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Abstract

A new and efficient formulation of the Discrete-Continuous Model (DCM) for

the simulation of 3D dislocation dynamics in complex finite or periodic volumes

is presented. As in previous versions, the improved model is based on a cou-

pling between a Dislocation Dynamics (DD) code and a Finite Element (FE) code

through eigenstrain theory. Short-range interactions are now handled more prop-

erly. Specifically, in the continuous limit the stress field driving the dislocation dy-

namics is now reconstructed consistently. Furthermore, the DCM can now handle

nonstructured meshes, and free surface and interface handling does not depend on

having a structured mesh anymore. Also numerical experiments shed some light

on the influence of the choice of the FE quadrature. Some approximations are

proposed and justified, and the use of advanced algorithmic techniques are used

for time integration and the homogeneisation procedure to reach a high compu-

tational efficiency. Basic tests demonstrate the validity and the efficiency of the

proposed strategy. Remarkably, it is demonstrated that for a periodic domain the
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DCM with a very fine FE mesh is actually faster than a corresponding classical

DD simulation.
Keywords: Dislocation dynamics, Finite element, Dislocation theory, Crystal

plasticity, Micromechanics

1. Introduction

Three-dimensional Dislocation Dynamics (DD) simulation has become an essen-

tial tool in materials science during the last few years because of the many inves-

tigations into the mechanical properties of micro- and nano-objects and because

of the need for more physically justified crystal plasticity constitutive rules. In

its most standard formulations, DD simulations use analytical expressions for the

stress field of dislocation segments which are part of discretised dislocation loops.

However those expressions are valid only for isotropic elasticity and in an infinite

continuum [1–3]. In order to handle more complex boundary conditions and to

take the effects of free surfaces or internal boundaries into account, alternative nu-

merical solutions have also been developed (see for instance [4] for a description

and comparison of the main methods). In the following such solutions are called

hybrid methods, as opposed to classical methods defined in infinite domains.

Most of the hybrid methods depend on a coupling between DD and Finite

Elements (FE). The most widely used approach is the superposition method in

which the mechanical problem is decomposed into a DD problem in an infinite

medium and a dislocation-free complementary boundary value problem, solved

by a FE elastic solver [5–10]. The Peach-Köhler forces driving the dislocation

dynamics are then calculated, at line segments, from the stress obtained by adding

the stress from the dislocation-free complementary FE problem to the analytical

2
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stress as calculated in the standard DD simulation in an infinite medium, so that

the boundary conditions are taken into account properly. This approach was ex-

tensively used and optimised in the past years to simulate mainly plasticity of

micro- and nano-objects (see for instance [11–18]).

An alternative hybrid approach is the Discrete-Continuous Model (DCM) [19–

23]. Here only the short-range dislocation-dislocation interactions are treated an-

alytically and all other interactions including those due to external loads and free

boundaries are calculated numerically by FE. Mixed calculations in which the

DD responses in one set of regions are combined with phenomenological con-

stitutive laws in other regions of the structure then become almost trivial. The

DCM is based on a regularisation of the atomic displacement jump across the slip

plane into a plastic strain inclusion following the eigenstrain theory [24]. It was

successfully applied to several practical problems, such as anisotropic thin films

[25, 26], metal-matrix composites with long fibres [27], micro-pillars [21] and

single-crystal g � g 0 Ni based superalloys [28]. Nevertheless, several limitations

have appeared in the past years:

• The calculations were restricted to simple geometries due to the need for

regular structured meshes made out of hexaedron elements.

• The procedure for regularising slip near domain boundaries was restricted

to and optimised for such structured meshes [22].

• Calculations of the dislocation self-stress field at distances around the bound-

ary of the eigenstrain volume suffered from a sharp discontinuity and there-

fore could be at the origin of an artificial jump in the velocity of two ap-

proaching dislocations [29].

3
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• The coupling algorithm between the two codes was general and not opti-

mised for the DCM.

In this work, these limitations are addressed through the development of a new

formulation for the DCM and through numerical improvements. This new formu-

lation is presented in §2 and is said to be consistent because it leads to a proper

reconstruction of the stress field driving the DD at the continuous limit for the

FE problem. Next, numerical optimisations of the DCM procedures are presented

in §3 with some recommendations regarding the choice of the spatial integration

in the FE simulation part. The paper is closed with elementary tests presented

in §4 to show the new possibilities and performances of the DCM. Large-scale

computation tests with high dislocation densities and complex geometries with

associated performance analyses will be presented in a forthcoming paper. In the

following, all DCM tests use the microMegas DD simulation code [30] and the

Z-set FE solver [31].

2. The new DCM formulation

In the DCM, the stress field sss driving the movement of the dislocations is a su-

perposition of a stress field sssFE computed numerically by the FE code and a local

correction stress field sssLC. The latter is calculated analytically in the vicinity of

the dislocation lines in order to reconstruct a pseudo-singular field close to the

dislocation lines. The stress sssFE transmits the long-range dislocation-dislocation

interactions, the body forces and the loads transmitted through the boundary con-

ditions. It takes into account the plastic strains eee p generated by the movement of

dislocations through a regularisation of the displacement jump [[uuu]] across the slip

plane. The regularisation procedure, following the eigenstrain theory [24], intro-
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duces a homogenisation length h. The maximum element size of the FE mesh is

directly related to this length in order to garuantee that sufficient integration points

lie inside each eigenstrain volume. The local correction sssLC is computed by the

DD code, which then handles the movements of the dislocation lines and their

topological contact reactions. These basic principles of the DCM are described in

full detail in [22] and schematically illustrated in Fig. 1.

Dislocation Dynamics

Regularization

FE boundary value problem solving

A

Figure 1: The basic DCM algorithm: the motion of the discrete dislocation lines is handled by

the DD simulation code. For the calculation of the Peach-Köhler force, a local correction sssLC is

calculated internally in the DD code to account for the strong elastic interactions between close

segments. The other stress contribution sssFE is computed with the FE code when solving the

boundary value problem and taking the eigenstrain distribution into account. The latter results

from the regularisation of the accumulated slipped areas {A}.

