case
of plain cylinders (see Fig. 2, dashed curves). For the inner
and outer diameters we choose, we note the larger the slit
(configuration 3), the larger the first stop band and the thinner
the second one.

The �X part of the diagram corresponds to waves propagat-
ing along principal directions (a1,a2) in the array. It appears
on this part, two significant partial stop bands, respectively,
between the first and second bands and between the second
and third bands. It means that waves with frequencies in those
stop bands are disallowed to propagate in the array along
principal directions. Or alternatively, waves with frequencies
in those stop bands coming from free space normally to such
a periodic array are reflected and do not propagate through the
array. Moreover, for some frequencies in the first stop band,
waves do not propagate through the array for all angles of
incidence.

The previous arguments suggest that a periodic array with
C-shaped cylinders can be used as a dike that is capable of
stopping waves over a significant range of wavelengths and
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FIG. 3. Schematic top view of the experimentally tested arrays.
Array with smaller size C-shape cylinder (gray) corresponding to
configuration 1 in Table I. Array with larger size C-shape cylinder
(red with hatch) corresponding to configurations 2 and 3.

with even more efficiency for waves propagating with small
angles around a principal direction.

To illustrate the purpose, we numerically investigate the
interaction of regular waves with the arrays whose parameters
are given in Table I. We consider a numerical wave tank with
constant water depth h = 0.5 m where lattices organized as in
Fig. 3 take place. Those choices of organization for our lattices
are motivated by our experimental setup. For configuration 1,
we have kh ∈ [1.5 ; 9.3] which corresponds to water waves
in intermediate and deep water and we have kh ∈ [0.7 ; 4.7]
for configurations 2 and 3, which corresponds to water waves
in intermediate water, close to shallow water for smaller kh.
Incoming waves are at normal incidence, which corresponds
to waves propagating in the �-X direction.

We use the Helmholtz equation [Eq. (2)] combined with a
FE Galerkin method to calculate the free-surface elevation.

Figure 4 shows the transmission coefficients with respect to
the normalized wave number kL for our three configurations.
As predicted by the band diagrams, results are identical for
configurations 1 and 2. We easily identify the band gaps
at small kL (low frequencies) for which the transmission
coefficient is null, and the stop bands at larger kL for which the
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FIG. 4. Comparison of experimental measurements of the trans-
mision coefficient with numerical results for incident water waves
along �X with wave steepness H/λ = 2%.

Wavemaker Absorbing beachLocation of the arrays

FIG. 5. Schematic side view of the wave tank located at engineer-
ing school Centrale Marseille.

transmission coefficient is low. Those two gaps are separated
by a peak of transmission corresponding to the second band.

For the experimental part of the study, we use the wave tank
at engineering school Centrale Marseille, which is 17 m long
and 0.65 m wide. Waves are generated by a flap wave maker,
the center of the arrays is located at 10 m from the wave maker,
and an efficient 3-m-long absorbing beach takes place at the
end of the tank (see Fig. 5).

The amplitudes of reflected and transmitted waves are
measured with sets of resistive wave gauges placed in front and
behind the arrays. Additionally, we put a wave gauge inside
a cylinder of each column of the array. Each configuration is
tested for different wave steepness (H/λ entries in Table I).

Figure 4 shows the measured transmission coefficients for
incident wave steepness H/λ = 2%, compared with numerical
results. An important feature is that we did not observe
experimentally the peak of transmission corresponding to the
second band, for all the configurations. On the other hand,
we note similar results for configurations 1 and 2, with a
reasonable agreement with numerical computations, in the
sense that the global variation is respected. Differences with
numerics are presumably due to dissipative phenomena, such
as flow separation induced by sharp corners, viscous effects,
and wave breaking. Results for configuration 3, where the size
of the slit has been increased, are meanwhile in good agreement
with numerical results, especially for the minima.

