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Surface-plasmon polaritons are naturally generated upon excitation of metals with high-frequency electro-
magnetic waves. However, the concept of spoof plasmons has made it possible to generate plasmoniclike effects
in microwave electrodynamics, magnetics, and even acoustics. Similarly, in this paper, the concept of localized
surface plate modes (SPMs) is introduced. It is demonstrated that SPMs can be generated on a two-dimensional
(clamped or stress-free) cylindrical surface with subwavelength corrugations, which resides on a thin elastic plate,
under excitation by an incident flexural plane wave. Numerical characterization of this corrugated rigid structure
shows that it is elastically equivalent to a cylindrical scatterer with dispersive but uniformly negative flexural
rigidity. This, indeed, suggests that plasmoniclike elastic materials can be engineered with potential applications
in various areas including earthquake sensing and elastic imaging and cloaking.

DOI: 10.1103/PhysRevB.95.174201

I. INTRODUCTION

Recently, there has been an increasing interest in designing
acoustic and elastic metamaterials [1,2]. This research area
was practically started by Liu et al., who experimentally
demonstrated that (effective) dynamic mass density and
bulk modulus may be obtained using locally resonant sonic
materials [3]. However, unlike plasmonic metamaterials that
rely on (localized or propagating) surface-plasmon polaritons
(SPPs) to generate the desired dispersion characteristics,
acoustic and elastic metamaterials almost exclusively rely on
the geometrical properties of their meta-atoms. The reason is
that acoustic and elastic SPPs do not exist in nature [4–6]. As
a result, design of such metamaterials has made use of mostly
phononic or thin plate crystals [7,8] and resonant cavities
or pipes [9–15]. This hindered development of elastic and
acoustic metamaterials’ applications, which could benefit from
plasmoniclike features.

In 2004, Pendry et al. [16] proposed the concept of spoof
plasmons. These surface waves or modes act like SPPs but
are generated on corrugated metal structures at microwave fre-
quencies, the part of the spectrum where electromagnetic fields
cannot penetrate metal surfaces [16,17]. The fundamental idea
behind the spoof plasmons is the use of periodic subwavelength
corrugations to permit surface-bound propagation with a
dispersion relation similar to that of the SPPs. Consequently, it
can be shown that the corrugated metal structure is equivalent
to a uniform structure with material properties, which can be
approximated by the Drude metal with a plasma frequency that
depends only on the shape and dimensions of the corrugations.
This is the analog of surface plasmons in diffraction gratings
and their inner relation to Wood’s anomaly [18–20]. Pendry’s
work was almost immediately followed by the experimental
demonstration of spoof plasmons at microwave frequencies
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[21] and several other studies focusing on various structures
capable of supporting spoof plasmons [22–26]. Addition-
ally, localized versions of the spoof plasmons have been
demonstrated at microwave frequencies with many intriguing
applications including sensing and field enhancement [27,28].

Along the same lines, it has also been shown that surface
acoustic waves (SAWs), can be generated on acoustically
rigid surfaces with subwavelength corrugations [4,29–31].
The SAWs behave in a way similar to spoof plasmons (and
SPPs) and have analogous applications, e.g., their dispersion
relation lies outside the acoustic cone and they can be used for
subresolution acoustic imaging or sensing. It should be noted
here that the acoustic metamaterial filling up the structure,
which is equivalent to the corrugated rigid surface, possesses
negative effective density [5,32–34]. Additionally, the concept
of localized SAWs has been also developed and tested using
corrugated rigid cylinders [6].

In this paper, a fourth-order biharmonic wave equation with
appropriate boundary conditions, which describes behavior of
flexural waves on thin plates, is derived from the generalized
elasticity theory [35,37] and is then used in designing an
anisotropic flexural metamaterial [38–43]. First, scattering
from a cylindrical inhomogeneity under an elastic plane-wave
excitation (harmonic vibration of the plate in the vertical
direction) is studied. It is shown that in the quasistatic limit the
scattering is dominated by the zeroth-order multipole, unlike
in the electrodynamics case where the first significant order
is the dipolar one. It should be noted here that this is not the
only difference between the two scenarios: The fourth-order
biharmonic wave equation, which describes the propagation of
bending waves in ultrathin plates, is not equivalent to the vector
or scalar wave equations, which describe electromagnetic or
acoustic wave propagation. Consequently, this paper intro-
duces Mie resonant modes and relevant physics by studying
the solution of the fourth-order biharmonic wave equation.
Additionally, scattering from a corrugated cylinder in a thin
plate with rigid or stress-free grooves is analyzed.
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II. SETUP OF THE GOVERNING
BIHARMONIC EQUATION