The calculation of the local correction sssLC is a key point of the DCM to re-

produce correctly short-distance dislocation-dislocation interactions and contact

reactions between dislocation segments. In the previous DCM formulation, sssLC

is simply the singular stress field sssS as is usually used in standard DD simula-
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tions, truncated at a distance h from the dislocation line. This simple solution is

precise enough to capture, for instance, the zipping/unzipping process of junctions

[22]. However it turns out that for small values of h (i.e., < 50 nm), large numer-

ical errors may appear in the dislocation dynamics when dislocation lines are at

distances around h. This is because the superposition of the two contributions

generates a stress discontinuity at the contour of the eigenstrain volume, which

becomes significant in those cases.

To overcome this important limitation, a revised local correction is presented

in §2.1. This revised local correction is said to be consistent because at the con-

tinuous limit for the FE solution, i.e. at the limit when the element size tends to

zero, it leads to an exact reconstruction of the mechanical fields for the problem of

an infinite domain. The improved calculation of sssLC also implies modifications

to the regularisation procedure, i.e. the way in which the plastic eigenstrain eee p is

distributed to the integration points (IP) of the FE mesh. This is presented in §2.2.

Then, the way in which surfaces and interfaces are handled is described in §2.3.

2.1. Consistent reconstruction of the stress field

As for the superposition method, the new DCM formulation is based on the lin-

earity of the problem of finding the displacement and stress fields (uuu,sss) in a finite

elastic domain W containing displacement jumps ~uuu� due to dislocation glide, and

its decomposition into sub-problems which are easier to solve. This reference

6
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boundary value problem P can be written as follows:

P — ·sss + fff = 000 in W\{A}

sss = EEE : eee in W\{A}

~uuu� across {A}

uuu = uuu0 at ∂Wu

sss ·nnn = ttt at ∂Ws .

(1)

The boundary ∂W of W with outward normal nnn is divided into ∂Wu where Dirich-

let boundary conditions are applied and into ∂Ws (non-overlapping with ∂Wu)

where Neumann boundary conditions are applied. At time t, {A} represents the

area swept by the dislocation loops since the beginning of the simulation. This

includes the initial Volterra process used to define the initial eigenstrain distri-

bution associated to the initial dislocation line configuration. The displacement

jump ~uuu� is tangent to {A}, its magnitude and direction are given by the Burgers

vector bbb. Furthermore, EEE is the fourth-order tensor of elasticity, eee the small-strain

strain tensor (the symmetric part of the gradient of the displacement field), fff rep-

resents the body forces, ttt the traction applied at Neumann boundaries, and uuu0 is

the prescribed displacement at Dirichlet boundaries.

This problem P can be decomposed linearly into three sub-problems

1. P
FE with solution

�
uuu

FE ,sssFE
�
, where the FE stands for Finite Element

even though at this point the problem is not yet discretised, and even though

this sub-problem might be solved by any other numerical method,

2. P
S with an analytical Singular (S) solution

�
uuu

S,sssS
�
, and

3. P
NS with an analytical Non-Singular (NS) solution, written as

�
uuu

NS,sssNS
�
.

7
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The three considered sub-problems are

P
FE — ·sssFE + fff = 000 in W

sssFE = EEE :
�
eeeFE � eee p

�
in W

uuu
FE = uuu0 �

�
uuu

S �uuu
NS
�

at ∂Wu

sssFE · nnn = ttt �
�
sssS �sssNS

�
·

nnn at ∂Ws ,

(2)

P
S — ·sssS = 000 in R3 \{A}

sssS = EEE : eeeS in W\{A}

~uuuS� across {A} ,
(3)

P
NS — ·sssNS = 000 in R3

sssNS = EEE :
�
eeeNS � eee p

�
in W.

(4)

With the definition

(uuu,sss)⌘
�
uuu

FE ,sssFE
�
�
⇣

uuu
NS,sssNS

⌘
+
⇣

uuu
S,sssS

⌘
(5)

it can be verified that

P = P
FE �P

NS +P
S. (6)

The eigenstrain distribution eee p is constructed additively over the set of dislocation

loops, i.e.

eee p = Ầ
2L

eee p

` (7)

where L is the set of dislocation loops. The problem P
NS can then be decomposed

into dislocation loop-wise sub-problems P
NS

` :

P
NS = Ầ

2L

P
NS

` (8)

8
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where
P

NS

` — ·sssNS

` = 000 in R3

sssNS

` = EEE :
�
eeeNS

` � eee p

`

�
in W.

(9)

Similarly one can write

~uuuS�= Ầ
2L

~uuuS�` (10)

and

P
S = Ầ

2L

P
S

` (11)

where
P

S

` — ·sssS

` = 000 in R3 \{A}

sssS

` = EEE : eeeS

` in W\{A}

~uuuS�` across {A} .

(12)

The key point of this new DCM decomposition (6) is that one can choose an eigen-

strain distribution such that sssS

` �sssNS

` decreases rapidly to zero with increasing

distance from the dislocation line ` (the actual eigenstrain distribution considered

is described in §2.2). Thus, the term sssS

`�sssNS

` can be truncated at a given distance

r = rl from the dislocation line `, and the DCM reconstruction of the total stress

field then becomes

sssLC ⌘ Ầ
2L

sssS

` |rl
� Ầ

2L

sssNS

` |rl
(13)

sss = sssFE +sssLC, (14)

where sssNS

` |rl

and sssS

` |rl

are the stress fields sssNS

` and sssS

` truncated at a distance rl

of the dislocation ` and the stress sssLC is the new definition of the DCM local-

correction term. In what follows, unless noted explicitly, the notations sssNS and

sssS refer to the truncated fields, i.e. sssNS = Â`2L sssNS

` |rl

and sssS = Âl2L sssS

` |rl

.

9
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Remark 1: The difference between this new formulation of the DCM and the

superposition method are as follows. The problem P
FE can be decomposed into

two sub-problems P
FEa and P

FEb with

P
FEa

— ·sssFEa + fff = 000 in W

sssFEa = EEE : eeeFEa in W

uuu
FEa = uuu0 �uuu

S at ∂Wu

sssFEa ·nnn = ttt �sssS ·nnn at ∂Ws

(15)

and

P
FEb

— ·sssFEb = 000 in W

sssFEb =EEE :
�
eeeFEb � eee p

�
in W

uuu
FEb = uuu

NS at ∂Wu

sssFEb ·nnn = sssNS ·nnn at ∂Ws .

