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Robustness to in-domain viscous damping of a collocated boundary
adaptive feedback law for an anti-damped boundary wave PDE

Christophe Roman1, Delphine Bresch-Pietri2, Christophe Prieur1 and Olivier Sename1

Abstract—In this paper, the robustness to model mismatch
of a pre-existing collocated boundary adaptive feedback law is
investigated. This control law was originally designed for an
anti-damped pure wave Partial Differential Equation (PDE).
Actuation and measurements are located at the same boundary.
Adaptive terms account for uncertain parameters located at the
anti-damped boundary, opposite to the collocated actuation and
measurement. By extending and transforming the system state
using, in particular, backstepping, this paper establishes that
this controller is robust to sufficiently small in-domain damping.
In particular both stability and attractivity (convergence) are
established similarly as in the nominal case. Note moreover
that, assuming that some parameters are known, the exponential
stability to an attractor holds. Simulations are performed to
illustrate the interest of this study to attenuate mechanical
vibrations in an oil-drilling context.

I. INTRODUCTION

KEYSTONES of Partial Differential Equations include
transport phenomena, the heat equation, and the wave

propagation. This paper considers a special form of the latter.
The wave equation has been studied in several fields, mostly

in physics regarding Maxwell equations and light propagation.
Furthermore, premature failures of mechanical systems are of-
ten due to vibrations. These can be explained by the very deep
structure of matter, i.e., the string-mass atomic interactions,
and be modeled by a wave equation.

In this paper, we are interested in studying the robustness
of a previously designed control law to a class of model
mismatch. This question is of crucial interest from an appli-
cation point of view. Indeed, in practice, such uncertainties
are ubiquitous and robust control is thus of prime importance.
However, obtaining a controller satisfying a priori robustness
margins can turn out to be a very difficult problem. To handle
such an objective, we propose to extend the use of a given
adaptive collocated feedback law.

A. Wave PDE under consideration

We consider the following PDE system

utt(x, t) = uxx(x, t)−2λut(x, t) (1)
ux(1, t) =U(t) (2)
utt(0, t) = aqut(0, t)+a[ux(0, t)−d] (3)

in which λ is an in-domain damping coefficient, q > 0 is
an unknown anti-damping boundary parameter, d > 0 is an
unknown bias, a is a positive constant. The distributed variable
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of the system is u(x, t) ∈ R with x the spatial variable, and t
the time variable. The controlled input of the system is the
scalar U(t). For the case in which λ = 0, it has been proven
(in [3]) that all eigenvalues are on the complex right-half plan,
i.e., all have non negative real parts.

This system main characteristics are
(i). the unknown unstable parametric dynamics in (3) oppo-

site to the actuation (2)
(ii). the in-domain viscous damping in (1).
The goal is to stabilize the velocity ut(x, t), in particular
ut(0, t), using only the measurement of the collocated veloc-
ity ut(1, t) (and its history) despite in-domain damping and
parameters uncertainties.

B. Related work

The distinctive feature of system (1)-(3) is the dynamical
boundary (3). Note that, there exist some works on the multi-
dimensional wave equation with dynamic boundary condi-
tions, for example [9] and [17] where they consider a 3D
setting. However, the associated literature seldom focus on
stabilization (feedback law design) but on well-posedness,
stability and regularity as it is the case of both references.
Moreover standard literature on the one-dimensional wave
equation stabilization does not consider this type of dynamics
boundary (3). The most usual boundary condition is of Diriclet
type, as considered in [25] where the exponential stabilization
problem for a wave PDE with in-domain space-dependent term
has been solved. As an intermediate step, some papers consider
an anti-stable boundary. In [26], a backstepping observer based
feedback is presented. Then, in [13], considering that the anti-
stable boundary parameters are unknown, an adaptive control
has been proposed. However, none of the previously men-
tioned works can be straightforwardly extended to encompass
the dynamical boundary condition (3).

Some of the works focusing on such a problem are [8],
[6], [2], [16] and [22]. In [8], the dynamical boundary is
reconsidered as a PDE-ODE coupling. However, the control
input is located at the dynamical boundary. Here, it is con-
sidered at the opposite boundary. In [6], both boundaries are
dynamical but the wave in-domain damping is not considered.
In [2], a boundary control problem, inspired by a hanging
cable immersed in water is tackled. However, they do not
consider viscous distributed term neither in the wave equation
nor in the dynamic boundary condition, which is opposite to
the Dirichlet attraction. Moreover, the controller is a full-state
feedback. In [16], the wave equation is considered to model a
piezoelectric stack actuator. The paper establishes the flatness
of a wave PDE without distributed term and dynamic boundary
conditions. Moreover, using this property an output control



law is suggested. Finally, [22] investigates a problem similar
to ours and proposes a full-state backstepping controller. But
it requires the parameters a, d, q, and λ to be known and
full-state measurement.

C. Paper contributions

We are here interested in the analysis of a control law
requiring only the parameter a to be known, and using only
measurements at the controlled boundary (x = 1). This paper
is the logical continuation of [21] which establishes the
robustness to in-domain viscous damping of the design in [3].
[3] presented a boundary velocities output adaptive feedback,
i.e., using the measurement of ut(1, t) and ut(0, t).

This paper brings further developments to [4] where a
collocated boundary adaptive control was designed, i.e., using
the measurement of ut(1, t) only. Our purpose is to prove that
such a control law is robust with respect to small enough in-
domain damping.

In other words, our objective is to prove that the system
(1)-(3) is stable with the feedback law proposed in [4].

With this aim of view, we propose to build an extended
system. The main difficulty in carrying out this construction
is that the in-domain damping presence leads to states cou-
pling. Moreover, this coupling modifies numerous parts of the
analysis presented in [4], leading to unmatched adaptive error
terms.

All these difficulties are tackled with a careful choice of the
extended variables. The distributed states coupling is handled
by the introduction of an estimated variable, associated to
the backstepping methodology. By adding an extra state,
the adaptive error term error is handled, at the expense of
regularity.

The paper is organized as follows. In Section II, the problem
under consideration is stated and the control design is detailed.
In Section III, our robustness result is presented, i.e., the main
result of this paper. Section IV is devoted to its proof. Finally,
the interest of this result is illustrated through simulations of
the angular velocity regulation in a drilling vibrations model.

D. Notations

In this paper, | · | is the Euclidean norm and ‖u(·)‖ is the
spatial L2-norm of a functional [0,1] 3 x 7→ u(x, ·), which is
denoted as

‖u(·)‖=

√∫ 1

0
u(x, ·)2dx (4)

Sometimes, when the context is clear, the abusive notation ‖u‖,
will be used to denote ‖u(·)‖. Moreover, when the context is
clear, the notation u(t) will be used to denote u(., t).

For (a,b) ∈ R2 such that a < b, let us define the standard
projector operator on the interval [a,b] as a function of two
scalar arguments f (denoting the parameter being updated) and
g (denoting the nominal update law) in the following manner

PROJ[a,b]( f ,g) = g

 0 if f = a and g < 0
0 if f = b and g > 0
1 otherwise

(5)

II. PROBLEM STATEMENT AND CONTROL DESIGN

In this section, we present the problem under consideration,
as well as the adaptive control law we chose to study.

Let us recall that the main features of the considered wave
PDE are the in-domain damping, the unknown anti-damped
boundary dynamics opposite to the control. The objective is
to control the system velocity ut , using the controlled boundary
measurement ut(1, t) only. The following assumption will be
needed throughout the paper.

Assumption 1: There exist known constants q, q, d and d
such that q < q, d < d and q ∈ [q,q], d ∈ [d,d].

A. Presentation of the control and adaptive laws

We consider the following control law, which was developed
in [4] for the system (1)-(3) assuming λ = 0,

U(t) =−ut(1, t)+ d̂(t)− (c0 + q̂(t)−1)
(

e2a(q̂(t)−1)
µ(t)

+a
∫ t

t−2
ea(q̂(t)−1)(t−τ)

(
η(τ)− d̂(t)

)
dτ

)
(6)

in which c0 > 0 is a tuning constant, q̂ is an estimate of
the unknown parameter q, d̂ is an estimate of the unknown
parameters d, and µ and η are defined as

µ(t) =
1
2

[
ut(1, t)+ut(1, t−2)−ux(1, t)+ux(1, t−2)

]
(7)

η(t) =U(t)+ut(1, t) (8)

The parameter adaptation laws are

˙̂q(t) =
aγq

1+N(t)
PROJ[q,q]

{
q̂(t),µ(t)

(
µ(t)+b1(c0 + q̂(t)−1)

×
∫ t

t−2
e(a(q̂(t)−1)+ 1

2 )(τ−t+2)
σ(τ, t)dτ

)}
(9)

˙̂d(t) =
aγd

1+N(t)
PROJ[d,d]

{
d̂(t),−µ(t)−b1(c0 + q̂(t)−1)

×
∫ t

t−2
e(a(q̂(t)−1)+ 1

2 )(τ−t+2)
σ(τ, t)dτ

}
(10)

in which

N(t) =µ(t)2 +b1

∫ t

t−2
e

τ−t
2 +1

σ(τ, t)2dτ

+b2

∫ t

t−1
eτ−t+1(2µ(τ)−η(τ−2)+ d̂(t))2dτ (11)

σ(τ, t) =η(τ)− d̂(t)+(c0 + q̂(t)−1)
(

ea(q̂(t)−1)(τ−t+2)
µ(t)

+a
∫

τ

t−2
ea(q̂(t)−1)(τ−χ)(η(χ)− d̂(t))dχ

)
(12)

The tuning parameters of the control law are c0, b1, b2, γq
and γd . In the case where the adaptive parameters are known
(i.e., q̂= q and d̂ = d) and without in-domain damping (λ = 0),
c0 represents the closed-loop decay rate of the velocity at
ut(0, t).