A part of the explanation for transmission associated with
the second band can be found in the measurement of amplitude
inside cylinders. The results for configuration 3 displayed in
Fig. 6 show that the normalized amplitude becomes important
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FIG. 6. Experimental measurements of the transmission coeffi-
cient (T), reflection coefficient (R), normalized amplitude inside a
cylinder of the first column (Ac), and dissipation coefficient (Ed) [see
Eq. (8)] for configuration 3. The amplitude inside the cylinders for
other columns is similar but attenuated.
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FIG. 7. Photos of a cylinder at different time steps and for
different wave steepnesses. Photos are side views where the waves
propagate from the left (arrows), the dashed yellow lines are the plain
side of the cylinder, and the dashed green lines indicate the side with
the split. Cylinders are transparent such that we see water inside and
behind. (a) Water comes out of the cylinder for H/λ = 2%, (b) water
comes in the cylinder for H/λ = 2%, and (c) wave breaking in the
cylinder for H/λ = 5%. The vortices are identified inside the red
circles.

inside the cylinder for kL < 3, which includes the second
band. Additionally, for those values of kL, an important flow
separation, with generation of vortices, is observed on both
sides of the slit when water waves come in and out the cylinder
[see Figs. 7(a) and 7(b)]. For values of kL where the amplitude
is maximal inside the cylinder, wave breaking occurs [see
Fig. 7(c)].

The dissipation coefficient

Ed = 1 − (R2 + T 2), (8)

which is zero according to linearized potential flow theory,
confirms that when the amplitude becomes significant inside
cylinders, dissipation increases (yellow curve with triangle
markers in Fig. 6). This fact is observed for all the configura-
tions (see Fig. 8). Additionally, a part of the wave energy is
transferred to higher harmonic components.

Increasing the amplitude of incident water waves (wave
steepness up to 5%), we obtain results very similar to waves
with small amplitudes, as depicted in Fig. 9. The amplitude of
transmitted waves can be attenuated by 50% for a wide range
of wavelengths: 1.5 < kL < 4 which corresponds to 4L >

λ > 1.5L, by adjusting the size of the slit. More preferably,
the attenuation of transmitted waves reaches 70%–80% for
2 < kL < 3.5 (3.2L > λ > 1.8L). A video of a run test
for kl = 2.5 and H/λ = 7% is provided as Supplemental
Material [23].

Those observations evidence that this kind of array makes
a good choice to consequently minimize the impact of storm
swell on coastal zones.
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FIG. 8. Dissipation coefficients for all the studied configurations.
When the amplitude of waves is important in the cylinder (kL � 2.7),
we note that, the thinner the slit (configurations 1 and 2), the higher
the dissipation.

In this Rapid Communication, we have performed numeri-
cal and experimental demonstrations about a periodic structure
that can be used as a dike to protect coastal zones.

In a first step, starting with the study of an infinite
periodic lattice, we prove numerically that our choice of
C-shaped cylinders may induce a large low-frequency stop
band associated with a low transmission on a wide range of
wavelengths. In a second step, we illustrate it experimentally
and we extend the study to waves with large wave heights,
which confirms the positive action of the structure on storm
swell.

We stress that, with the knowledge of local parameters of
a coastal zone (bathymetry, periods of waves), it is always
possible to define a structure in our way, thanks to the link
between wavelengths and the lattice parameter L. Then,
for an array defined for waves with kL ∼ 5 (normal sea
state, maximum of transmission, invisible structure to water
waves), a significant increase of the period of waves will
be associated with a low transmission and a consequent
attenuation of the amplitude of waves. That means the structure
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FIG. 9. Comparison of experimental reflection and transmission
coefficients for different wave steepnesses (shown in parentheses).
Results for higher wave steepnesses are represented with markers
(circles for configuration 1 and squares for configuration 3).
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becomes active. On the other hand, when the period of
waves decreases, the associated band structure flattens and,
as for the second band, we should not capture thin peaks of
transmission.

Consequently, we are convinced that our results pave the
way for a technology of dikes, active for most cases of storm
swell. This technology may help to preserve the environment
and is less invasive than classical dikes.
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