Consider a plate with constant thickness h. Let ρ and D =
Eh3/[12(1 − ν2)] represent the density and flexural rigidity on
this plate. Here, E is the Young modulus and ν is the Poisson
ratio. The plate is excited with a time harmonic source with
angular frequency ω. Under the Kirchhoff approximation, it
is assumed that βh � 1, i.e., shear deformation and rotary
inertia are both negligible in comparison to pure bending
[35,36]. Here, β is the flexural wave number that satisfies β4 =
ω2ρh/D. Let the vertical displacement (in the z direction),
which is generated on the plate upon excitation, be represented
by ζ (r,φ). In this setup, outside the source region, ζ satisfies
[35–37]

�2ζ (r,φ) − β4ζ (r,φ) = 0, (1)

where � represents the Laplacian operator (to be expressed in
cylindrical coordinates).

III. CONDITIONS OF FLEXURAL
RESONANT SCATTERING

Consider the thin plate structure shown in Fig. 1(a). The
background plate with rigidity D0 and density ρ0 includes

a circular scatterer with rigidity Din and density ρin. It is
assumed that the scatterer is centered at the origin (r = 0)
and its radius is a. The excitation is a plane wave propagating
in the x direction with displacement field ζ inc(r,φ) = eiβ0r cos φ .
ζ inc(r,φ) and ζ (r,φ), which represents the total displacement
field induced on the plate upon excitation, satisfy Eq. (1).
Let ζ scat(r,φ) = ζ (r,φ) − ζ inc(r,φ) represent the displacement
field scattered from the scatterer. Similarly, ζ scat(r,φ) satisfies
Eq. (1). To facilitate the solution of Eq. (1) for this setup,
ζ inc(r,φ) is expanded as

ζ inc(r,φ) =
∞∑
l=0

εli
lJl(β0r) cos(lφ), (2)

where β0 is the wave number on the background plate, ε0 =
1, εl � 1 = 2, and Jl(.) are the cylindrical Bessel functions.
Similar expansions can be used for ζ scat(r,φ) and ζ in(r,φ) as
described next. ζ scat(r,φ) must satisfy the radiation condition
at r → ∞, which leads to the expansion

ζ scat(r > a,φ) =
∞∑
l=0

il
[
AlH

(1)
l (β0r) + BlKl(β0r)

]
cos(lφ),

(3)

FIG. 1. (a) Sketch of the scattering problem. (b) Normalized scattering cross section σ scat/a in logarithmic scale, of the cylinder vs its relative
density ρ̃in = ρin/ρ0 and relative flexural rigidity D̃in = Din/D0 for the normalized flexural wave number β0a = 0.1 and Poisson’s ratio ν = 0.3.
(c) Normalized scattering multipoles (l = 0,1,2,3) of the cylindrical inhomogeneity in logarithmic scale for the same wave number and for
ρ̃in = 1.5, showing that the fundamental (l = 0) and the second-order (l = 2) multipole are orders of magnitude higher than the remaining
ones.
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outside the scatterer (r > a). Here, H
(1)
l (.) and Kl(.) are the

cylindrical Hankel functions of the first kind and modified
Bessel functions of the second kind, respectively, and Al and
Bl are the expansion coefficients to be solved for. Inside the
scatterer (r < a), ζ in(r,φ) has to be finite at every point, which
leads to the expansion

ζ in(r,φ) =
∞∑
l=0

il[ClJl(βinr) + C ′
l Il(βinr)] cos(lφ). (4)

Here, βin is the wave number in the scatterer and Il(.) are
the modified Bessel functions of the first kind, and Cl and
C ′

l are the expansion coefficients to be solved for. The four
sets of unknown coefficients Al,Bl,Cl,andC ′

l are obtained by
applying boundary conditions requiring (i) ζ , (ii) its normal
derivative ∂rζ , (iii) the normal component of the bending

momentum

Mr = −Di

[
∂2ζ

∂r2
+ ν

(
1

r

∂ζ

∂r
+ 1

r2

∂2ζ

∂φ2

)]
, (5)

and (iv) the normal component of the generalized Kirchhoff
stress

Vr = −Di

∂(�ζ )

∂r
− Di(1 − ν)

1

r2

∂

∂φ

(
∂2ζ

∂r∂φ
− 1

r

∂ζ

∂φ

)
(6)

to be continuous across the boundary at r = a. Note that
in Eqs. (5) and (6) subscript i ∈ {in,0}, i.e., Di , represents
either Din or D0 depending on the domain where Mr or
Vr is evaluated. Enforcing these boundary conditions, where
ζ inc(r,φ), ζ scat(r,φ), and ζ in(r,φ) are replaced by their appro-
priate expansions from Eqs. (2)–(4), yields the following linear
system for every order l:

⎡
⎢⎢⎢⎣

H
(1)
l (β0a) Kl(β0a) −Jl(βina) −Il(βina)

β0H
(1)′
l (β0a) β0K

′
l (β0a) −βinJ

′
l (βina) −βinI

′
l (βina)

SH (β0a) SK (β0a) −SJ (βina) −SI (βina)

TH (β0a) TK (β0a) −TJ (βina) −TI (βina)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Al

Bl

Cl

C ′
l

⎤
⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎣

Jl(β0a)

β0J
′
l (β0a)

SJ (β0a)

TJ (β0a)

⎤
⎥⎥⎥⎦. (7)

Here

SZ(βir) = Di[l
2(1 − ν) ∓ (βir)2]Zl(βir) − Di(1 − ν) βir Z′

l(βir),

TZ(βir) = Di[l
2(1 − ν)]Zl(βir) − Di[l

2(1 − ν) ∓ (βir)2] βir Z′
l(βir), (8)

where the subscript i ∈ {in,0} as before, and the upper (minus)
sign and the lower (plus) sign in the expressions of SZ and TZ

refer to Zl(.) ∈ {H (1)
l (.),Jl(.),Yl(.)} and Zl(.) ∈ {Kl(.),Il(.)},

respectively. In the far field, as r → ∞, the modified Bessel
functions Kl(β0r) decay exponentially. This means that
ζ scat(r > a,φ) consists of only the terms AlH

(1)
l (β0r) [see

Eq. (3)]. In addition, if one considers subwavelength scatterers,
i.e., scatterers satisfying β0a � 1, only the first few of these
terms contribute to ζ scat(r > a,φ). Indeed, solving Eq. (7) for
l = 0,1,2,3 . . ., under the conditions β{0,in}a � 1, yields

A0 = −i
π

8

D̃in(2 − ρ̃in) − [(2 − ρ̃in)ν + ρ̃in]/(1 + ν)

D̃in + (1 − ν)/(1 + ν)

× (β0a)2 + O[(β0a)3],

A1 = −i
π

64

D̃in(2 − ρ̃in) − [ρ̃in + 2 + (2 − ρ̃in)ν]/(3 + ν)

D̃in + (1 − ν)/(3 + ν)

× (β0a)4 + O[(β0a)5],

A2 = −i
π

8

D̃in − 1

D̃in + (3 + ν)/(1 − ν)
(β0a)2 + O[(β0a)3],

Al = o[(β0a)2], l = 3,4. . . . (9)

Here, D̃in = Din/D0 and ρ̃in = ρin/ρ0 represent the relative
flexural rigidity and relative density, with respect to the
surrounding medium, respectively, whereas o(.) and O(.)
represent the Landau notations [35]. It should be mentioned
here that intriguing phenomena, such as negative effective
mass density (taking place when the acceleration is out of
phase with the dynamic pressure gradient) and negative bulk

modulus (occurring when the volume variation becomes out of
phase with the dynamic pressure) have been already reported
in the framework of elastodynamics. For thin plates, D̃in

and ρ̃in may also take negative values close to resonance
[44,45]. From the expressions in Eq. (9), one can immediately
see that, in contrast to electromagnetic and acoustic scattering,
the first-order scattering coefficient A1 decays faster than
the zeroth- and second-order coefficients, A0 and A2, as the
size of the scatterer is decreased. Additionally, the dependence
of A0 and A2 on the size of the scatterer is of the same
order. Similar behavior was already shown in Refs. [37,39,40]
for cylindrical hole scatterers in the low-frequency regime.
In fact, flexural waves satisfy the fourth-order biharmonic
equation while acoustics and electromagnetic waves satisfy
the Helmholtz equation. These two equations model two
different physical dynamics. A striking example in flexural
waves concerns rigid obstacles in the long-wavelength regime
where scattering becomes even infinite. For holes in thin
plates, the situation is similar to soft cylindrical heterogeneities
(first-order negligible in comparison to zeroth and second
order). This fact was highlighted in Ref. [37]. However, it
is difficult to provide an intuitive explanation of this behavior,
in the general case. Indeed, the case of thin plates is an
asymptotic limit taken in the full Navier system when the third
dimension is much smaller than the other two [46]. As a result,
the second-order vector Navier partial differential equations
(PDEs) give rise to fourth-order scalar Kirchhoff-Love (KL)
PDEs. Navier equations are supplied with continuity of
displacement field and stress at each interface (two conditions
for second-order PDEs), whereas fourth-order KL equations
require continuity of out-of-plane displacement, its normal
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derivative, the normal component of the bending momentum,
and the so-called normal component of generalized Kirchhoff
stress. One can hardly draw analogies between the case of
transverse acoustic and electromagnetic waves propagating in
a heterogeneous medium invariant along the third dimension,
with the case of heterogeneous thin plates. Therefore, an
intuitive interpretation of the dominant monopolar term typical
of a clamped inclusion in plates is rather difficult, although one
notes that periodically pinned plates display zero-frequency
stop bands akin to low-frequency stop bands associated with
plasmons in doubly periodic arrays of highly conducting thin
and infinite cylinders [45]. Ignoring the terms scaling with
O(β0a)l , l � 3, in Eq. (9) one can rewrite the expressions of
the dominant terms A0 and A2 as