As it has been said, the adaptive control law needs only
the knowledge of ut(1, t), its history, and the value of the



parameters a. Indeed, using the controlled boundary of the
system (2) one gets that µ defined in (7) can be expressed as

µ(t) =
1
2
[
U(t)+ut(1, t)−U(t−2)+ut(1, t−2)

]
(13)

The remaining parameters, i.e., c0, b1, b2, γq and γd are tuning
parameters and thus are set by the user. As it is usual in
prediction-based design, the control law needs the history of
itself and the history of the output (here ut(1, t)) on a two
units of time window. In the application in view, this is not
a problem to use ut(1, t) and its past values but, actually, the
key issue is to avoid using ut(0, t). The aforementioned control
law is thus well defined. Indeed, using (2), (6), (7) and (8),
one gets

U(t)
(

1− c0 + q̂(t)−1
2

e2a(q̂(t)−1)
)
=−ut(1, t)

(
1+

c0 + q̂(t)−1
2

× e2a(q̂(t)−1)
)
+ d̂(t)− (c0 + q̂(t)−1)

(
e2a(q̂(t)−1)

2
(ut(1, t−2)

+U(t−2))+a
∫ t

t−2
ea(q̂(t)−1)(t−τ)[U(τ)+ut(1,τ)− d̂(t)]dτ

)
(14)

Now when c0+q̂(t)−1
2 e2a(q̂(t)−1) 6= 1, the control law satisfies

a Volterra integral of the second kind and therefore is well-
defined. Moreover, in the opposite case where c0 + q̂(t)−1 =
2e2a(q̂(t)−1) > 0, the time derivative of (14) gives also a Volterra
integral of the second kind and therefore is well-defined.
Nevertheless, the considered solution needs to be regular
enough for utt(1, ·) to have meaning. This is the case as we
detail in Section III.

B. Discussion on the control law design

First, let us enter into the details of the control law (6).
Define the Riemann variables

ζ (x, t) = ut(x, t)+ux(x, t)− d̂(t) (15)

ω(x, t) = ut(x, t)−ux(x, t)+ d̂(t) (16)

along with
W (t) =U(t)+ut(1, t)− d̂(t) (17)

v(t) = ut(0, t) (18)

Then, one can express the system (1)-(3) as

v̇(t) = a(q−1)v(t)+a[ζ (0, t)− d̃(t)] (19)

ζt(x, t) = ζx(x, t)− ˙̂d(t)−λ (ζ +ω) (20)
ζ (1, t) =W (t) (21)

ωt(x, t) =−ωx(x, t)+
˙̂d(t)−λ (ζ +ω) (22)

ω(0, t) = 2v(t)−ζ (0, t) (23)

in which d̃(t) = d − d̂(t). These equations represent two
coupled transport phenomena with distributed terms, coupled
with the ODE (19).

Note that q is an unknown constant which we do not use
neither in the control law nor the parameters update law.
(19)-(23) is only a reformulation of the model at stake which
indeed does depend on q, as q is a parameter of the model.

In the case where λ = 0, note that the two transport
phenomena (20) and (22) are not coupled anymore. Then, for
any x, the variable ζ (x, t) can be expressed as a delayed value

of the boundary (21) (applying Lemma 6 in Appendix A-1
to (20)). This enables us to consider (19) as an input-delay
system, as studied in [1], [14], and [15].

Furthermore, when λ = 0, using Lemma 6 in Appendix A-1,
one can get from (7)

µ(t) = ut(0, t−1) (24)

Note that, considering q̂ = q and d̂ = d, using (6) and (17),
one can prove that

W (t) =−(c0 +q−1)ut(0, t +1) (25)

Indeed, (6) is a prediction starting from µ(t) = ut(0, t−1)
(according to (24)) over a two units of time horizon: one
for the measurement delay (24) and one for the input delay
resulting from (20). Then, the closed-loop system state v
satisfies

v̇(t) =−ac0v(t), for t > 1 (26)

Therefore, in the nominal case λ = 0, q̂ = q and d̂ = d,
exponential stabilization is achieved. In the general case,
applying the certainty equivalence principle, (6) follows.

The objective of this control law is to stabilize the system
(1)-(3) using the controlled boundary velocity measurement
ut(1, t) only. This is a challenging objective, since lots of
control techniques, such as backstepping, require full-state
measurement, which, for a PDE system, is seldom the case
in practice. Thus, many approaches use an observer (see
[20] when both boundary velocities are measured). To our
knowledge, such an observer has not been designed yet for
the framework under consideration. For this reason, we rely on
the reconstruction of a delayed value of the boundary velocity
(7) (which satisfies (24) only when λ = 0). Nevertheless, any
physical relevant model has dissipative terms. Indeed, in the
application considered in Section V, λ = 0 means that the
drillstring is in a vacuum field. This emphasizes the need
of the present study in order to use the considered control
in real applications. Moreover, the prediction-based design is
related to the Smith predictor, generally speaking the Smith
predictor is not known to perform effectively with respect to
model mismatch. Furthermore, λ 6= 0 prevents the use of a
prediction-based design. However, note that λ 6= 0 could help
for other control design, e.g. passivity. Intuitively, damping
should help to stabilize the system. However as the control
technique used in [4] is based on a delay representation of
the system which only holds without damping, the closed-
loop analysis with damping is complexified here as it involves
coupled PDEs.

The adaptive laws (9)-(10) result from a Lyapunov-based
design, i.e., from indirect adaptive control. Moreover ˙̂d and ˙̂q
are bounded by definition, due to the normalization term N
in (9)-(10). Besides, the projector operator allows to limit the
estimated variable within its boundaries (for more details on
adaptive control paradigm see [10]).

Finally, note that the control law is robust with respect to a
constant input disturbance, due to the structure of (10), which
can be seen as an integral term.



C. Problem under consideration

We wish to study the robustness of the control law (6)
designed in [4] with respect to λ , i.e., in-domain damping
model mismatch. We are looking for a condition on λ such that
the system (1)-(3), using the previous control (6) and adaptive
laws (9)-(10) (designed for λ = 0), is still Lyapunov stable
and convergent in a sense detailed in the following section
(see Theorem 1).

III. MAIN RESULT

In the following, the system state is denoted as

X (t) =[u(t), ut(t), u(0, t), ut(0, t), q− q̂(t), d− d̂(t)]T

∈ H2(0,1)×H1(0,1)×R4 (27)

Indeed, due to the dynamical boundary (3), u(0, t) and ut(0, t)
need to be considered, in addition to (u,ut), to guarantee
the well-posedness of the system (see [8]). Furthermore, both
adaptive estimation terms are included in the state due to the
choice of the (adaptive) dynamical control law. Nevertheless,
as the goal of the control law is the control of velocity, we
introduce two vectors

Xs(t) =
[
ux(·, t), ut(·, t), ut(0, t), q− q̂(t), d− d̂(t)

]
(28)

Xa(t) =
[
ux(·, t), ut(·, t), ut(0, t), d− d̂(t)

]
(29)

The first vector is the partial state for which stabilization is
achieved. The second one satisfies a convergence property, as
emphasized below.

Theorem 1: Consider the closed-loop system consisting
of the plant (1)-(3) satisfying Assumption 1, the control law
(6) and the parameter estimation laws (9)-(10). Define the
functionals Γ, Ξ and ϒ as

Γ(Xs(t)) =ut(0, t)2 +‖ut(t)‖2 +‖ux(t)−d‖2 +‖uxt(t)‖2

+‖uxx(t)‖2 +(q− q̂(t))2 +(d− d̂(t))2 (30)

Ξ(Xs(t)) = max
s∈[0,3]

Γ(Xs(t− s)) (31)

ϒ(Xa(t)) =ut(0, t)2 +‖ut(t)‖2 +‖ux(t)−d‖2

+(d− d̂(t))2 (32)

Then, for all c0 > 0, there exist b2(c0) > 0, b1(c0,b2) > 0,
γ(c0,b1,b2)> 0, such that, for

• b2 ∈ (0,b2),
• b1 ∈ (b1,∞),
• γd , γq ∈ (0,γ),

there exists λ (c0,b1,b2,γ,Xs(0)) > 0 such that, when λ ∈
(0,λ ), it follows,

Ξ(Xs(t))6 R(eρΞ(Xs(0))−1) (33)

and
lim
t→∞

ϒ(Xa(t)) = 0 (34)

for suitable R > 0 and ρ > 0.

The parameters c0, b1, b2, γq and γd are tuning parameters
for the control law and adaptive laws. The scalar b2, b1, and
γ are the parameter bounds. λ is the upper bound of the in-
domain viscous coefficient λ for which the system (1)-(3) is

stable with respect to the subspace defined as the kernel of
Ξ(·). This is what (33) means.

As usual in adaptive control [10] (e.g. see [5] for a ap-
plication of it to the wave equation), this result includes two
distinct properties, (i) stability in term of the functional Ξ and
(ii) convergence (attractivity) in term of the functional ϒ. This
is due to the fact that adaptive estimation terms may be stable
but not necessarily asymptotically stable, as the term q− q̂.

Note that ∀c ∈ R, u(x, t) = dx + c fulfills ϒ(X (t)) = 0.
Recall that the objective of the considered adaptive control
law is to stabilize ut(., t). As the application considered in
Section V is the control of torsional vibration, we do not need
to control the angular position. This is a feature inherited from
the control law in [4] which is usual for the considered control
problem, e.g. [23], [22], and [20]. The presented method
just extends the result in [4] for in-domain viscous damping
mismatch, it does not change the goal of the considered
adaptive control law. Note that, if one is interested on the
position stabilization, one could study the robustness mismatch
of the adaptive control design in [5]. It is worth noticing that
U(t)= d for u(x, t)= dx+c, ∀c∈R. This is consistent with the
fact that d can be seen as a feedfoward bias, and the adaptive
control law ˙̂d as an integral control.

It is worth noticing that, if the adaptation parameter q̂ is
perfectly known (q̂ = q), then the exponential stability of the
closed-loop system (1)-(3) with the control law (6) and the
adaptive law (10) in terms of the functional Ξ follows ( see
Lemma 2). The associated attractor is the kernel of Ξ(·).

Comment of the closed-loop system well-posedness
Even if the well-posedness of the closed-loop system is not

tackled in this paper, the idea of its proof can be stated in
three steps, as follows
(i). For each solution of the original system (of state X

defined in (27)) there is a solution of the Extended Target
system (of state Xe defined in Section IV-A6). Therefore
if one proves that the extended system is well-posed, then
so is the original system. Note that the Extended Target
system is a coupled hyperbolic PDEs plus ODEs system.

(ii). In [18], the authors study the local well-posedness of hy-
perbolic PDE-ODE systems. The Extended Target system
(of state Xe defined in Section IV-A6) is close to the one
considered in [18]. Indeed, the first order hyperbolic PDE
source terms, which are depending on ODE variables, can
be canceled using a change of variable (like the one in
the proof in Appendix A-1 (121)).