(16)

The superposition method can be written as

P
SP = P

FEa +P
S (17)

and the DCM can be written as

P =
⇣
P

FEa +P
S

⌘
+P

FEb �P
NS. (18)

The DCM can then be seen as an extension of the superposition method to which

two sub-problems are added. Even though at first sight these two added sub-

problems may appear as incurring extra computation costs, their introduction can

10
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actually lead to major computational cost savings with respect to the superposition

method and even with respect to classical DD.

In the P
SP problem the dislocation segments interact with each other through

problem P
S, where each segment generates a slowly decreasing stress field (as

1/r) around its core which cannot be truncated without major loss of accuracy.

This leads to a N-segment problem, a priori of O(N2) complexity, in which each

dislocation segment interacts with every other one. The a priori here means that

some advanced technique such as the Fast Multipole Method (FMM) ([32–34])

might be used to reduce this complexity to O(N log(N)) or ideally to O(N) as-

suming that the heterogeneity of the dislocation density in the simulated volume

can be effectively subdivided into a hierarchical structure.

In the new DCM formulation each dislocation segment interacts with all the

other segments through problem P
FE , but, thanks to the truncation in equation

(13), only with neighbouring segments at r < rl in P
NS and P

S. For the latter

two problems the complexity a priori then becomes of order O(N⇥Nl), where Nl

is the average number of segments at r < rl . Given that rl must be of the order

of the element size of the mesh used in problem P
FE (see [22]) and assuming

a structured mesh for a cubic simulated volume, Nl is of the order N/nelem, with

nelem the number of elements of the mesh. Then the complexity for P
NS and P

S

remains O(N2) but with a prefactor of the order 1/nelem, which can easily reach

10�5 or 10�6.

The FE part of the DCM then plays a similar role as the FMM in standard DD

simulation codes, because both carry the long-range dislocation-dislocation inter-

actions and thereby significantly reduce the O(N2) complexity of the problem. In

the DCM it has the added advantage of also taking into account the external loads.

11
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For extremely high segment densities and a large cutoff radius some combination

of the two methods might be thought of to reduce the computing load for interac-

tions within the cutoff radius, however, this is not the point of the present paper.

Remark 2: The new DCM decomposition of the stress field sss = sssFE �sssNS+sssS

can also be interpreted through a different spatial decomposition of the interac-

tions. On the one hand, the stress sssR ⌘ sssFE �sssNS, which might be called the

remote stress field, represents the influence of the external loads and the remote

dislocations and other defects including free surfaces and interfaces, that lie at a

distance r > rl from the considered point. The stress contribution sssNS can then

be seen as a filter that removes the influence of the dislocations lying at a distance

r < rl from sssFE . On the other hand, the influence of these nearby dislocations is

handled by sssS.

2.2. Regularisation of the plastic slip and its interpolation with the new eigen-

strain distribution

Following the formalism developed in the previous section, the eigenstrain distri-

bution used in the DCM must be such that:

1. it is constructed additively over the set of dislocation loops L, i.e. eee p =

S`2Leee p

l
,

2. for each `2 L, sssS

`�sssNS

` decreases rapidly to zero away from the dislocation

line forming the loop `,

3. one can easily compute the stress field of problem P
NS.

It can be noted that such an eigenstrain distribution can be derived exploiting the

Burgers vector distribution function proposed by Cai et al. [3] in the context of

12
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the development of a non-singular continuum theory of dislocations. The eigen-

strain distribution, used in the eigenstrain problem P
FE , is calculated spreading

isotropically the Burgers vector using a specific function denoted w̃. In the fol-

lowing the notation of [3] is used. The analytical expressions for the stress field

derived from the Burgers vector distribution function w̃ are not reproduced here.

These expressions are needed in the DCM to construct the stress field sssNS, solu-

tion of P
NS.

As stated in [3], using w̃ in the FE problem P
FE the stress field s̃ssFE is ob-

tained from the resolution of the elasticity problem. The stress field s̃ssFE must be

convoluted by w̃ in order to get the stress field sssFE (see equation (33) of [3]). The

main advantage is that with this convolution step the interpolation of the stress

field from the IP of the FE mesh to the centres of the dislocation segments can

be done without introducing any unwanted smoothing of this field, as was the

case in the previous formulations of the DCM. The practical procedure for the

construction of the eigenstrain distribution for problem P
FE is now presented in

detail.

In the DD part of the DCM, the dislocation segments i glide producing a plane

trapezoidal swept area Ai (the light grey area shown in Fig. 2a). An elementary

dislocation segment d` located at xxx0, gliding a distance dy in its slip plane, sweep-

ing out an area dAAA = nnn d` dy (with nnn its normal), generates an elementary plastic

shear distribution deee p given by

deee p(xxx) = w̄rc
(kxxx� xxx0k ,h)

bbb⌦dAAA+dAAA⌦bbb

2
, (19)
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(a) (b)

dA

Figure 2: (a) Swept area Ai for a single dislocation segment i during a time step. The elementary

eigenstrain distribution w̄rc
is integrated continuously in the direction eeel and discretely in the di-

rection eeeg. The glide of the segment over a length dy is decomposed into n glide increments of

length dy. The s
k denote the successive positions of the segment along the n glide increments.

(b) Geometry of the inclusion (in grey) generated by the homogenisation of the swept area Ai (in

green).

where h is the homogenisation length and w̄rc
(r,h) is the function w̃(r,h) of [3]

for spreading out the Burgers vector

w(r,h) =
15h

4

8p(r2 +h2)7/2 , (20)

w̃(r,h) = 0.3425w(r, 0.9038h)+0.6575w(r, 0.5451h), (21)

except that it is truncated at a distance r = rc from xxx0:

w̄rc
(r,h) = H (rc � r)w̃(r,h) (22)

with H the Heaviside step function.

For saving computational time, rc should be as small as possible, but for too

small values the difference between w̄rc
and w̃ would lead to loss of a large amount

of plastic shear strain. Fig. 3 shows the influence of the cut-off radius rc on the

integral over the whole space of w̄rc
. Its value tends to 1 when rc ! • (i.e. when

w̄rc
! w̃). In the DCM calculations reported in this paper the value rc = 1.75h is

14
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used, which leads to an error of less than 5% in the integral of w̄rc
with respect to

the one of w̃.

0
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0 0.5 1 1.5 2 2.5 3
rc/h

Figure 3: Influence of the cutting radius rc on the value of the integral of w̄rc
, with h the homogeni-

sation length.