A0 ≈ −i
π

8
(D̃in − 1)

h0(D̃in,ρ̃in)

D̃in + f0(ν)
(β0a)2,

A2 ≈ −i
π

8
(D̃in − 1)

1

D̃in + f2(ν)
(β0a)2, (10)

with f0(ν) = (1 − ν)/(1 + ν) and f2(ν) = (3 + ν)/(1 − ν)
two positive functions of Poisson’s ratio ν that satisfies the
condition −1 < ν � 0.5 [35], and h0 is a function of ρ̃in and
D̃in. In the case of a relative density ρ̃in = 1, i.e., only the
flexural rigidity is varying, one has h0 = 1.

Similarly electromagnetic and acoustic waves, one can
define a scattering cross-section (SCS) function for flexural
waves [37]. Let g(φ) = √

2re−i(β0r−π/4) lim
r→∞ ζ scat(r,φ) repre-

sent the far-field scattering amplitude, which can be used as a
measure of scattering strength in the direction φ.

The SCS is then computed by integrating g(φ) over
all angles: σ scat = ∫ 2π

0 g(φ)dφ. Inserting Eq. (3) into the
expression of g(φ), taking the limit as r → ∞, and integrating
the result yield

σ scat = 4

β0

∞∑
l=0

εl|Al|2. (11)

It should be noted here that contribution from terms
BlKl(β0r) to σ scat vanishes since Kl(β0r) exponentially decays
to zero as r → ∞. Generally speaking, the amplitude of σ scat is
a measure of an object’s detectability by an observer located in
the far-field region. For example, in cloaking applications [39],
minimizing σ scat would ensure that the object may not be seen
by an observer located in the far field irrespective of its relative
position with respect to the object. The focus of this paper is to
demonstrate the presence of Mie resonances in scattering from
elastic structures [see Fig. 1(a)]. These resonances correspond
to frequencies where σ scat has a local maximum. Figure 1(b)
plots contours of the normalized SCS σ scat/a (in logarithmic
scale) of a scatterer with β0a = 0.1, ν = 0.3, and varying
values of ρ̃in and D̃in. This plot clearly shows that the SCS has
two resonances (marked with dark red color) corresponding
to negative values of D̃in, −0.54 and −4.71. These values are
predicted by the zeros of the expressions in the denominator
in Eq. (10): The first resonance is associated with A0, which is
given by D̃in = −f0(ν) = −(1 − ν)/(1 + ν), and the second
one is associated with A2, which is given by D̃in = −f2(ν) =
−(3 + ν)/(1 − ν). It should be noted here that these two
relations are counterparts of the Fröhlich condition associated

FIG. 2. (a) Real part of the dispersive relative flexural rigidity Din

in logarithmic scale. (b) Imaginary part of Din. (c) Amplitude of the
equivalent of normalized polarizability αb/a

2 in logarithmic scale for
the corresponding flexural rigidity given in Fig. 2(a) and for relative
density ρ̃in = 1. (d) Phase of αb for the same parameters.

with the electromagnetic dipole surface plasmon [47]. On the
other hand, the dependence of the SCS on ρ̃in is not as strong
and there are no associated resonances in the range considered
for ρ̃in. Figure 1(c) plots the normalized scattering coefficients
4εl|Al|2/(β0a), l = 0,1,2,3 (in logarithmic scale) for the same
scatterer with β0a = 0.1, ν = 0.3, ρ̃in = 1.5, and varying
values of D̃in [corresponding to the dashed white curve in
Fig. 1(b)]. This figure clearly shows that A0 and A2 are orders
of magnitudes larger than A1 and A3. This behavior is also
predicted correctly by Eq. (9).