(iii). Using the particular property of the Extended Target sys-
tem (of state Xe), i.e., diagonal, Lipschitz and marginally
stable, we can use Theorem 5.2 in [18], which states the
local well-posedness. Then using the finite time blow-
up criterion from Theorem 5.3 in [18], and the stability
property from Lemma 2 in Section IV-B, one is able
to conclude the global well-posedness of the Extended
Target system (of state Xe defined in Section IV-A6).

IV. PROOF OF THEOREM 1
The method proposed in this section to prove Theorem 1

is to define an extended system (of state Xe), whose stability



implies the stability of the original system in the sense of (33)
in Theorem 1.

The proof is organized as follows. First, in Section
Section IV-A, an extension of the system referred to as the
Extended Target system, is presented. Second, we define a
corresponding Lyapunov functional V (Xe), the stability of
which is proved in Section IV-B. Then, in Section IV-C, two
lemmas detail the equivalence properties between V (Xe))
and Ξ(Xs) introduced in (31). Finally, the convergence with
respect to the functional ϒ, defined in (32), is established in
Section IV-D, and the proof of Theorem 1 is concluded in
Section IV-E.

A. Extended Target system

The different steps to build the Extended Target system are
listed below.
• First the system (1)-(3) is reformulated using the Riemann

invariants into coupled transport phenomena with an ODE
(19)-(23)

• The two transport phenomena are divided into two dy-
namics: the Estimated system and the Auxiliary system
(Section IV-A1).

• Delayed state variables are introduced to handle the fact
that the control design involves an output delay from (7)
and (24) (Section IV-A2).

• A backstepping transformation is performed on a subset
of these delay variables and the corresponding Target
system is computed in Section IV-A3.

• A new state variable is added to handle an adaptive error
term in the Lyapunov analysis (Section IV-A4).

• Finally, the system is extended with the time-and space-
derivatives of the Estimated and the Auxiliary systems
(Section IV-A5).

The last subsection (Section IV-A6) is a summary of the
Extended Target system.

The following subsection are organized this way: first we
define the variables we use to extend the system, second we
compute their associated dynamics, and lastly we comment
about their use.

1) Estimated and Auxiliary systems

Consider the following distributed variables

ζ̂ (x, t) = ζ (x, t)

+λ

∫ 1

x
(ζ (χ, t + x−χ)+ω(χ, t + x−χ))dχ (35)

ω̂(x, t) = ω(x, t)+λ

∫ x

0
(ζ (χ, t− x+χ)+ω(χ, t− x+χ))dχ

−λ

∫ 1

0
(ζ (χ, t− x−χ)+ω(χ, t− x−χ))dχ (36)

ζ̃ (x, t) = ζ (x, t)− ζ̂ (x, t) (37)
ω̃(x, t) = ω(x, t)− ω̂(x, t) (38)

Proposition 1: The state v (18) of the ODE (19) is solution
of

v̇(t) = a(q−1)v(t)+a[ζ̃ (0, t)+ ζ̂ (0, t)− d̃(t)] (39)

The Estimated system satisfies

ζ̂t(x, t) = ζ̂x(x, t)− ˙̂d(t) (40)

ζ̂ (1, t) =W (t) (41)

ω̂t(x, t) =−ω̂x(x, t)+
˙̂d(t) (42)

ω̂(0, t) = 2g(t)− ζ̂ (0, t) (43)

in which g(t) = v(t), and the Auxiliary system is

ζ̃t(x, t) = ζ̃x(x, t)−λ (ζ̃ + ω̃ + ζ̂ + ω̂)(x, t) (44)

ζ̃ (1, t) = 0 (45)

ω̃t(x, t) =−ω̃x(x, t)−λ (ζ̃ + ω̃ + ζ̂ + ω̂)(x, t) (46)

ω̃(0, t) =−ζ̃ (0, t) (47)

Proof : From (19) and the definitions (35)-(38) one
obtains (39).

From the definitions (35)-(36), considering the Riemann
invariants (20)-(23) one gets (40)-(43). (44)-(47) are obtained
in a similar manner. �

We choose to denote g = v in (43) because v can be
considered as a state and it can be express by other state
variables. Therefore we kept v to denote the state, and g denote
the values of v with respect to other state variables.

These definitions follow the same ideas as in [21]. The
system (20)-(23) is decomposed in two parts. The first part
(40)-(43) is referred to as the Estimated system and has the
same decoupled dynamics as the Nominal system (when λ = 0
in (20)-(23)). It can be seen as the part where the control
acts on, while the second part (44)-(47) encapsulates all the
remaining dynamics. This second system is referred to as the
Auxiliary system.

2) Delayed states

As the control law (6) uses a two units of time window, let us
introduce some variable function of delayed state variables

δ̂ (x, t) = ζ̂ (x, t−1)+ d̂(t−1)− d̂(t) (48)

β̂ (x, t) = ω̂(x, t−1)− d̂(t−1)+ d̂(t)+ ω̃(1, t− x) (49)

δ̃ (x, t) = ζ̃ (0, t + x−1) (50)

α̂(x, t) =

{
δ̂ (2x, t), x ∈ [0,1/2]
ζ̂ (2x−1, t), x ∈ [1/2,1]

(51)

Proposition 2: The variables µ , β̂ , α̂ , and δ̃ satisfy

µ̇(t) = a(q−1)µ(t)+a[α̂(0, t)+ δ̃ (0, t)− d̃(t)]

− a(q−1)
2

ω̃(1, t)+
ω̃t(1, t)

2
(52)

β̂t(x, t) =−β̂x(x, t)+
˙̂d(t) (53)

β̂ (0, t) = 2µ(t)− α̂(0, t) (54)

2α̂t(x, t) = α̂x(x, t)−2 ˙̂d(t) (55)
α̂(1, t) =W (t) (56)

δ̃t(x, t) = δ̃x(x, t) (57)

δ̃ (1, t) = ζ̃ (0, t) (58)



Proof : From the definition (7) of µ , using the defini-
tion (15)-(16), along with the definitions (37)-(38), applying
Lemma 6 in Appendix A-1 for the transport equation (40) and
(42) and finally using the definition (18), one gets that

µ(t) = v(t−1)+
1
2

ω̃(1, t) (59)

According to the ODE satisfied by v (39), and using δ̃ , and α̂ ,
i.e., (50), and (51), one gets the following ODE at time t−1

v̇(t−1) = a(q−1)v(t−1)+a[α̂(0, t)+ δ̃ (0, t)− d̃(t)] (60)

Moreover, the time derivative of (59) gives (52).
Now, from the definition of β̂ (49), using the transport

equation (42) and the associated boundary condition (43) along
with the expression (59), one gets (53) and (54).

Using the definition (48), the transport equation (40), and
the associated boundary condition (41), one gets (55) and (56).

Taking space and time derivatives of definition (50), one
obtains the transport equation (57) associated to the boundary
condition (58). �

In the following, we give some comments on these addi-
tional states.

First, µ (52) is considered instead of v because the state the
control law (6) depends on µ .

Besides, the variable δ̃ accounts for the input delay
ζ̃ (0, t−1) in (60). Similarly the variable β̂ represents the delay
of the variable ω̂ .

Furthermore, the state variable α̂ represents the history of
ζ̂ over a two units of time window. The idea behind gathering
ζ̂ and δ̂ into (51) is to obtain a unique distributed variable to
perform a backstepping transformation (see the next section).
However, we still need the variable ζ̂ for two reasons. First,
the boundary condition (43) depends on ζ̂ (0, t). Second, in
the last part of the reformulation, we need to consider the
derivatives of the Estimated and Auxiliary systems (40)-(47)
which are depending on ζ̂ so it eases the analysis.

Finally, one can observe that the last term of (52)
is not expressed in the current set of variable, i.e.,
α̂, β̂ , δ̃ , ζ̂ , ω̂, ζ̃ , ω̃, µ, q̃, and d̃. This is why the
system representation is extended considering state derivatives
in Section IV-A5.

3) Backstepping transformation

Before presenting the Target system, the control law is refor-
mulated as follows.

Claim 1: W defined in (17) can be expressed as

W (t) =− (c0 + q̂(t)−1)
(

e2a(q̂(t)−1)
µ(t)

+2a
∫ 1

0
e2a(q̂(t)−1)(1−χ)

α̂(χ, t)dχ

)
(61)

Proof : From (6)-(8) and (17), with the change of variable
χ = t +2x−2, one gets

W (t) =− (c0 + q̂(t)−1)
(

e2a(q̂(t)−1)
µ(t)+2a

∫ 1

0
e2a(q̂(t)−1)(1−x)

×
(
W (t +2x−2)+ d̂(t +2x−2)− d̂(t)

)
dx
)

(62)

Then, applying Lemma 6 in Appendix A-1 with y = 1 on (55)
and using (56), one obtains (61). �
Consider the following backstepping transformation of α̂

ẑ(x, t) =α̂(x, t)+(c0 + q̂(t)−1)
(

e2a(q̂(t)−1)x
µ(t)

+2a
∫ x

0
e2a(q̂(t)−1)(x−χ)

α̂(χ, t)dχ

)
(63)

Lemma 1: The backstepping transformation (63) together
with the control law (61) transform the plant (52)-(56) into
the following Target system

µ̇(t) =−ac0µ(t)+a[ẑ(0, t)+ δ̃ (0, t)+µ(t)q̃(t)− d̃(t)]

− a
2
(q−1)ω̃(1, t)+

ω̃t(1, t)
2

(64)

2ẑt(x, t) = ẑx(x, t)+ ˙̂q(t)gq(x, t)+
˙̂d(t)gd(x, t)

+
[
q̃(t)µ(t)− d̃(t)+ δ̃ (0, t)

+ [− (q−1)
2

ω̃(1, t)+
ω̃t(1, t)

2a
]
]
h(x, t) (65)

ẑ(1, t) = 0 (66)

β̂t(x, t) =−β̂x(x, t)+
˙̂d(t) (67)

β̂ (0, t) = (1+ c0 + q̂(t))µ(t)− ẑ(0, t) (68)

in which

gd(x, t) =−2−4a(c0 + q̂(t)−1)
∫ x

0
e2a(q̂(t)−1)(x−χ)dχ (69)

h(x, t) = 2a(c0 + q̂(t)−1)e2a(q̂(t)−1)x (70)

gq(x, t) = 2e2a(q̂(t)−1)x
µ(t)+4a

∫ x

0
e2a(q̂(t)−1)(x−s)

α̂(s, t)ds

+(c0 + q̂(t)−1)
(

4axe2a(q̂(t)−1)x
µ(t)

+8a2
∫ x

0
(x−χ)e2a(q̂(t)−1)(x−χ)

α̂(χ, t)dχ

)
(71)

and in which α̂ can be expressed via the inverse backstepping
transformation

α̂(x, t) =ẑ(x, t)− (c0 + q̂(t)−1)
(

e−2ac0x
µ(t)

+2a
∫ x

0
e−2ac0(x−χ)ẑ(χ, t)dχ

)
(72)

Proof : The proof is established from the time and space
derivatives of (63), using the expressions (55)-(56) and (52).
As the computations are fairly standard, they are omitted. �

4) Adaptive error term

Consider the following variable

d̃µ(t) =−ac0µ(t)−ad̃(t) (73)

Proposition 3: The dynamics of d̃µ is

˙̃dµ(t) =−ac0d̃µ(t)−a2c0

[
ẑ(0, t)+ δ̃ (0, t)+µ(t)q̃(t)

− 1
2
(q−1)ω̃(1, t)+

1
2a

ω̃t(1, t)
]
+a ˙̂d(t) (74)



and g in (43) can be expressed as

g(t) =ea(q−1)
µ(t)− ea(q−1) ω̃(1, t)

2

+a
∫ 1

0
ea(q−1)(1−χ)[α̂(χ/2, t)+ δ̃ (χ, t)]dχ

+

[
c0µ(t)+

d̃µ(t)
a

][
ea(q−1)−1

q−1

]
(75)

in which α̂ is expressed using the inverse backstepping trans-
formation (72).