Similarly to the previous version of the DCM (see [22]), the geometry and the

distribution of the eigenstrain resulting from a finite swept area is the union of the

geometry of, and the eigenstrain associated to the elementary spherical inclusions

dFxxx0 of radius rc associated to each point of the swept area. An example of the

resulting shape of the inclusion is shown in Fig. 2b. Then, an IP of the FE mesh

at position xxx gets attributed the sum of the elementary shear of every spherical

inclusion dFxxx0 containing xxx. Formally

eee p(xxx) = Â
Ai2{A}

eeeiIi (xxx) (23)

with

Ii (xxx)⌘
Z

xxx02Ai

w̄rc
(kxxx� xxx0k ,h)dx

2
0 (24)

15



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

where the notation dx
2
0 denotes a surface integral and eeei =

1
2 (bbbi ⌦nnni +nnni ⌦bbbi)

with bbbi and nnni the Burgers vector and the unit normal vector of the swept area Ai,

respectively. {A} is the whole set of swept areas.

In the following part of this paragraph, the subscript i is omitted for clarity.

The integral I (xxx) is integrated continuously in the direction of the dislocation

line (eeel in Fig. 2a) and in a discrete way in the glide direction (eeeg in Fig. 2a). In

the local reference frame (eeel,eeeg), the glide distance dy along eeeg during the time

step d t of a segment s is decomposed into n elementary glides dy ⌘ dy/n. Then

I (xxx)' dy

n

Â
k=1

Z

xxx02sk

w̄rc
(kxxx� xxx0k ,h)dxxx0,⌘ dy

n

Â
k=1

J
k (xxx) (25)

where s
k refers to the segment s of length l

k at position k. For the computation of

the integral J
k (xxx), the integration and truncation operations are inversed accord-

ing to

J
k (xxx)' H (rc �kxxx� xxx

kk)L k (xxx) , (26)

where xxx
k refers to the closest point to xxx on sk and

L
k (xxx) =

Z

xxx02sk

w̃rc
(kxxx� xxx0k ,h)dxxx0. (27)

This last integral L
k (xxx) is calculated analytically. To this end, a new local frame

�
CCCk,eeel,eee

k
xxx

�
is considered, with CCCk the centre of the segment s

k and eee
k
x the unit

vector normal to s
k and pointing to xxx (see Fig. 4). With (x,y) the position of xxx in

the local frame, q = y
2 +h

2, p = x� x0:

L
k (x,y) =

"
h

4
p
�
15q

2 +20qp
2 +8p

4�

8pq3 (q+ p2)5/2

#
p=x0+l

k/2

p=x0�lk/2

. (28)

As stated above, the stress field s̃ssFE computed with the FE code at the IP and

using the eigenstrain distribution as defined above, must be convoluted with w̃.

16
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Figure 4: Local frame for the computation of J
k at point xxx. The grey shaded area refers to

the support of the function J
k in this local frame: if the point xxx is located outside this area, no

eigenstrain will be attributed to it.

Thus sssFE(xxx) at any point xxx is given by

sssFE(xxx) =
Z

R3
w̄(kxxx0 � xxxk)s̃ssFE(xxx0)dx

3
0, (29)

where the notation dx
3
0 denotes a volume integral. This integral is approximated

numerically using the IP, as following:

sssFE(xxx)'
Â

j\kppp j�xxxk<rc

w̄(kppp j � xxxk)s̃ssFE(ppp j)Vj

Â
j\kppp j�xxxk<rc

w̄(kppp j � xxxk)Vj

, (30)

where ppp j is the position of IP j and Vj its associated volume.

2.3. Interface handling

In the DCM, the simulated volume W is delimited by periodic interfaces or by

material interfaces. The treatments of those two kinds of interface differ and are

described in this section.

2.3.1. Periodic interfaces

The dislocation dynamics and therefore the swept areas calculated with the DD

code are by definition always located inside W. When periodic boundary con-

17
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ditions are used and when a dislocation segment crosses a periodic interface, it

reappears inside W modulo the linear dimensions of the simulated periodic vol-

ume. In the DD code the presence of a periodic medium is taken into account in

a conventional way for the calculation of the local correction stress sssLC and does

need any special procedure for the DCM. Hence at each segment centre sssLC is

calculated considering the closest dislocation segments surrounding this point in

the simulated periodic dislocation microstructure.

In the FE code a specific treatment is needed to compute the eigenstrain distri-

bution near the boundaries of the FE mesh. Periodic replicas of those swept areas

lying totally or partially at a distance smaller than the cut-off distance rc of the

periodic FE mesh limits are created, and the regularisation procedure then takes

these replicas into account in the same manner as the regular swept areas. Hence,

a periodic dislocation microstrucure can exactly be taken into account. This ad-

ditional procedure is illustrated in Fig. 5 in two dimensions. The process is the

same in three dimensions: if a swept area lies in the rc-vicinity of one periodic

interface, it generates one replica, if it lies in the rc-vicinity of two periodic inter-

faces, it generates three replicas, and if it lies in the rc-vicinity of three periodic

interfaces, it generates seven replicas.

Remark 3: Here again, the truncation of the stress fields computed by the DD

code (equation (13)) provides large gains in computational cost as compared to

the superposition method or to classical DD. Indeed, successive layers of periodic

replicas of the simulated volume do not need to be considered anymore for the

stress calculation, assuming that the simulated volume is big enough to contain a

sphere of radius rl .
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Ω

εpS

Figure 5: Two-dimensional example of the replicas of a glide area swept by a segment in the

rc-vicinity of the FE mesh boundaries (bold black lines). The blue arrows point to the periodic

replicas that have to be generated to get a full periodic eigenstrain distribution eee p, which corre-

sponds to the union of all grey areas.

2.3.2. Material interfaces

The problem of material interfaces in the DCM must be decomposed in two cases:

those penetrable and those impenetrable by dislocations.

The problem of impenetrable interfaces is simple and no additional treatment

is needed in the DCM procedures. More precisely, in the DD code the dislocation

segments arriving at an impenetrable interface are simply blocked there. In the FE

code, the slipped areas including those due to the dislocation segments within the

vicinity of the interface are regularised only to those IP lying a the same side of

the interface as the slipped areas but not beyond. In this case, the main numerical

error apearing in DCM computations is limited to the close vicinity of interfaces

and comes from the expressions for the local stress correction sLC which do not

account for the presence of two elastic media. The case of a free surface, denoted

19
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∂W f ⇢ ∂W, is less straightforward. Consider a dislocation loop whose dislocation

line is denoted by `. Its movement generates a slipped area, denoted A, corre-

sponding to the set of points in the slip plane delimited by `, i.e. ` is the boundary

of A. The set of points B of the loop at the interface (forming a line segment or a

poly-line segment) is then simply defined by B = A\∂W f .