Next, another cylindrical scatterer with radius a, relative
density ρ̃in = 1, and relative flexural rigidity, which satisfies
the dispersion function

D̃in = 1 − β4
p

/[
β2

0

(
β2

0 + iγp

)]
, (12)

is considered. In this scattering scenario, a and βp satisfy
the condition βpa = 0.2, and finally γp represents the loss
factor. Real and imaginary parts of D̃in (in logarithmic scale)
are plotted in Figs. 2(a) and 2(b) for varying values of
β0a for three different values of γp. Particular patterns,
which are generated due to the fourth-order dependence on
frequency, are observed. In electromagnetics, the polarizability
of a scatterer relates its response to the incident field. More
specifically, it provides a measure for the strength of the
dipole moment induced in the scatterer for a given level of
incident electric field. One can define and derive a similar
quantity for flexural waves. Let αb represent this physical
parameter; αb should account for the terms with coefficients
A0 and A2 (but not only the dipolar mode as in electromag-
netics). Consequently, for subwavelength scatterers, αb can be
expressed as

αb = πa2

8
(D̃in − 1)

[
1

D̃in + f0(ν)
+ 1

D̃in + f2(ν)

]
. (13)
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FIG. 3. (a) Equivalent flexural metamaterial model (right) for the
corrugated (left) elastic cylinder (with grooves of angle θN = π/N ).
(b) Normalized scattering cross section σ scat/a of the structure shown
in (a), versus the normalized wave number. The inset in (b) shows the
scattering cross section of a rigid cylinder of same radius showing
resonant scattering for β0a ≈ 0 and no resonant effects for higher
frequencies.

Note that αb has the unit of a surface. This is because the
flexural scattering problem is of two-dimensional nature as
opposed to electromagnetic and acoustic scattering problems
that are of three-dimensional nature, which leads to an
electrical polarizability with the unit of a volume. Figures 2(c)
and 2(d) plot the absolute value (in logarithmic scale) and
phase of αb for varying values of β0a for three different values
of γb. As expected, αb exhibits a resonance behavior similar
to that of σ scat. It experiences a resonant enhancement when
the denominators |D̃in(β0) + f0(ν)| or |D̃in(β0) + f2(ν)| in
Eq. (13) are minimum. This condition is satisfied at two wave
numbers βp/[1 + f0(ν)]1/4 and βp/[1 + f2(ν)]1/4, showing
that the resonance frequencies depend on βp, a medium
parameter that is used in the definition of the dispersion
relation for D̃in. Additionally, as expected, Fig. 2(c) shows
that resonant enhancement is lower for higher values of γb

[Fig. 2(c)], because the denominator does not completely

vanish (Im[D̃in] 
= 0) when γb is nonzero. The phase jump
of π around the resonance wave numbers, shown in Fig. 2(d),
confirms the resonant features of the flexural object.

IV. SETUP OF THE SCATTERING PROBLEM
OF CORRUGATED STRUCTURES

Figure 3(a) shows the corrugated cylinder analyzed in this
section. It consists of an inner cylinder with radius a, outer
cylinder with radius ac, and periodic grooves with sector angles
θN = (2π )/(2N ) = π/N [Fig. 3(a)]. The material filling the
grooves is considered to be the same as the material of
the background thin plate and the boundary conditions at
the circumference of the corrugated structure are either rigid
(clamped) or stress free [35]. It is assumed that the grooves
are subwavelength, i.e., β0(πac/N ) � 1, where πac/N is the
period of the corrugations. Under this condition, only the
fundamental waveguide mode exists inside the grooves [17].
Consequently, one can express the displacement field inside
the grooves (for a � r � ac) as

ζ in(r,φ) =
∞∑
l=0

εli
l[ClY0(β0r) + C ′

lK0(β0r)

+ElJ0(β0r) + FlI0(β0r)] cos(lφ). (14)

For the internal boundary r = a, clamped boundary condi-
tions are used first, that is, ζ = ∂ζ/∂r = 0. For the external
boundary, we use the mode matching technique. In general,
this technique relies on matching fields of the electromagnetic,
acoustic, and elastic modes present outside the scatterer with
those inside the sectors (or grooves) [17]. We use the expansion
of the fields in terms of Hankel functions inside and outside
the grooves and then apply the matching boundary conditions,
i.e., we take into account the corrugations by averaging the
physical parameters appearing in the continuity relations, i.e.,
density for acoustics [33], permittivity and permeability for
electromagnetics [27], and flexural rigidity for flexural waves
[48]. Thus, for r = ac matching boundary conditions are
applied, that is, continuity of all the parameters defined in
Sec. III, i.e., ζ,∂rζ,Mr,and Vr assuming a modified effective
flexural rigidity Din = δD0 inside the shell (a < r < ac)
shown in Fig. 3(a), taking into account the filling of the grooves
[16]. Here δ is the filling factor of the structure. Applying the
six boundary conditions for the system depicted in Fig. 3(a),
with the remaining fields in other domains having similar
expressions as in the previous section, for each azimuthal order
l, we obtain a matrix system of equations. In particular, for the
scattering unknowns Al = ψl/χl and Bl = ξl/χl ,

ψl =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−Jl(β0ac) Kl(β0ac) −Y0(β0ac) −K0(β0ac) −J0(β0ac) −I0(β0ac)