Proof : Computing the time derivative of (73) and using
(64), one gets (74).

Using a prediction of the ODE (60), Lemma 6 in
Appendix A-1 for the transport phenomena (55) and (57), and
thanks to the definition (59), one obtains

g(t) = v(t) = ea(q−1)
µ(t)− ea(q−1)

2
ω̃(1, t)+a

∫ 1

0
ea(q−1)(1−χ)

× [α̂(χ/2, t)+ δ̃ (χ, t)]dχ− d̃(t)

[
ea(q−1)−1

q−1

]
(76)

Finally, using (73), one gets (75). �
A first objective of this proposition is to reformulate the

function g in terms of the variables of interest, that is µ , ẑ,
β̂ , ζ̂ , ω̂ , ζ̃ , ω̃ , δ̃ , q̃, and d̃. A second objectif is to handle
the last term of (76) involving a d̃(t). Usually, the update law
˙̂d could be designed to cope with this term. However, in the

nominal case λ = 0 in [4], the Lyapunov analysis was carried
out in a cascaded manner. First the stability of ẑ, µ , and β̂ is
established. Secondly using Grönwall’s inequality the stability
of ω̂ is obtained (for more details see [4]).

Here, we cannot use the same developments, due the inter-
connections between the variables generated by the in-domain
damping. This compels us to perform a Lyapunov analysis
of the entire system, and to deal with the d̃ term appearing in
(76). The additional variable d̃µ is thus introduced to overcome
this difficulty.

5) Introduction of the first-order derivatives of the Estimated
and Auxilary systems

Note that (64) and (74) are both depending on ω̃t(1, t). To
get that type of term in the Lyapunov analysis we have to
take under consideration the dynamic of ω̃t . As presented in
the sequel, the dynamic of ω̃t is coupled with the dynamic of
ζ̃t , ω̂x and ζ̂x. Therefore we extend the system by considering
derivatives of the state variables of the Estimated and Auxiliary
systems (40)-(47), as follows.

Proposition 4: The dynamics of ζ̂x and ω̂x are

ζ̂xt(x, t) = ζ̂xx(x, t) (77)

ζ̂x(1, t) = Ẇ (t)+ ˙̂d(t) (78)
ω̂xt(x, t) =−ω̂xx(x, t) (79)

ω̂x(0, t) =−2ġ(t)+ ζ̂x(0, t) (80)

in which the expressions of the time derivative of g and W are
given in Appendix B. The dynamics of ζ̃t and ω̃t are

ζ̃tt(x, t) = ζ̃xt(x, t)−λ (ζ̃t + ω̃t + ζ̂x− ω̂x)(x, t) (81)

ζ̃t(1, t) = 0 (82)

ω̃tt(x, t) =−ω̃xt(x, t)−λ (ζ̃t + ω̃t + ζ̂x− ω̂x)(x, t) (83)

ω̃t(0, t) =−ζ̃t(0, t) (84)

Proof : Taking a space-derivative of the Estimated system
transport (40) and (42), one gets respectively (77) and (79).
From (40) evaluated for x= 1 and the boundary condition (41),
one gets (78). With a similar argument on (42) and (43), (80)
follows.

Adding the Estimated system transport phenomena (40) and
(42), one obtains

ζ̂t + ω̂t = ζ̂x− ω̂x (85)

Thus, the time derivative of the Auxiliary system (44)-(47)
gives (81)-(84). �

The state variables of the Extended Target system are
detailed explicitly in the next section.

6) Summary of the Extended Target system

To summarize, the Extended Target system whose state is

Xe(t) = [µ(t), ẑ(t), β̂ (t), δ̃ (t), ζ̂ (t), ω̂(t), ζ̃ (t),

ω̃(t), d̃µ(t), ζ̂x(t), ω̂x(t), ζ̃t(t), ω̃t(t), q̃(t), d̃(t)]T

∈ {R, L2(0,1)3, H1(0,1)4, R, L2(0,1)4, R2} (86)

consists of (64)-(68), (57)-(58), (40)-(47), (77)-(84), and (74),
with the update laws (9)-(10).

Figure 1 illustrates the different steps detailed previously to
build the Extended Target system.
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Fig. 1. Schematic view of the successive transformations and extensions to
obtain the Extended Target system, variables of which are encircled.

B. Lyapunov analysis

This section focus on the stability analysis of the Extended
Target system. First, we formulate the following claim



Claim 2: The estimation laws (9)-(10) can be rewritten as

˙̂q(t) =
aγq

1+N(t)
PROJ[q,q]

{
q̂(t),µ(t)

(
µ(t)+2b1 (87)

× (c0 + q̂(t)−1)
∫ 1

0
e2(a(q̂(t)−1)+ 1

2 )xẑ(x, t)dx
)}

˙̂d(t) =− aγd

1+N(t)
PROJ[d,d]

{
d̂(t),µ(t)+2b1 (88)

× (c0 + q̂(t)−1)
∫ 1

0
e2(a(q̂(t)−1)+ 1

2 )xẑ(x, t)dx
}

N(t) = µ(t)2 +2b1

∫ 1

0
exẑ(x, t)2dx+b2

∫ 1

0
e1−x

β̂ (x, t)2dx

(89)

in which β̂ is defined in (49) and ẑ in (63).
Proof : The proof follows arguments similar to the ones

of Claim 1 in Section IV-A3. �
Then, one is able to establish the following key lemma.

Lemma 2: Let us consider the Lyapunov functional

V (Xe(t)) =V1(t)+V2(t)+V3(t)+V4(t)+V5(t) (90)

with

V1(t) = log(1+N(t))+
q̃(t)2

γq
+

d̃(t)2

γd
(91)

V2(t) = b3

∫ 1

0
ex

ζ̂ (x, t)2dx+b4

∫ 1

0
e1−x

ω̂(x, t)2dx (92)

V3(t) = b5

∫ 1

0
ex

ζ̃ (x, t)2dx+b6

∫ 1

0
e1−x

ω̃(x, t)2dx

+b7

∫ 1

0
ex

δ̃ (x, t)2dx (93)

V4(t) = b8d̃µ(t)2 (94)

V5(t) = b9

∫ 1

0
ex

ζ̂x(x, t)2dx+b10

∫ 1

0
e1−x

ω̂x(x, t)2dx

+b11

∫ 1

0
ex

ζ̃t(x, t)2dx+b12

∫ 1

0
e1−x

ω̃t(x, t)2dx (95)

in which N is expressed as (89), and b3, ...,b12 > 0.
For all c0 > 0, there exist b2(c0) > 0, b1(c0,b2) > 0,

γ(c0,b1,b2)> 0, such that, for all
• b2 ∈ (0,b2),
• b1 ∈ (b1,∞),
• γd , γq ∈ (0,γ),

there exist bi > 0, i∈ {3, ...,12} and λ (c0,b1,b2,γ,X (0))> 0,
such that, for all λ ∈ (0,λ ), it follows

V̇ (t)6− ς

1+N(t)

[
ẑ(0, t)2 + δ̃ (0, t)2 +µ(t)2 + d̃µ(t)2

+ ζ̂ (0, t)2 + ζ̃ (0, t)2 +‖ẑ‖2 +‖β̂‖2 +‖ζ̂‖2 +‖ζ̃‖2 +‖ω̂‖2

+‖ω̃‖2 +‖δ̃‖2 +‖ζ̂x‖2 +‖ζ̃x‖2 +‖ω̂t‖2 +‖ω̃t‖2
]

(96)

for a suitable ς > 0, and

V (Xe(t))6V (Xe(0)), t > 0 (97)

Proof : The proof is given in Appendix C �

C. Relation between the functionals Γ(Xs) and V (Xe)

In order to establish the stability condition (33) of
Theorem 1, we formulate the following two lemmas.

Lemma 3: Consider Γ defined in (30) and V defined in
(90). There exists R > 0, such that

Γ(Xs(t))6R(eV (Xe(t))−1) (98)

Proof : The details of the proof are given in Appendix D.
�
To establish Theorem 1, we also need to bound V by a function
of Γ. This is the purpose of the next lemma.

Lemma 4: Consider Γ defined in (30) and V defined in
(90). There exists ρ > 0 such that

V (Xe(t))6 ρ max
s∈[0,3]

Γ(Xs(t− s)) (99)

Proof : The proof is given in Appendix D �

D. Convergence analysis

We conclude on the convergence with respect to the func-
tional ϒ (32).

Lemma 5: v(t), ‖ω̂(t)‖, ‖ζ̂ (t)‖, ‖ζ̃ (t)‖, and ‖ω̃(t)‖ tend
to zero as t tends to infinity.
The proof, based on Barbalat’s lemma, is presented in Ap-
pendix E.

E. Conclusion on the proof of Theorem 1

Gathering (98) from Lemma 3 and (99) from Lemma 4, one
gets the existence of R > 0 and ρ > 0 such that

Γ(Xs(t))6 R(eρ maxs∈[0,3] Γ(Xs(−s))−1), (100)

Then, (100) along with (97) from Lemma 2 give the stability
result (33) in Theorem 1.