When B , /0 different strategies can be considered. A first strategy depicted

in Fig. 6-a would consist in arresting the dislocation line at the interface, as for

the impenetrable case. This simple strategy has two main drawbacks. First, the

DD code has to keep track of this part of the line which does not generate stress

in the recomposed problem P . Secondly, it introduces singular boundary terms

(uuuS � uuu
NS on ∂Wu, sssS �sssNS on ∂Ws ) on a “large” surface of ∂W (see Fig. 7-e)

which extends when more of ` is deposited on the interface.

The second strategy is depicted in 6-b. This time, when a section of ` reaches

the interface, this line section is artificially moved outside the volume in its slip

plane and in a direction normal to the line formed by the set of points B over a

distance greater than rc. The distance to which the dislocation should be moved

outside is at least rc, because any further away a dislocation is not seen any more

by the IP of the FE mesh. In particular the swept area should be prolonged in the

glide plane to reconstruct a continuous eigenstrain outside the simulated domain.

For reasons of simplicity this procedure is currently only implemented for con-

vex domains. This solution was found to remove the two drawbacks mentioned

above: now the part of the extended dislocation line outside W has no mechanical

influence anymore and so can be removed from the segment list in the DD code.

Then, as illustrated in Fig. 7-f, the only singular boundary terms introduced

in the sssFE problem solved with the FE solver are located at the points where
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the dislocation line crosses the interface. This is the strategy now adopted in

the DCM. In addition, thanks to the localised requirement of the boundary terms

(uuuS � uuu
NS on ∂Wu, sssS �sssNS on ∂Ws ) for the FE problem P

FE , the singular

boundary terms can be neglected in many computations. Hence, the FE problem

that is actually solved is

P
FE — ·sssFE + fff = 000 in W

sssFE = EEE :
�
eeeFE � eee p

�
in W

uuu
FE = uuu0 at ∂Wu

sssFE ·nnn = ttt at ∂Ws .

(31)

Figure 6: Illustration of the two possible strategies discussed in the text for handling the problem

of a dislocation loop touching a penetrable interface. The red line is `. The blue shaded area is

the part of ∂W on which boundary terms have to be introduced due to the part of ` that is at ∂W or

outside W.

3. Improvement of numerical performance

3.1. Finite-element quadrature

In the DCM the FE solver computes the stress sssFE , which is the FE approxima-

tion of the solution of the boundary value problem in W in the presence of the
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eigenstrain distribution, which is discretised to the IP by the regularisation pro-

cedure described previously. The choice of the element quadratures, roughly the

number of IP per element, has a great influence on the computational costs and

may affect the accuracy of the output sssFE in quite a subtle way. Usually with FE

computations, the richer the element quadrature, the better the FE solution approx-

imates the continuum solution. This common prediction is not straightforward in

the DCM as will be shown in this section.

When solving the boundary value problem with the FE method, plastic incom-

patibilities (the fact that the eigenstrain associated to dislocation slips cannot be

written as the symmetric gradient of a displacement field) may lead to the gener-

ation of spurious stresses (called “eigenstress” in [24]) at two levels.

They can appear within an element, if there exists a sampling of the eigen-

strain defined at the IP of the element which cannot be fitted by any function of

the strain space of the element. This strain space refers to the vector space gen-

erated by the symmetrised gradient of the shape functions of the element. For

example, consider a linear 4-node tetrahedron element with a 4-IP quadrature. In

this element the strain is necessarily constant, whereas the sampling of an eigen-

strain at its 4 IP is captured as non constant and then cannot be represented in

the space of strain of the element. Elastic strain and its associated stress are then

needed to accommodate the plastic strain. In the following we call this first kind

of plastic incompatibility ”intra-element“ incompatibility.

Another type of plastic incompatibility may arise when two or more adjacent

elements are distorted differently due to the plastic strain. Again elastic strain is

needed to accommodate this incompatibility. In the following we call this second

kind ”inter-element incompatibility“.
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Through numerical investigation it appears that avoiding the intra-element in-

compatibility improves the quality of the FE solution. The removal of such intra-

element plastic incompatibility may be performed using low-order quadrature, i.e.

elements with a small number of IP. In the following, an element whose quadra-

ture is such that any sampling of eigenstrain at its IP can be fitted by a function of

its strain space is said to be self-compatible. The influence of the mapping from

the reference element to the mesh element is here neglected: elements are con-

sidered to be homothetic to their reference element. For example, the quadratic

10-node tetrahedron with a 4-IP point quadrature, or the quadratic 20-nodes hex-

ahedron with an 8-IP point quadrature (this element is under-integrated) are self-

compatible.

This assertion is now demonstrated with the simple test case of a straight in-

finite screw dislocation lying along the z-direction. The computational domain

is a rectangular parallelepiped with periodic boundary conditions along the z-

directions and free boundaries along the x- and y-directions. The resulting stress

field of this configuration can easily be calculated from existing analytical solu-

tions [1]. The computational cell shown in Fig. 8 measures Lz = 100 nm in the

z-direction and L = 800 nm in the other two directions. Isotropic elastic constant

are used, with shear modulus µ = 51 GPa and Poisson ratio n = 0.37 and the

norm of the Burgers vector, oriented in the z-direction, is b = 0.25 nm. The influ-

ence of the free boundaries is not commented here. Through the homogenisation

procedure of §2.2, the movement of the dislocation from one edge of the compu-

tational cell along its slip plane generates a platelike inclusion shown in Fig. 8-a.

The only non-zero component e p

yz of the eigenstrain tensor is shown in Fig. 8-b. It

can be observed that, except very close to the dislocation core, e p

yz does not depend
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on x inside the eigenstrain inclusion.