0 0 Y0(β0a) K0(β0a) J0(β0a) I0(β0a)

−β0J
′
l (β0ac) β0K

′
l (β0ac) −β0Y

′
0(β0ac) −β0K

′
0(β0ac) −β0J

′
0(β0ac) −β0I

′
0(β0ac)

0 0 β0Y
′
0(β0a) β0K

′
0(β0a) β0J

′
0(β0a) β0I

′
0(β0a)

−SJ (β0ac) SK (β0ac) −δSY (β0ac) −δSK (β0ac) δSJ (β0ac) δSI (β0ac)

−TJ (β0ac) TK (β0ac) −δTY (β0ac) −δTK (β0ac) δTJ (β0ac) δTI (β0ac)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (15)
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χl =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H
(1)
l (β0ac) Kl(β0ac) −Y0(β0ac) −K0(β0ac) −J0(β0ac) −I0(β0ac)

0 0 Y0(β0a) K0(β0a) J0(β0a) I0(β0a)

β0H
(1)′
l (β0ac) β0K

′
l (β0ac) −β0Y

′
0(β0ac) −β0K

′
0(β0ac) −β0J

′
0(β0ac) −β0I

′
0(β0ac)

0 0 β0Y
′
0(β0a) β0K

′
0(β0a) β0J

′
0(β0a) β0I

′
0(β0a)

SH (β0ac) SK (β0ac) −δSY (β0ac) −δSK (β0ac) δSJ (β0ac) δSI (β0ac)

TH (β0ac) TK (β0ac) −δTY (β0ac) −δTK (β0ac) δTJ (β0ac) δTI (β0ac)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (16)

and

ξl =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H
(1)
l (β0ac) −Jl(β0ac) −Y0(β0ac) −K0(β0ac) −J0(β0ac) −I0(β0ac)

0 0 Y0(β0a) K0(β0a) J0(β0a) I0(β0a)

β0H
(1)′
l (β0ac) −β0J

′
l (β0ac) −β0Y

′
0(β0ac) −β0K

′
0(β0ac) −β0J

′
0(β0ac) −β0I

′
0(β0ac)

0 0 β0Y
′
0(β0a) β0K

′
0(β0a) β0J

′
0(β0a) β0I

′
0(β0a)

SH (β0ac) −SJ (β0ac) −δSY (β0ac) −δSK (β0ac) δSJ (β0ac) δSI (β0ac)

TH (β0ac) −TJ (β0ac) −δTY (β0ac) −δTK (β0ac) δTJ (β0ac) δTI (β0ac)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (17)

with the same notations for the functionals SZ and TZ given in Eq. (9), with the main difference here being that for columns
3–6 only Bessel or Hankel functions of order l = 0 are taken into account, due to the subwavelength nature of the corrugations
[Eq. (15)] and the presence of the extra term δ = θ1/(θ1 + θ2), accounting for the filling factor of the corrugations (δ = 0.5 if
θ1 = θ2). The other possibility with flexural waves is to ensure stress-free boundary conditions at r = a, that is, Mr = Vr = 0.
Applying the six boundary conditions for the system, for each azimuthal order l, we obtain again an algebraic system of
equations, in particular for the scattering unknowns Al = ψl/χl and Bl = ξl/χl (here we keep the same notations for the
scattering coefficients for simplicity):

ψl =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−Jl(β0ac) Kl(β0ac) −Y0(β0ac) −K0(β0ac) −J0(β0ac) −I0(β0ac)

−β0J
′
l (β0ac) β0K

′
l (β0ac) −β0Y

′
0(β0ac) −β0K

′
0(β0ac) −β0J

′
0(β0ac) −β0I

′
0(β0ac)

−SJ (β0ac) SK (β0ac) −δSY (β0ac) −δSK (β0ac) δSJ (β0ac) δSI (β0ac)

0 0 δSY (β0a) δSK (β0a) δSJ (β0a) δSI (β0a)

−TJ (β0ac) SK (β0ac) −δTY (β0ac) −δTK (β0ac) δTJ (β0ac) δTI (β0ac)

0 0 δTY (β0a) δTK (β0a) δTJ (β0a) δTI (β0a)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (18)

χl =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H
(1)
l (β0ac) Kl(β0ac) −Y0(β0ac) −K0(β0ac) −J0(β0ac) −I0(β0ac)

β0H
(1)′
l (β0ac) β0K

′
l (β0ac) −β0Y

′
0(β0ac) −β0K

′
0(β0ac) −β0J

′
0(β0ac) −β0I

′
0(β0ac)

SH (β0ac) SK (β0ac) −δSY (β0ac) −δSK (β0ac) δSJ (β0ac) δSI (β0ac)