Finally, using Lemma 5, (15)-(16) and (37)-(38), it follows
that ut(0, t) = v(t), ‖ut(t)‖ and ‖ux− d̂(t)‖ and also d− d̂(t)
tend to zero as t tends to infinity. In other words, (34) holds.
This concludes the proof of Theorem 1.

V. APPLICATION TO DRILLING TORSIONAL VIBRATIONS

For illustration purposes, the control law presented in Sec-
tion II is applied to a nonlinear drilling model, presented in
the next section.

A. Drilling context and nonlinear model

One of the possible applications of the control law (6)
associated with the wave equation model (1)-(3) is to attenuate
the torsional vibrations occurring in drilling facilities (e.g. [3],
[4], and [22]). Such vibrations can lead to the so called stick-
slip phenomenon [12]. Indeed, the friction at the bottom of
the hole, between the rock and the drillbit, forces sometimes
the bit to stop, while the surface is still rotating. After some
time, the bit will start moving again at velocity higher than
the top velocity (see Figure 5 before 15 s). This torsional
dynamics can be modeled by a wave equation with a nonlin-
ear boundary condition utt(0, t) = aF

(
ut(0, t)

)
+aux(0, t) (see

[23], [24]), accounting for the friction between the drillbit and



Symbol Description Value

L Length of the drillstring 2000 m
J Drillstring second moment of area 1.19 e-5 m4

G Shear modulus 79.3 e10 N/m2

I Drillstring inertia’s moment per length unit 9.5 e-2 kg.m2

Ib BHA moment of inertia 311 kg.m
Dd p Outer diameter of the drill pipe 1.27 e-1 m
dd p Inner diameter of the drill pipe 1.08 e-1 m
µm Field viscous coefficient {0,10,20} Pa.s
cb Sliding torque coefficient 2 e3 N.m.s/rad

Ttob Torque-on-the-bit parameter 7.5 e2 N.m
α1, α2, α3 Friction parameters 5.5; 2.2; 3500

γ Damping parameter 0.03 N.m.s/rad

These value are taken from [22] and [11]. The friction phenomenon is described by the
model in [27].

TABLE I
PARAMETERS VALUES OF THE NONLINEAR MODEL USED IN SIMULATION

the rock. Even if there exist phenomenological expressions
of this friction F (see [27], [24] and [19]), they depend on
some parameters, such as the weight on the bit, drilling mud
properties, and the nature of the rock. So they may change
during operation. This is the reason why using an adaptive
controller is of high interest for this application.

Following [24], the nonlinear dynamical model of the
drillstring rotatory angle is denoted θ(ξ ,t) at length ξ and
time t. By convention, the top boundary is at ξ = 0 and the
bottom boundary at ξ = L, and the torsional dynamics can be
modeled by

GJθξ ξ (ξ ,t)− Iθtt(ξ ,t)−Λθt(ξ ,t) = 0 (101)

along with the boundary conditions

GJθξ (0,t) = cα

(
θt(0,t)−Ω(t)

)
(102)

Ibθtt(L,t) =−GJθξ (L,t)−TBIT (θt(L,t)) (103)

in which Ω(t) is the angular velocity of the rotatory table rotor
the actual actuator at time t, TBIT is the nonlinear rock-on-
the-bit friction term and other constants are listed in Table I.
Note that there exist alternative models of this phenomenon,
such as proposed in [23] which takes into account the axial
vibrations.

Following [22], we consider the changes of variables

ξ = L(1− x) (104)

t= L

√
I

GJ
t ∆
= ct t (105)

u(x, t) = θ(ξ ,t) (106)

U(t) =
Lcα

GJ

(
Ω(ct t)− 1

ct
ut(1, t)

)
(107)

F(·) =− L
GJ

TBIT

(
·
ct

)
(108)

with the following constants

a = L
I
IB
, 2λ =

ΛL√
GJI

(109)

This allows to rewrite (101)-(103) as

utt(x, t) = uxx(x, t)−2λut(x, t) (110)
ux(1, t) =U(t) (111)
utt(0, t) = aF(ut(0, t))+aux(0, t) (112)

Now, we consider a first order Taylor approximation of F(.)
around an equilibrium uref

t , i.e.,

F(ut(0, t)) = q(ut(0, t)−uref
t )−d (113)

in which d = −F(uref
t ) and q = Ḟ(uref

t ). Then, assuming
uref

t = 0 for the sake of conciseness, the torsional dynamics
model can be reformulated under the form (1)-(3).

For simulation, the friction term TBIT (.) is taken as (see
[27])

TBIT (χ) = γχ +
2Ttob

π

(
α1χe−α2|χ|+ arctan(α3χ)

)
(114)

where the parameter values are gathered in Table I.
The drill pipe is a hollow cylinder of outer diameters Dd p

and inner diameter dd p. The drill is in contact with a viscous
field, of viscous dynamical coefficient µm. Direct computation
gives the associated damping coefficient

Λ = µm
π

2
(D2

d p +d2
d p) (115)

In Figure 2, we provide a brief illustration of the simulation
scheme.

System
(101)-(103)

θt(L,t)

θt(0,t)

Adaptive feedback
(6)-(11)

ct

ut(1, t)
uref

t

(107)

Ω(t)

U(t+)

1/ct
µ(t) µun(t)

Fig. 2. Simulation scheme.

Simulation are performed in the sequel for λ = 0 (nominal
case), λ = 0.45 and λ = 0.9. It is worth noting that all
simulations presented below have been performed using the
nonlinear model (101)-(103).

B. Velocity regulation of the nonlinear model

Here, the control law (6) and adaptation laws (9)-(11) are
not used for stabilization but for regulation, i.e., we wish
to stabilize ut(x, t)− uref

t instead of ut(x, t). Note that in all
simulation cases, the control law is turned on at t = 15 s. c0 is
chosen such as ac0 = 1. Besides, we chose b2 = 10−4, b1 = 1,
γd = 0.5 and γq = 0.01.

The reference uref
t is taken such that the unnormalized de-

sired velocity is θ ref
t = 5 rad/s. The top and bottom velocities

θt(0, t) and θt(L, t) along with the unnormalized equivalent
of µ defined as

µun(t) =
µ(t)
ct

(116)

are all displayed in Figures 3, 5, and 8 for λ = 0, 0.45, 0.9
respectively. The estimations of d and q are displayed in
Figure 7 for the case λ = 0.45.
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Fig. 3. Simulation of the top, bottom and delayed bottom estimated velocities
for λ = 0, the nominal case for which the control has been developed (see
[4]).
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Fig. 4. Time response of the control laws Ω(t) and U(t) in the case λ = 0.

One can notice that the oscillations existing in the open-
loop phase, i.e., before 15 s in Figures 3 and Figure 5, are
mitigated by the application of the control law and regulation
is obtained.

In Figure 3, as excepted when λ = 0 from (24), (106),
and (116), one gets µun(t) = θt(L,t− ct). Moreover, the top
and bottom velocities θt(0,t) and θt(L,t) reach 95% of
the reference, at respectively 23.54 and 23.37 s, which are
reasonable performance compared to the oscillation period.
The time responses of the associated control laws Ω(t) and
U(t) are displayed in Figure 4.
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Fig. 5. Simulation of the top, and bottom and delayed bottom estimated
velocities for λ = 0.45.
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Fig. 6. Time response of the control laws Ω(t) and U(t) in the case λ = 0.45.

In Figure 5 (λ = 0.45), the top and bottom velocities
θt(0,t) and θt(L,t) reach 95% of the reference at respectively
22.00 and 21.74 s. One observes that these settling times are
close to the nominal case. Here, as excepted from (86), (106),
and (116), µun(t) is only an approximation of θt(L,t− ct).
The time responses of the associated control laws Ω(t) and
U(t) are displayed in Figure 6.

The fact that the system for λ = 0.45 in Figure 5 has a
settling time lower that in the nominal case (λ = 0 in Figure 3)
can probably be explained by the fact that the respective
velocity values are not the same when the controller is turned
on. Moreover, notice that the magnitude of the oscillations
before t = 15 s is lower in Figure 5 (case λ = 0.45) than in
Figure 3 (case λ = 0), which is clearly explained by the fact
that the in-domain damping adds dissipation.
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Fig. 7. Evolution of the parameter estimates d̂ and q̂ for λ = 0.45.

In Figure 7, as expected, d̂(t) converges to d. Even if
velocity regulation is obtained, one can observe that the
estimation q̂(t) does not converge to the value of q. Note
that this latter observation does not contradict the conclusion
of Theorem 1. This is deeply linked with our control goal, i.e.,
regulation (stabilization). Indeed, the control laws associated
with this goal are not frequentially “rich” enough (as pictured
in Figure 4 and Figure 6) for q̂(t) to converge towards q.
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Fig. 8. Simulation of the top, bottom and delayed bottom estimated velocities,
for λ = 0.9.

In Figure 8, a high damping value is considered (λ = 0.9).
Consequently, the open-loop system does not exhibit an os-
cillatory behavior. Therefore, the benefits of the feedback
controller used after 15 s are quite reduced. However, this
simulation highlights the robustness capabilities of this control
law since the closed-loop convergence is still well-achieved.

VI. CONCLUSION

We propose here a theoretical study of the mismatch ro-
bustness of an adaptive prediction-based control design. We
wish to emphasize that the different ideas may be transposed
to similar contexts. Finally, the interest of this result has been
illustrated through simulations.

Future interesting works could include the study of ro-
bustness to other types of model mismatch, such as Kelvin-
Voigt damping (a distributed term in uxxt ) which represents
the dissipation within the matter.

Also, a future path to explore could be to develop control
algorithms taking explicitly into account in-domain damping.
A first step has been done in this sense in [20], but could be
generalized by including adaptive control.

APPENDIX A
INTERMEDIATE RESULTS

1) Relationship between transport equation and delay

Lemma 6: Consider

ft(x, t)+ c fx(x, t) = F (x, t) (117)
f (0, t) = f̄ (t) if c > 0, and f (1, t) = f̄ (t) if c < 0 (118)
f (.,0) = f0 (119)

in which F ∈ L2((0,∞)× (0,1)), f̄ ∈ L2(0,∞), f0 ∈ L2(0,1),
and c ∈ R\{0}. There exists a unique weak solution
f ∈ L2((0,∞)× (0,1)) for the abstract Cauchy problem result-
ing from (117)-(119). This solution satisfies, for all x ∈ [0,1],
t ∈ [0,∞), and s such that 06 c(s− t)+ x6 1

f (c(s− t)+ x,s) = f (x, t)+
∫ s

t
F (c(τ− t)+ x,τ)dτ (120)

Note that we can deduce for any x the values of the distributed
state f (x, t) with the knowledge of its boundary and F .