A regular structured FE mesh is used with 32⇥ 32⇥ 4 quadratic hexahedra

with 20 nodes and 27 IP. These IP are located on a regular 3⇥3⇥3 grid inside each

element. The mesh size is chosen such that the edge length of the elements equals

the homogenisation length h. For this case, only one component of the resulting

stress field is problematic: syz. This component is shown (after convolution with

w̄) in Fig. 8-c. One can observe that instead of decreasing smoothly as 1/r from

the dislocation core as expected, syz shows artifacts along the y axis that do not

vanish away from the dislocation core. However, the solution of the continuous

problem far from the dislocation core is {sss ! 000, eee ! eee p}, so the plastic strain

should be compatible there.

These artefacts arising from the intra-element plastic incompatibilities can be

understood as follows. Consider an element, far away from the dislocation core,

with non-zero eigenstrain. Along the y-direction and passing through the IP, the

eigenstrain e p

yz(y) given by the regularisation procedure is a non-linear function

(and far from the core, the problem is invariant in x and z). The best-fit ap-

proximation given by the quadratic FE to this non-linear input e p

yz(y) is linear,

and this results in alternating positive and negative stresses sFE
yz at the IP. Fortu-

nately, if the intra-element incompatibilities are removed by using self-compatible

quadratic hexahedra with 20 nodes and 8 IP, these oscillations of the stress sFE
yz

disappear, as shown in Fig. 8-d.

This first test is an idealised test case because all element edges are parallel

and orthogonal to the slip plane of the dislocation. Then, far from the dislocation

core, there are no inter-element plastic incompatibilities. A more general case is

now considered where the element edges are not aligned with the slip plane of
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the dislocation by rotating the mesh with respect to the slip plane and the Burgers

vector. Figures 9 give the results of this second case (again after convolution) for

the 20-node hexahedron with 27 IP and the self-compatible 20-node hexahedron

with 8 IP. Both solutions show spurious oscillations far from the the dislocation

core. These oscillations result from both intra and inter-element incompatibilities

for the non-self-compatible hexahedron, and only from inter-element incompat-

ibilities for the self-compatible hexahedron. The solution for the 8-IP element

is not only cheaper but appears to be slightly better. Naturally, the FE solution

converges to the expected solution when refining the mesh for both the under-

integrated element (allowing only inter-element plastic incompatibilities) and the

fully-integrated element (allowing inter and intra-element plastic incompatibili-

ties). Fig. 9-d shows the result for the self-compatible element for a finer mesh,

with 4 elements across the homogenisation length. However for a given mesh, the

FE solution is cheaper in terms of computational costs and at least as good with

elements that do not allow intra-element plastic incompatibilities. The same con-

clusions can be given with 10-node 4-IP tetrahedra, as shown in the comparison

of the sssFE
xx component in Fig. 10.

As a conclusion of this section, it appears through numerical investigation that

the choice of self-compatible elements, roughly with a small number of IP, offers

a better compromise between accuracy and costs with respect to the choice of

elements with high order quadratures.

3.2. Time integration

In this section the question of the numerical time integration scheme in the FE

part is addressed, specifically with respect to the internal variable eee p.

In the DCM, the DD time step d t is given by physical considerations and then
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is a fixed parameter of the algorithm for the integration of the evolution problem.

As noted in §2, the total stress field sss = sssFE �sssNS +sssS can be decomposed

into a remote stress field sssR = sssFE �sssNS and a short-range stress field sssS. The

remote stress field accounts for the interaction of the dislocations and boundaries

lying at a distance r > rl to each point whereas the short-range stress field accounts

for the dislocations lying at a distance r < rl . Although the short-range part is

very sensitive to small variations of segment positions due to its singularity, the

remote part is much less sensitive to details of the spatial dislocation distribution

in the microstructure. Therefore a larger time step Dt can be used for updating the

remote contribution of the stress field than for the short-range part. This is why

the FE problem may be solved only every Dt = m d t, where d t is the DD time

step and m 2 N is called the time step ratio.

Through the FE simulation, one has to integrate the evolution of the internal

variable eee p over each Dt to get the plastic strain increment Deee p. Historically an

implicit integration scheme was used in the DCM [20, 22]:

eee p(t +Dt)� eee p(t) = F (Dt,eee p(t +Dt)) (32)

where F represents the DD simulation. This leads to a non-linear global FE sys-

tem of equations which is solved using a quasi-Newton algorithm. The main

drawback of this approach is that it is highly CPU consuming as at each iteration

of the quasi-Newton scheme, the DD simulation of the whole m DD time step

matching the considered Dt has to be carried out once again. Furthermore, at each

iteration the stress needs to be interpolated to the dislocation segments.

Alternatively an explicit scheme is now proposed in the DCM:

eee p(t +Dt)� eee p(t) = F (Dt,eee p(t)) (33)
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where Deee p is computed explicitly and remains constant all along the FE time step.

Therefore the global FE system becomes linear during each FE time step. Further-

more, the stiffness matrix is unchanged as long as the mesh and the topology of

the Dirichlet boundary conditions are unchanged throughout the simulation. It

can then be factorised once and for all. Practically, the explicit procedure to solve

the DCM problem during Dt = md t is:

1. The stress field sssFE is interpolated by means of a convolution (see §2.1) to

the dislocation segments.

2. The DD code computes the non-singular part of the local correction sssNS

for each segment.

3. The DD code solves the dynamics of the dislocation segments for m DD

time steps d t, updating sssS every d t for each segment, but not sssR. When

a segment is discretised in smaller segments or when segments are merged

during the m DD time steps, rules are defined in the DD code to interpolate

sssR for the new segments based on the nearest defined segment solution

(usually the nearest connected segments along the dislocation line).

4. The eigenstrain increment Deee p is computed from the areas {DA} slipped

during the m DD time steps following the regularisation procedure pre-

sented in §2.2.

5. The FE code solves its linear boundary value problem to get sssFE at t +Dt.

The key steps of this procedure are represented schematically in Fig. 11. Gen-

erally, the drawback of using an explicit scheme is that it can become unstable

and then requires very small time steps. However, in order to properly catch the

contact interactions between the dislocation segments, the DD time step is con-

strained to values that are much smaller than the maximum time step ensuring FE
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stability. In other words, the time step is assumed to be precision-limited, and not

stability-limited. In all the tests that were carried out, with DD time steps d t based

on physical considerations and time step ratio m up to 100, no significant instabil-

ity has ever shown up. It can be noted that if problematic instabilities would show

up in some simulations, using an implicit integrator for the short range interac-

tions computed through the m DD steps but keeping a simple forward Euler for

the long range interactions computed by the FE code, as suggested in [35], would

be possible.