0 0 δSY (β0a) δSK (β0a) δSJ (β0a) δSI (β0a)

TH (β0ac) SK (β0ac) −δTY (β0ac) −δTK (β0ac) δTJ (β0ac) δTI (β0ac)

0 0 δTY (β0a) δTK (β0a) δTJ (β0a) δTI (β0a)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (19)

and

ξl =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H
(1)
l (β0ac) −Jl(β0ac) −Y0(β0ac) −K0(β0ac) −J0(β0ac) −I0(β0ac)

β0H
(1)′
l (β0ac) −β0J

′
l (β0ac) −β0Y

′
0(β0ac) −β0K

′
0(β0ac) −β0J

′
0(β0ac) −β0I

′
0(β0ac)

SH (β0ac) −SJ (β0ac) −δSY (β0ac) −δSK (β0ac) δSJ (β0ac) δSI (β0ac)

0 0 δSY (β0a) δSK (β0a) δSJ (β0a) δSI (β0a)

TH (β0ac) −SJ (β0ac) −δTY (β0ac) −δTK (β0ac) δTJ (β0ac) δTI (β0ac)

0 0 δTY (β0a) δTK (β0a) δTJ (β0a) δTI (β0a)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (20)

V. LOCALIZED SPMs INDUCED ON CORRUGATED
THIN PLATE CYLINDERS

Next, it is demonstrated that localized surface plate modes
(SPMs) can be induced on corrugated thin plate structures.
First, consider the case of corrugations with clamped boundary
conditions [Fig. 3(a)]. The scattering coefficients Al associated
with the corrugated structure are deduced from Eqs. (15)–

(17) and σ scat is computed using Eq. (11). Figure 3(b) plots
σ scat/a for varying values of β0a between 0.25 and 3 for two
different values of δ0. It can be noticed from the figure that σ scat

increases as β0 approaches zero. Indeed, Eq. (11) shows that
σ scat grows with 1/β0 as β0 approaches zero. This is a well-
known phenomenon: Flexural scattering from rigid objects,
which are characterized with conditions ζ = 0 and ∂ζ/∂r = 0
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on their boundaries, is divergent at zero frequency, as seen in
the inset of Fig. 3(b) where the SCS from a rigid object with
radius a is shown for comparison [35–37,39]. This means that
a pin in a thin plate has a natural resonance in the quasistatic
regime. Figure 3(b) also shows that, in addition to the zero-
frequency resonance, σ scat has many peaks in the higher end of
the spectrum, which correspond to the corrugated structure’s
resonances.

The presence of multiple resonances in the scattering
spectrum of this rather simple structure can be explained by
carefully looking at how the expressions of χl, ψl , and ξl

in Eqs. (15)–(17), which are used to compute the scattering
coefficients Al and Bl and eventually σ scat, are obtained.
This is done by comparing the method, which is used for
obtaining expressions of the scattering coefficients associated
with classical (rigid or stress-free) core-shell structures, to
the one used here to obtain Eqs. (15)–(17) [36,37,39,40].
The main difference is the representation of ζ inside the
shell, i.e., only the zeroth-order Bessel and Hankel functions
are taken into account in Eq. (14), due to the presence of
subwavelength corrugations. Additionally, there is a scaling
factor in the expressions of the determinants χl, ψl , and ξl :
δ = θ1/(θ1 + θ2), which accounts for the filling fraction of
the grooves. As expected, the resonance peak locations and
bandwidths are sensitive to the changes in δ. Figure 3(b) plots
σ scat for two values of δ, 0.1 (dilute regime) and 0.7 (high
filling). It is clear that bandwidths of the resonances are larger
for δ = 0.7. Additionally, reducing δ shifts the resonances
towards higher frequencies. It should also be noted here that the
resonances at higher frequencies are sensitive to loss. However,
if the level of loss is high, one can expect that some of these
modes will simply vanish and only the broadband mode (at
lower frequencies) will remain.

Next, the same corrugated structure but with stress-free con-
ditions is considered. The scattering coefficients Al associated
with this structure are deduced from Eqs. (18)–(20) and σ scat

is again computed using Eq. (11). Figure 4(a) plots σ scat/a

for varying values of β0a between 0 and 3 for δ = 0.7. It can
be immediately observed that, unlike the corrugated structure
with clamped boundary conditions, there is no resonance at the
zero frequency. This is expected since static scattering from
any stress-free structures is by definition nonresonant [37].
However, introducing corrugations to the scatterer results in
generation of higher frequency resonances in the spectrum
of σ scat. To verify that these peaks are associated with the
higher-order modes of the corrugated structure, normalized
scattering coefficients 4/(β0a)|Al|2, l = 0,1, . . . ,10 are also
plotted in Fig. 4(a). These curves show that each resonant
peak of σ scat is associated with a resonance of a scattering
coefficient with given order l. Unlike for the higher-order
scattering coefficients, the zeroth-order coefficient (red line)
does not display a sharp resonance associated with it.