Proof : Without lack of generality, consider c < 0 and the
following variable

m(x, t) = f (x, t)−
∫ x

0

1
c
F (s, t +

s− x
c

)ds (121)

One gets that, if F ∈ L2((0,∞)× (0,1)),

m ∈ L2((0,∞)× (0,1))⇔ f ∈ L2((0,∞)× (0,1)) (122)

Moreover, m satisfies

mt(x, t)+ cmx(x, t) = 0 (123)

m(1, t) = f̄ (t)−
∫ 1

0

1
c
F (s, t +

s−1
c

)ds (124)

m(x,0) = f0(x)−
∫ x

0

1
c
F (s,

s− x
c

)ds (125)

which is a standard transport equation. Following [7]
Example 2.2.4 or Exercise 3.14, this system is well-posed
and its solution satisfies m(x, t) = m(1, t− x

c ) which, in turns,
implies (120). �

2) Intermediate result for Lyapunov stability

Proposition 5: Consider xi ∈ L2(R), (i6m, i, m∈N), and
V a positive definite functional of

(
x2

i
)

i=1...m. Assume there
exists a increasing function K such that

∀t > 0, V̇ (t)6−
m

∑
i=1

(ai−K(V (t))xi(t)2 (126)

in which ∀i ∈ J0,mK, ai > 0.
If ∀i, ai−K(V (0))>0 then ∀i, ∀t > 0, ai−K(V (t))> 0

Proof : For the sake of simplicity, take p = 1 (similar
arguments hold for the general case). By contradiction, as-
sume the existence of t0 > 0 such that a1 −K(V (t0)) 6 0.
By continuity, there exists at least one t ∈ [0, t0] such that
a1−K(V (t)) = 0. We denote t1 > 0 the smallest. One has

∀t ∈ [0, t1[, a1−K(V (t))> 0 (127)

and thus V (t1)<V (0) according to (126). Consequently, a1 =
K(V (t1))< K(V (0)) as K is an increasing function, which is
a contradiction. �

APPENDIX B
EXPRESSIONS OF ġ AND Ẇ

Proposition 6: The time derivative of g (75), can be
expressed as

ġ(t) = ea(q−1)
[

a[ẑ(0, t)+ δ̃ (0, t)+µ(t)q̃(t)]+ d̃µ (t)

− a
2
(a−1)ω̃(1, t)

]
+

[
ea(q−1)(1−χ)

[α(χ/2)
2

+ δ̃ (χ, t)
]]1

χ=0

+a
∫ 1

0
ea(q−1)(1−χ)a(q−1)

[
α̂(χ/2, t)

2
+ δ̃ (χ, t)

]
dχ (128)

The time derivative of W defined in (17) can be expressed as

Ẇ (t) =− ˙̂q(t)
(

e2a(q̂(t)−1)
µ(t)+2a

∫ 1

0
e2a(q̂(t)−1)(1−χ)

α̂(χ, t)dχ

)
− (c0 + q̂(t)−1)

(
2a ˙̂q(t)e2a(q̂−1)

µ(t)+ e2a(q̂(t)−1)
[

a[ẑ(0, t)

+ δ̃ (0, t)+µ(t)q̃(t)]+ d̃µ (t)−
a
2
(q−1)ω̃(1, t)+

ω̃t(1, t)
2

]
+2a

∫ 1

0
e2a(q̂(t)−1(1−χ)

[
2a ˙̂q(t)(1−χ)α̂(χ, t)− ˙̂d(t) (129)

+a(q̂−1)α̂(χ, t)
]

dχ +a
[

e2a(q̂(t)−1(1−χ)
α̂(χ, t)

]1

χ=0

)



in which α can be expressed using the inverse backstepping
transformation (72).

Proof : Taking the time-derivative of (76), using the
transports (55) and (57), applying integration by part on α̂x
and δ̃x, and expressing d̃ with (73), one gets (128).

From the time derivative of (61), in a similar way, one gets
(129). �

APPENDIX C
LYAPUNOV FUNCTIONAL ANALYSIS

Before stating the proof of Lemma 2, one establishes the
following proposition.

Proposition 7: There exist positive M0, Mω , Mωt , Mi(b1), i∈
{1,2, ...,8}, Ci, i ∈ {1,2, ...,8} such that

V̇1(t)6
1

1+N(t)

[
−ac0µ(t)2 +

4a
c0

ẑ(0, t)2 +
4a
c0

δ̃ (0, t)2

+
a
c0

(q−1)2
ω̃(1, t)2 +

1
ac0

ω̃t(1, t)2

+b1[−ẑ(0, t)2− ‖ẑ‖
2

4
+ γqM1(b1)(µ(t)2 +‖ẑ‖2)

+ γdM2(b1)(µ(t)2 +‖ẑ‖2)

+M0δ̃ (0, t)2 +Mω ω̃(1, t)2 +Mωt ω̃t(1, t)2]

+b2[−β̂ (1, t)2 +2e(1+ c0 + q̂(t))2
µ(t)2 +2eẑ(0, t)2

−‖β̂‖2 + γdM3(b1)(µ(t)2 +‖ẑ‖2 +‖β̂‖2)]

]
(130)

V̇2(t)6b3

[
− ζ̂ (0, t)2−‖ζ̂‖2 +C1[µ(t)2 +‖ẑ‖2]+ γdM4(b1)[µ(t)2

+‖ẑ‖2 +‖ζ̂‖2]

]
+b4

[
− ω̂(1, t)2−‖ω̂‖2 +2eζ̂ (0, t)2

+C2
[
µ(t)2 + d̃µ (t)2 +‖ẑ‖2 +‖δ̃‖2 + ω̃(1, t)2]

+ γdM5(b1)[µ(t)2 +‖ẑ‖2 +‖ω̂‖2]

]
(131)

V̇3(t)6 b5

[
− ζ̃ (0, t)2− (1+2λ )‖ζ̃‖2 +λC3

(
‖ζ̃‖2 +‖ζ̂‖2 +‖ω̂‖2

+‖ω̃‖2)]+b6

[
− ω̃(1, t)2 + eζ̃ (0, t)2− (1+2λ )‖ω̃‖2

+λC4
(
‖ω̃‖2 +‖ζ̂‖2 +‖ω̂‖2 +‖ζ̃‖2)]

+b7

[
eζ̃ (0, t)2− δ̃ (0, t)2−‖δ̃‖2

]
(132)

V̇5(t)6 b9

[
− ζ̂x(0, t)2−‖ζ̂x‖2 +C6[ω̃t(1, t)2 +µ(t)2 + d̃µ (t)2

+ ẑ(0, t)2 +‖ẑ‖2 + δ̃ (0, t)2 + ω̃(1, t)2]+ γdM7(b1)[µ(t)2

+‖ẑ‖2]+ γqM8(b1)[µ(t)2 +‖ẑ‖2]

]
+b10

[
− ω̂x(1, t)2−‖ω̂x‖2

+3eζ̂x(0, t)2 +C7[µ(t)2 + d̃µ (t)2 + ẑ(0, t)2 +‖ẑ‖2 +‖δ̃‖2

+ δ̃ (0, t)2 + ω̃(1, t)2 + ζ̃ (0, t)2]

]
+b11

[
− ζ̃t(0, t)2

− (1+2λ )‖ζ̃t‖2 +λC8
(
‖ζ̃t‖2 +‖ζ̂x‖2 +‖ω̂x‖2 +‖ω̃t‖2)]

+b12

[
− ω̃t(1, t)2− (1+2λ )‖ω̃t‖2 + eζ̃t(0, t)2

+λC9

(
‖ω̃t‖2 +‖ζ̂x‖2 +‖ω̂x‖2 +‖ζ̃t‖2

)]
(133)

V̇4(t)6 b8

(
−ac0d̃µ (t)2 + γdM6(b1)[µ(t)2 +‖ẑ‖2] (134)

+C5[µ
2 + ẑ(0, t)2 + δ̃ (0, t)2 + ω̃(1, t)2 + ω̃t(1, t)2]

)
Proof : For simplicity, we only detail the proof of (130),

as the remaining inequalities can be obtained with similar
arguments. From the definition of V1(t) one gets,

V̇1(t) =
Ṅ(t)

1+N(t)
−2

q̃(t) ˙̂q(t)
γq

−2
d̃(t) ˙̂d(t)

γd
(135)

From the expression of N (89), it follows that

Ṅ(t) = 2µ̇(t)µ(t)+4b1

∫ 1

0
exẑẑtdx+2b2

∫ 1

0
e1−x

β̂ β̂tdx (136)

Then, using (64), and Young inequality, one obtains

2µ̇(t)µ(t)6−ac0µ(t)2 +
4a
c0

ẑ(0, t)2 +
4a
c0

δ̃ (0, t)2 +
a
c0

(q−1)2

× ω̃(1, t)2 +
1

ac0
ω̃t(1, t)2 +2aµ(t)(µ(t)q̃(t)− d̃(t)) (137)

Finally using (65)-(68), and Young and Cauchy-Schwarz
inequalities, with integrations by parts, one obtains

4
∫ 1

0
exẑẑtdx6−ẑ(0, t)2− ‖ẑ‖

2

4
+ γqM1(b1)(µ(t)2 +‖ẑ‖2)

+ γdM2(b1)(µ(t)2 +‖ẑ‖2)+M0δ̃ (0, t)2 +Mω ω̃(1, t)2

+Mωt ω̃t(1, t)2]+2a(c0 + q̂(t)−1)

×
∫ 1

0
e2(a(q̂(t)−1)+ 1

2 )xẑ(x, t)[µ(t)q̃(t)− d̃(t)]dx (138)

2
∫ 1

0
e1−x

β̂ β̂tdx6−β̂ (1, t)2 +2e(1+ c0 + q̂(t))2
µ(t)2 (139)

+2eẑ(0, t)2−‖β̂‖2 + γdM3(b1)(µ(t)2 +‖ẑ‖2 +‖β̂‖2)