3.3. Data communication between FE and DD codes

Data communication between the FE and DD codes has been optimized. Data

exchange can be done either at the IP of the FE mesh, or at the segment integra-

tion points (SIP) for dislocation dynamics. In previous DCM versions all data

exchange was done at the IPs and all homogenisation and localisation operations

were done in the DD code. However for large FE meshes the number of IP is much

larger than the number of SIP and so the data exchange is now done with respect

to the SIP coordinates. On the one side, the DD code sends the locations of the

SIP to the FE code, and the FE code interpolates its stress field there (through the

convolution defined in §2.1) and sends it back to the DD code. On the other side,

the DD code sends the areas swept by the moving dislocation segments to the FE

code, from which the FE code computes the plastic strain at its IP following the

homogenisation procedure explained in §2.2. In short, in Fig. 11 this means that

the two central boxes Interpolation and Regularisation are now attached to the FE

code instead of the DD code, as they were before. As a side effect this allowed

clearing up many redundant data structures in our codes.
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3.4. Proximity localisation

Following the homogenisation procedure (§2.2), for each IP it has to be deter-

mined whether it lies at a distance r > rc from each segment, or not. If r > rc

nothing has to be done. Otherwise, an increment of plastic strain has to be calcu-

lated for that IP. A brute-force approach would consist of computing the distance

from each IP to each dislocation segment. This would require operations of the

order of O(nseg⇥nip), where nseg is the number of segments and nip the number of

IP, which may become prohibitive for large calculations. Fortunately, there exist

more efficient solutions. This problem of efficiently determining which IP lie in

the rc-range of dislocation segments can be seen as nseg classical range search-

ing problems (see [36, 37] for a definition of the range searching problems and

overviews of different solving techniques): for each moving segment k, one has to

determine which IP lie in its range, defined as the portion of space Wk = {xxx 2 R3

such that the distance from xxx to segment k is smaller than rc}. The techniques

for solving this problem efficiently are based on a pre-processing of the cloud of

points on which localisation information can be queried. For most of them, a tree

data structure is constructed in which these points are spatially and hierarchically

sorted.

In the DCM, each nseg range searching problem Pk is solved in two stages:

first, a simpler problem P
⇤
k

is solved by replacing Wk by its axis-aligned bound-

ing box W⇤
k

(P⇤
k

falls in the category of orthogonal range searching problems).

Then, the candidate IP inside W⇤
k

are checked one by one whether they actually

belong to Wk. The IP cloud is pre-processed at the beginning of the simulation into

a “bounding volume hierarchy” whose bounding volumes are again axis-aligned

bounding boxes. This pre-processing has to be carried out only once because
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remeshing is not yet done for DCM simulations, so it is unchanged throughout the

simulation. Each problem Pk can then be solved with a complexity O(log(nip)).

Thus the localisation of the IP with respect to the dislocation segments has a

O(nseg log(nip)) complexity, i.e. it is performed with high efficiency.

4. Validation and performance tests

In this section, several elementary validation tests are presented in order to demon-

strate the results and the performance of the improved formulation of the DCM.

Tests with more complex geometries and higher dislocation densities will be pre-

sented in a forthcoming paper.

4.1. Validation tests

This first elementary test aims at validating the modified local correction proposed

in §2. The elastic fields of a infinite, straight single edge or screw dislocation

lying along the z-direction were reconstructed using the DCM and compared to

analytical solutions. The DCM stress field sss = sssFE +sssNS �sssS was expected to

be as close as possible to the analytical singular stress field sssS. The geometry of

the computational cell and the boundary conditions were the ones used in §3.1.

In this test the influence of the free boundaries was considered negligible because

computed and analytic solutions for the dislocation stress field were compared

sufficiently far away from the boundaries.

The computational cell measured Lz = 0.127 µm in the z-direction and L =

1.27 µm in the other two directions. The crystal was assumed to be isotropic, with

shear modulus µ = 51 GPa and Poisson ratio n = 0.37. The norm of the Burgers

vector was b = 0.25 nm. The dislocation glided on a y-oriented plane from the

�x-oriented face of the plate to the centre of the plate. For the FE problem, a
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structured mesh consisting of 80⇥80⇥8 quadratic 20-node, 8-IP hexahedra was

used. For the regularisation, the homogenisation length was h = 125b = 31.9

nm ⇡ L/40 and the cutting radius was rc = 2h = 63.8 nm ⇡ L/20. The local

correction radius was rl = 2.5h = 79.8 nm ⇡ L/16.

2D color maps of the fields around the dislocation core are shown in Fig. 12.

Only the non-zero components are represented. It can be observed that the abso-

lute error sss �sssS is very small with respect to the amplitude of the stress fields.

For the screw dislocation the maximum absolute error is located within the local

correction area whereas for the edge dislocation, the maximum absolute error is

located at r = rl where the DCM field shows some small discontinuities.

Figures 13 and 14 show graphs of the component yz for the screw dislocation

and xy for the edge dislocation along the x axis. The relative error with respect to

the reference field sssS is smaller than 5% for the screw dislocation and 8% for the

edge dislocation. It is important to underline that the relative errors on the screw

and on the edge component plotted in Fig. 12, Fig. 13 and 14 tend to zero as rc and

rl increase. Here the values for rc and rl were chosen to find a good compromise

between accuracy and performance of the DCM computations.

4.2. Performance tests

In order to test how the modifications presented in this paper really affect DCM

performances, the duration of DCM time steps were compared with classical DD

simulation time steps in a stress relaxation simulation.

A cubic simulation box with Lx = Ly = Lz = 5.0 µm was chosen and periodic

boundary conditions were applied. Calculations were run with three different

initial dislocation densities: 0.9⇥1012 m�2 (i.e. an average number of segments

nseg ⇡ 2800 during the calculation), 1.0 ⇥ 1013 m�2 (nseg ⇡ 33000) and 5.2 ⇥
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1013 m�2 (nseg ⇡ 155000). No external loading was applied, so the dislocation

dynamics was only driven by stress relaxation which includes many dislocation-

dislocation reactions.