Figure 4(c) plots the distribution of the near-field displace-
ment ζ ’s amplitude at β0a = 1.3 and β0a = 2.75. Higher-
order nature of the modes is clearly seen.

VI. DISPERSION RELATION OF SPMs

In this section, we would like to analyze the tunability
properties of the corrugated structure of Fig. 3(a) as well as
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FIG. 4. (a) Normalized scattering cross section σ scat/a of the
corrugated cylinder shown in Fig. 3(a) vs the normalized wave
number, using stress-free boundary conditions (black curve). The
different multipoles (l = 0 . . . 10) corresponding to determinants
in Eqs. (18)–(20) are plotted to show the contribution of each
multipolar resonance. (b) Near field plots of the displacement ζ (r,φ)
for normalized wave numbers 1.3 and 2.75, corresponding to modes
l = 4 and 6.

the possibility to treat it as an effective metamaterial with
homogeneous flexural rigidity as schematized in Fig. 3(a).
In order to better understand the behavior of the corrugated
cylinder, the dispersion curves of the SPM originating from the
one-dimensional equivalent grating of the same geometrical
parameters are computed [6,16]. The resonant wave number
of the equivalent material is taken as βpa = π/

√
2. The

normalized frequency (β0a)2 is given versus the normalized
propagation constant of the normalized plate spoof plasmon
βSPMa in Fig. 5(a) for different loss factors [and zoomed in
Fig. 5(c) for low frequencies]. It should be noted here that the
dispersion of waves in free space is of parabolic nature and is
not linear as is the case for acoustics and electromagnetics. This
means that the elastic cone is of parabolic shape (red curve).
It can be seen that for lower wave numbers the dispersion
relation is identical to the free-space one. For higher wave
numbers, the behavior changes and the dispersion of the SPM
becomes flat (with convergence to

√
2βp) and located outside

the elastic cone. This behavior is a hallmark of localized
surface-plasmon polaritons in optical frequencies and shows
undoubtedly that the corrugated cylinder of Fig. 3(a) gives
rise to similar features in elasticity (flexural waves in thin
plates). Additionally, from the dispersion relations of Fig. 5(b)
[zoomed in Fig. 5(d) for low frequencies], one can conclude
that, ultimately, the dispersion of SPMs is very sensitive to the
environment parameters and therefore can be a platform for
elasticity sensors.
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FIG. 5. (a) Dispersion relation of the SPM vs normalized frequency (β0a)2 for D0 = 1 and for different values of the loss factor γb =
{0,10−3,10−2,10−1} × βp , with βp the natural wave number of the model of Eq. (13). (b) Same as (a) but for different values of the relative
flexural rigidity of the surrounding medium D0 = 1 and 4. (c) and (d) are zoomed versions of the plots of (a) and (b), respectively.

VII. CONCLUSIONS

We have introduced here the concept and potential real-
ization of an elastic localized surface mode, obtained by a
subwavelength corrugation of a rigid or stress-free elastic
cylinder in a thin plate. We have demonstrated with analytical
analysis that the features of these plasmons are very much
similar to their electromagnetic and acoustic counterparts. The
experimental realization of this idea [structure of Fig. 3(a)]
may be within reach in the near future. Note, for instance,
that lensing of bending waves via negative refraction was
theoretically predicted using the biharmonic plate model [38]
and experimentally confirmed in a thin Duralumium plate
[14]). This will allow for exciting applications of interest
to elastodynamics, including subwavelength imaging and
sensing for the oil and gas industry, elastic wave guiding,
and enhancement of nonlinear effects.
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APPENDIX: METHODS

Analytical methods based on scattering Mie theory of
cylindrical objects in thin elastic plates are used to obtain
the results in this study. The vertical displacement of the plate
is the solution of the fourth-order differential biharmonic KL
equation. We proceed, as is usually done, by expanding the
impinging plane waves and the scattered fields in terms of
Bessel and Hankel functions in the polar coordinate system
centered with the object. We then apply proper elastodynamic
boundary conditions on each cylindrical interface in order to
obtain the scattering coefficients for waves, which uniquely de-
termine the displacement fields everywhere. The displacement
field distributions and scattering cross sections are computed
using Bessel developments and Eq. (11), respectively. In the
quasistatic limit, where the size of the elastic core sphere is
much smaller than the wavelength and only the lowest-order
Mie coefficient remains important, an analytical formula is
obtained which is reminiscent of a pinned inclusion in a
plate [Eq. (10)]. We have numerically checked that proper
convergence for all the results is reached (via truncation
order).
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