Gathering (135)-(139), and using Claim 2 concludes the proof
of (130). �

Proof of Lemma 2: Gathering inequalities (130)-(133) of
Proposition 7, we obtain

V̇ (Xe(t))6 ∑
V ∈S

δV fV (.)V 2 (140)

in which

S = {µ, ‖ẑ‖, ‖β̂‖, ‖δ̃‖, ‖ζ̂‖, ‖ω̂‖, ‖ζ̃‖, ‖ω̃‖,

d̃µ , ‖ζ̂x‖, ‖ω̂x‖, ‖ζ̃t‖, ‖ω̃t‖, ẑ|0, β̂ |1, δ̃ |0

ζ̂ |0, ω̂|1, ζ̃ |0, ω̃|1, ζ̂x|0, ω̂x|1, ζ̃t |0, ω̃t |1} (141)

where ω̂|1 denote the boundary of ω̂ for x = 1, i.e., ω̂(1, t)

δV =

{
1

1+N(t) , if V ∈ {z|0,µ,‖ẑ‖, ‖β̂‖, β̂ |1}
1

(142)



and with

fẑ|0(bi,V (t)) =
4a
c0
−b1 +2eb2 +[b8C5 +b9C6 +b10C7]eV (t) (143)

f
δ̃ |0(bi) =

4a
c0

+b1M0−b7 +b8C5 +b9C6 +b10C7 (144)

fµ (bi,V (t)) =−ac0 +b1γqM1 +b1γdM2 +2eb2(1+ c0 + q̄)2

+b2γdM3 + eV (t)[b3C1 +b3γdM4 +b4C2 +b4γdM5

+b8γdM6 +b8C5 +b9C6 +b9γqM7 +b9γdM8

+b10C7] (145)
fd̃µ

(bi) = b4C2−ac0b8 +b9C6 +b10C7 (146)

f
ζ̂ |0(bi) =−b3 +2eb4 (147)

f
ζ̃ |0(bi) =−b5 + eb6 + eb7 +b10C7 (148)

fω̃|1(bi) =
a
c0

(q−1)2 +b1Mω +b4C2−b6

+b8C5 +b9C6 +b10C7 (149)

f‖ẑ‖(bi,V (t)) =−b1

4
+b1γqM1 +b1γdM2 +b2γdM3 + eV (t)[b3C1

+b3γdM4 +b4C2 +b4γdM5 +b8γdM6 +b9C6

+b9γqM7 +b9γdM8 +b10C7] (150)
f‖β̂‖(bi) =−b2 +b2γdM3 (151)

f‖ζ̂‖(bi,λ ) =−b3 +b3γdM4 +b5λC3 +b6λC4 (152)

f‖ζ̃‖(bi,λ ) =−b5(1+2λ )+b5λC3 +b6λC4 (153)

f‖ω̂‖(bi,λ ) =−b4 +b4γdM5 +b5λC3 +b6λC4 (154)

f‖ω̃‖(bi,λ ) =−b6(1+2λ )+b5λC3 +b6λC4 (155)

f‖δ̃‖(bi) = b4C2−b7 +b10C7 (156)

f
ζ̂x|0

(bi) =−b9 +3eb10 (157)

f
ζ̃t |0

(bi) =−b11 + eb12 (158)

fω̃t |1(bi) =
1

ac0
+b1Mωt +b8C5 +b9C6−b12 (159)

f‖ζ̂x‖
(bi,λ ) =−b9 +b11λC8 +b12λC9 (160)

f‖ζ̃t‖
(bi,λ ) =−b11(1+2λ )+b11λC8 +b12λC9 (161)

f‖ω̂x‖(bi,λ ) =−b10 +b11λC8 +b12λC9 (162)

f‖ω̃t‖(bi,λ ) =−b12(1+2λ )+b11λC8 +b12λC9 (163)

Note that, we used that 1+N(t)6 eV (t) (from the definition
of V (90)).

A sufficient condition for the stability of the Extended
Target system of state Xe (86) is therefore the existence of
parameters bi, γq, γd , and λ such that

fV (.)< 0, V ∈S (164)

This is the condition we investigate in the following.
With this aim in view, we follow the following procedure

to select the different parameters

b2 → b1 → (b6, b7, b12)→ (b11, b5)

→ (γq, γd) → (b3, b8) → (b9, b4) → b10

First, from (143) and (145) we choose b2 and b1 such that

b2 <
ac0

2e(1+ c0 + q̄)2 (165)

b1 >
4a
c0

+2eb2 (166)

Then from (144), (149), (159) we choose respectively b7, b6,
and b12 such that

b7 >
4a
c0

+b1M0 (167)

b6 >
a
c0
(q̄−1)2 +b1Mω (168)

b12 >
1

ac0
+b1Mωt (169)

b11 is taken, according to (157), such that

b11 > eb12 (170)

and from (148) we choose b5 as

b5 > e(b6 +b7) (171)

γq and γd are chosen, according to (145), (150), (151), (152),
and (154), as

γq + γd < min
{

ac0−2eb2(1+ c0 + q̄)2

b1M1 +b1M2 +b2M3
, (172)

b1

4(b1M1 +b1M2 +b2M3)
,

1
M3

,
1

M4
,

1
M5

}
Note that, if bi < 1, i∈{3,4,8,9,10}, this implies the existence
of M(Xe(0)) > 0 independent of bi, i ∈ {3,4,8,9,10}, such
that V (Xe(0))6M(Xe(0)) which is simply denoted M in the
following. Consequently, the parameter b3 is fixed, according
to (145) and (150), as1

b3 <min
{

1,
− fµ(b3,4,8,9,10 = 0,M)

eM[C1 + γdM4]
,

− f‖ẑ‖(b3,4,8,9,10 = 0,M)

eM[C1 + γdM4]

}
(173)

Then, b8 is taken according to (143)-(145), (149), (150), and
(159), as

b8 < min
{

1,
− fẑ|0(b4,8,9,10 = 0,M)

eMC5
,
− f

δ̃ |0(b4,8,9,10 = 0)

eMC5
,

− fµ(b4,8,9,10 = 0,M)

eM[γdM6 +C5]
,
− fω̃|1(b4,8,9,10 = 0)

C5
, (174)

− f‖ẑ‖(b4,8,9,10 = 0,M)

eMγdM6
,
− fω̃t |1(b4,8,9,10 = 0)

C5

}
From (143)-(146), (149), (150) and (159), b9 is fixed as

b9 < min
{

1,
− fẑ|0(b4,9,10 = 0,M)

C6eM ,
− f

δ̃ |0(b4,9,10)

C6eM ,

− fµ(b4,9,10 = 0,M)

eM[C6 + γqM7 + γdM8]
,
− fd̃µ

(b4,9,10 = 0)

C6
,
− fω̃|1(b4,9,10 = 0)

C6
,

− f‖ẑ‖(b4,9,10 = 0,M)

eM[C6 + γqM7 + γdM8]
,
− fω̃t |1(b4,9,10 = 0)

C6

}
(175)

1By fµ (b3,4,8,9,10 = 0,M) we mean fµ (b1,b2,b3 = 0,b4 = 0,b5,b6,b7,b8 =
0,b9 = 0,b10 = 0,b11,b12,V = M)).



From (145)-(146), (147), (149), (150), and (156), b4 is chosen
with respect to

b4 <min
{

1,
− fµ(b4,10 = 0,M)

C2 + γdM5
,
− fd̃µ

(b4,10 = 0)

C2
,

b3

2e
,

− fω̃|1(b4,10 = 0)
C2

,
b7

C2,
,
− f‖ẑ‖(b4,10 = 0,M)

C2 + γdM5

}
(176)

The parameters b10 is fixed according to (143)-(146), (148),
(149), (150), (156), (157), and (159) as

b10 < min
{

1,
− fẑ|0(b10 = 0,M)

C7eM ,
f
δ̃ |0(b10 = 0)

C7eM ,
− fµ (b10 = 0,M)

C7eM ,

− fd̃µ

(b10 = 0)

C7
,

b5− eb6− eb7

C7
,
− fω̃|1(b10 = 0)

C7
,

b7−b4C2

C7
,

− f‖ẑ‖(b10 = 0,M)

C7eM ,
b9

3e

}
(177)

Finally, a upper bound for λ is found according to (152)-
(155), and (160)-(163) as

λ < min
{

b3(1− γqM4)

b5C3 +b6C4
,

b5

b5(C3−2)+b6C4
, (178)

b4−b4γqM5

b5C3 +b6C4
,

b6

b5C3 +b6C4−2b6
b9

b11C8 +b12C9
,

b11

b11(C8−2)+b12C9
,

b10

b11C8 +b12C9
,

b12

b11C8 +b12(C9−2)

}
by assuming that C3 > 2, C4 > 2, C8 > 2 and C9 > 2, which
can be taken as such.

Using Proposition 5 in Appendix A-2, with this choice
of parameters, one obtains the existence of ϑ > 0 such that
fV (.)<−ϑ for all V ∈S . From (164), this implies that (96)
holds which concludes the proof of Lemma 2. �

APPENDIX D
PROOFS OF LEMMAS 3 AND 4

Proof of Lemma 3: We start by observing that

ut(0,τ) = ea(q−1)(τ−t−1)(µ(t)− 1
2

ω̃(1, t)) (179)

+2a
∫

τ+1−t

0
ea(q−1)(τ+1−t−χ)[α̂(χ/2, t)+ δ̃ (χ, t)− d̃(t)]dχ

which can be obtained by arguments similar to those used to
prove (76).

Then, using the fact that

ω̃(1, t) =
∫ 1

0
ω̃x(χ, t)dχ + ω̃(0, t) (180)

ζ̃ (0, t) =−
∫ 1

0
ζ̃x(χ, t)dχ + ζ̃ (1, t) (181)

together with (44) and (74), ω̃(1, t) can be expressed as

ω̃(1, t) =
∫ 1

0
[ζ̃t(χ, t)− ω̃t(χ, t)]dχ (182)

which implies, with Young’s and Cauchy-Schwarz’s inequality,
that

ω̃(1, t)2 6 2(‖ζ̃t‖2 +‖ω̃t‖2) (183)

Therefore, from (179) and (183), and using Young inequality
on (72), there exists C1 > 0 such that

ut(0, t)2 6C1

[
µ(t)2 +‖ẑ‖2 +‖δ̃‖2 + d̃(t)2

+‖ζ̃t‖2 +‖ω̃t‖2
]

(184)

which gives the existence of r1 > 0 satisfying

ut(0, t)2 6 r1(eV (t)−1) (185)

Furthermore, from the definition of the Riemann variables,
(15)-(16) and (37)-(38), one gets

ut(x, t) =
ζ̂ (x, t)+ ω̂(x, t)+ ζ̃ (x, t)+ ω̃(x, t)

2
(186)

ux(x, t)− d̂(t) =
ζ̂ (x, t)− ω̂(x, t)+ ζ̃ (x, t)− ω̃(x, t)

2
(187)

uxt(x, t) =
ζ̂x(x, t)+ ω̂x(x, t)+ ζ̃t(x, t)− ω̃t(x, t)

2
(188)

uxx(x, t) =
ζ̂x(x, t)− ω̂x(x, t)+ ζ̃t(x, t)+ ω̃t(x, t)

2
+λ (ζ̂ + ω̂ + ζ̃ + ω̃)(x, t) (189)

and, applying Young’s, Cauchy-Schwarz’s inequalities, one
can get

‖ut‖2 6 ‖ζ̂‖2 +‖ω̂‖2 +‖ζ̃‖2 +‖ω̃‖2 (190)

‖ux−d‖2 6
5
4

(
‖ζ̂‖2 +‖ω̂‖2 +‖ζ̃‖2 +‖ω̃‖2

)
+5d̃(t)2 (191)

‖utx‖2 6 ‖ζ̂x‖2 +‖ω̂x‖2 +‖ζ̃t‖2 +‖ω̃t‖2 (192)

‖uxx‖2 6 4[‖ζ̂x‖2 +‖ω̂x‖2 +‖ζ̃t‖2 +‖ω̃t‖2]

+8λ
2[‖ζ̂‖2 +‖ω̂‖2 +‖ζ̃‖2 +‖ω̃‖2] (193)

Therefore, from (190)-(193)

‖ut‖2 +‖ux−d‖2 +‖utx‖2 +‖uxx‖2

6

(
r2 +5γd

)
(eV (t)−1) (194)

for a given r2 > 0. Finally

d̃(t)2 + q̃(t)2 6 (γd + γd)V (t) (195)

Consequently, gathering (185), (194)-(195), we obtain (98).
This concludes the proof of Lemma 3. �

Proof of Lemma 4: From the definition of V (90), one
obtains

V (t)6µ(t)2 +2eb1‖ẑ‖2 + eb2‖β̂‖+ eb3‖ζ̂‖2 + eb4‖ω̂‖2

+ eb5‖ζ̃‖2 + eb6‖ω̃‖2 + eb7‖δ̃‖2 +b8d̃µ(t)2 (196)

+ eb9‖ζ̂x‖2 + eb10‖ω̂x‖2 + eb11‖ζ̃t‖2 + eb12‖ω̃t‖2

From (59), using (183), it holds

µ(t)2 6 2ut(0, t−1)2 +‖ζ̃t‖2 +‖ω̃t‖2 (197)

Then, from the backstepping transformation (63) and from the
definition of α̂ (51), there exists C2 > 0 such that

‖ẑ‖6 C2

[
µ(t)2 + max

s∈[0,1]

[
‖ζ̂ (t− s)‖2 + d̃(t− s)2]] (198)



Besides, according to the definition of β̂ (49), one obtains the
existence of C3 > 0

‖β̂‖2 6C3

[
‖ω̂(t−1)‖2 + max

s∈[0,1]

[
d̃(t− s)2

+‖ζ̃t(t− s)‖2 +‖ω̃t(t− s)‖2]] (199)

Furthermore, from the definition of d̃µ (73) one writes

∃ C4 > 0, d̃µ(t)2 6 C4
[
µ(t)2 + d̃(t)2] (200)

Finally, by the definition of ζ̃ , ω̃ , ζ̂ , and ω̂ , (35)-(38) and
using the expression (186), one gets

ζ̃ (x, t) =−2λ

∫ 1

x
ut(χ, t + x−χ)dχ (201)

ω̃(x, t) =−2λ

∫ x

0
ut(χ, t− x+χ)dχ

+2λ

∫ 1

0
ut(χ, t− x−χ)dχ (202)

ζ̂ (x, t) =ut(x, t)+ux(x, t)− d̂(t)− ζ̃ (x, t) (203)

ω̂(x, t) =ut(x, t)−ux(x, t)+ d̂(t)− ω̃(x, t) (204)

and concludes, applying Cauchy-Schwarz’s inequality, that

‖ζ̃ (t)‖2 64λ
2 max

s∈[0,1]
‖ut(t− s)‖2 (205)

‖ω̃(t)‖2 68λ
2 max

s∈[0,2]
‖ut(t− s)‖2 (206)

‖ζ̂ (t)‖2 64
(
‖ut(t)‖2 +‖ux(t)−d‖2 + d̃(t)2

+4λ
2 max

s∈[0,1]
‖ut(t− s)‖2) (207)

‖ω̂(t)‖2 64
(
‖ut(t)‖2 +‖ux(t)−d‖+ d̃(t)2

+8λ
2 max

s∈[0,2]
‖ut(t− s)‖2) (208)

Similarly, there exist positive constants C5, C6, C7, C8, and C9
such that
‖δ̃‖2 6C5 max

s∈[0,2]
‖ut(t− s)‖2 (209)

‖ζ̃t‖2 6C6 max
s∈[0,1]

[
‖uxx(t− s)‖2 +‖ut(t− s)‖2] (210)

‖ω̃t‖2 6C7 max
s∈[0,2]

[
‖uxx(t− s)‖2 +‖ut(t− s)‖2] (211)

‖ω̂x‖2 6C8

(
‖utx‖2 + max

s∈[0,2]

[
‖uxx(t− s)‖2 +‖ut(t− s)‖2]) (212)

‖ζ̂x‖2 6C9

(
‖utx‖2 + max

s∈[0,2]

[
‖uxx(t− s)‖2 +‖ut(t− s)‖2]) (213)

Thus, gathering inequalities (196)-(200), and (205)-(213), it
holds for a suitable ρ > 0

V (t)6 ρ max
s∈[0,3]

Γ(Xs(t− s)) (214)

This concludes the proof of Lemma 4. �

APPENDIX E
PROOF OF LEMMA 5

From (97), one can easily get that N(t), q̃(t), d̃(t), and V2(t),
V3(t) and V4(t) are uniformly bounded for t > 0. Therefore,
µ(t), ‖ẑ(t)‖,‖β̂ (t)‖, ‖ω̂(t)‖, ‖ζ̂ (t)‖, ‖ζ̃ (t)‖, ‖ω̃(t)‖, ‖δ̃ (t)‖,

d̃µ(t), ‖ω̂x(t)‖, ‖ζ̂x(t)‖, ‖ζ̃t(t)‖ and ‖ω̃t(t)‖ are also uniformly
bounded for t > 0.

From there, applying Young’s inequality to (9) and (10), one
can obtain that ˙̂q(t) and ˙̂d(t) are uniformly bounded for t > 0.
Similarly, applying Cauchy-Schwarz’s inequality to (6), one
can obtain that ζ̂ (1, t) and thus α̂(1, t) are uniformly bounded
for t > 0. Moreover, using Lemma 6 in Appendix A-1, ζ̂ (x, t)
is also uniformly bounded for t > 1 + x and, in particu-
lar, ζ̂ (0, t) is uniformly bounded for t > 1. Similarly, using
Lemma 6, α̂(x, t) is also uniformly bounded for t > 2(1− x)
and, in particular, α̂(0, t) is uniformly bounded for t > 2.

Further, using the fact that

ζ̃ (x, t) =−
∫ 1

x
ζ̃x(χ, t)dχ + ζ̃ (1, t) (215)

and from (44), it holds, for x ∈ [0,1],

ζ̃ (x, t)2 65[‖ζ̃t‖2 +λ
2(‖ζ̃‖2 +‖ω̃‖2 +‖ζ̂‖2 +‖ω̂‖2)] (216)

Consequently, ζ̃ (x, t) is uniformly bounded for t > 0 and, in
particular, ζ̃ (0, t) is uniformly bounded for t > 0. With similar
arguments, as ω̃(0, t) =−ζ̃ (0, t) is uniformly bounded for t >
0, it holds that ω̃(x, t) is uniformly bounded for t > 0, and, in
particular, ω̃(1, t) is uniformly bounded for t > 0. As µ(t) and
ω̃(1, t) are bounded for t > 0, one knows that v(t) is bounded
for t > 1. Therefore, from (46) and (76), ω̂(0, t) is uniformly
bounded for t > 1, and, using Lemma 6, ω̂(x, t) is uniformly
bounded for t > 1+ x.

Further, from (40)-(46), and (39),

d
dt

v(t)2 = 2av(t)
(
(q−1)v(t)+ ζ̂ (0, t)+ ζ̃ (0, t)

+ v(t)q̃(t)− d̃(t)
)

(217)

d
dt
‖ζ̂ (t)‖2 = ζ̂ (1, t)2− ζ̂ (0, t)2 +2

∫ 1

0
ζ̂ (x, t) ˙̂d(t)dx (218)

d
dt
‖ω̂(t)‖2 = ω̂(1, t)2− ω̂(0, t)2 +2

∫ 1

0
ω̂(x, t) ˙̂d(t)dx (219)

d
dt
‖ζ̃ (t)‖2 = ζ̃ (1, t)2− ζ̃ (0, t)2

+2λ

∫ 1

0
ζ̃ (x, t)[ζ̃ + ω̃ + ζ̂ + ω̂](x, t)dx (220)

d
dt
‖ω̃(t)‖2 = ω̃(1, t)2− ω̃(0, t)2

+2λ

∫ 1

0
ω̃(x, t)[ζ̃ + ω̃ + ζ̂ + ω̂](x, t)dx (221)

d
dt

d̃(t)2 =−d̃(t) ˙̂d (222)

Using (9)-(10), Cauchy-Schwarz’s inequality and the pre-
vious considerations, it is straightforward that the right-hand
terms in the previous equations are all uniformly bounded for
t > 2. Finally, integrating (96) from 0 to ∞, it follows that
µ(t), d̃µ(t), ‖ω̂(t)‖, ‖ζ̂ (t)‖, ‖ζ̃ (t)‖, ‖ω̃(t)‖, ‖ζ̃t‖, and ‖ω̃t‖
are square integrable. Therefore, with (183), so is ω̃(1, t), and
finally v(t). Moreover, as d̃µ(t) and µ(t) are square integrable,
so is d̃(t).

We conclude this proof with Barbalat’s lemma. �
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