In the DCM, for each dislocation density, three regular structured meshes were

considered: 12⇥12⇥12 elements with element edge he = 830 nm, 24⇥24⇥24

with he = 415 nm and 48⇥ 48⇥ 48 with he = 208 nm. The time step ratio is

set to 1. In the classical DD simulations, for each dislocation density, the long

range stress contribution was calculated with three different levels of approxima-

tion. Indeed, the exact solution of the periodic boundary conditions problem is

formally difficult in 3D DD simulations and implies very intensive computations

because an infinite number of periodic replicas would have to be taken into ac-

count. This problem does not exist in the DCM simulations because the periodic

solution is easily obtained through the periodic displacement conditions applied

in the elastic FE solver. In the DD simulations, the simulated volume is translated

periodically by nLx, nLy and nLz to give n = 0, 1 and 2 layers of replicas around

the primary simulation box. Numerically, this translation is applied with the help

of the FMM algorithm and therefore induces a only a moderate increase of the

long-range stress field calculation in the classical DD simulations. More detail

on the replica procedure and the multi-pole algorithm used in the DD simulation

code microMegas can be found in [30]. The DD parts in both types of calcula-

tions were executed in parallel with MPI libraries using 12 CPU cores for each

simulation on a Intel Xeon X5670 machine, and the FE parts of the MDC calcu-

lations were executed on the same machine with 12 threads of the multithreaded

FE solver.

The results of the performance tests are compared in Fig. 15. Several trends
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can be observed in this figure. First of all, as might be expected, among the

classical DD simulations as the number of replicas and the number of segments

increases, the time step increases. Of course, without replica layer the accuracy

of the simulations should be called into question, but here the focus is only on

the computation times. Then, for the DCM simulation an interesting trend can

be observed. At the lowest number of segments, the calculation with the coarsest

mesh goes faster, and the one with the finest mesh goes slower. However, going

to higher number of segments , this trend is reversed: for the highest number

of segments, the calculation with the finest mesh now is the fastest. This rather

counter-intuitive result is explained as follows: for a low number of segments,

most of the computational burden falls on the resolution of the linear system in the

FE part of the DCM, whereas the time to calculate sssS and sssNS which is the most

expensive part in the DD part, of order O
�
n

2
seg

�
, is needed for a relatively few

interactions. Normally, at high number of dislocation segments, the computing

time will be dominated by the latter part. However, for smaller mesh elements,

the regions for which this analytical contribution has to be calculated can be made

much smaller (because rc and rl are set to scale with h and he). Even though the

time needed for the resolution of the linear system in the FE part increases, this is

more than offset by the decrease in the time to calculate sssS and sssNS.

It is expected that this advantage will only hold up to a certain mesh refinement

and that there is some optimum refinement. It is also expected that this optimum

will be very sensitive to the computational performance and scalability of the FE

solver. However these numerical problems are outside of the scope of the present

article and have not been investigated yet.

Comparing the results of the DCM simulation to the classical DD simulation
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with the highest number of segments, it can be seen that the DCM calculation is

almost as fast as the fastest classical DD simulation. Interestingly, even though

the DCM was originally developed for finite domains, one must realize that in this

case the DCM is more precise in periodic domains than the fastest classical DD

simulation without replicas, and even faster already when one layer of replicas

is taken into account in classical DD simulation. Finally, considering that the

FE part essentially carries the long-range interactions (as well as the boundary

conditions), it can be considered as an alternative for the multi-pole algorithm,

where the cut-off distance between short-range and long-range interactions is now

mathematically controlled by rl .

5. Conclusion

A step forward in the simulation of the dynamical properties of large ensembles of

dislocations is achieved. The Dicrete-Continuous Model (DCM), which couples

a DD and a FE simulation code can now carry out realistic simulations over com-

plex domains with large numbers of dislocations. More specifically, a consistent

solution for the reconstruction of the short-range interactions has been developed.

Furthermore, the DCM has been extended to unstructured meshes by adopting

new efficient and accurate procedures for the regularisation of the slip by using a

tree-based geometric algorithm for fast localisation. Also, a strategy for handling

material interfaces or domain boundaries has been proposed. Some other aspects

of the DCM, such as the time integration algorithm or the data communications

between the two codes have been revised, and the choice of element type (in-

terpolation order and number of integration points) has been justified. All these

modifications lead to very significant gains in precision and speed.
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Ongoing calculations, to be published in a companion article, show that the

progress made in the DCM method now allows for new types of simulations such

as:

• Anisotropic elasticity simulation. In the particular case of structures for

which a sufficiently refined mesh can be used (currently typically a few

hundred nanometers) it is now possible to run DCM simulations without

using the short-range stress field correction in the DD simulation code.

• Simulation of small micro-samples and micro-structured materials. The

flexibility of the new DCM method allows modelling plastic size effects in

materials with very complex boundaries and loading conditions. In short, it

is now possible to track any problem that can be set up with a conventional

small-strain FE method.

• Simulation of poly-crystalline or multi-domain microstructures. Multi-method

simulations can be run with the DCM where the plastic deformation is cal-

culated in a particular region with dislocation dynamics and in other regions

with continuum constitutive laws.
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Figure 7: Application of the two strategies illustrated in Fig. 6 to the the problem of a dislocation

loop emerging at a free surface. In this example h = 30 nm, rc = 1.75h, b = 0.25 nm and isotropic

elastic constant are used, with shear modulus µ = 51 GPa and Poisson ratio n = 0.37. (a) and

(b) are the two swept areas corresponding to the strategy 1 or 2. (c) and (d) are the correspond-

ing eigenstrain field distributions. (e) and (f) are the sss xx stress components calculated with the

different strategies. Note the presence of artificial stresses at the surface of the solution (e).
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Figure 8: Finite element test aiming at reproducing the stress field of a single screw dislocation

using the eigenstrain theory and the regularisation procedure of swept areas presented in paragraph

2.2. The swept area is shown in a), the resulting component of the eigenstrain e p

yz and the 32⇥

32⇥4 mesh in b), sFE
yz

computed with 20-node and 27-IP elements in c) and sFE
yz

computed with

20-node and 8-IP elements in d).
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yz and

the mesh are given in a), sFE
yz

computed with 20-node, 27-IP elements in b), sFE
yz
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yz

computed with 20-node, 8-IP elements with a finer mesh (4

elements across h) in d).

43



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

(a) (b)

σxx(MPa) 

-60 60

σxx(MPa) 

-60 60

Figure 10: Comparison of sFE
xx

components computed with (a) a structured mesh made of 20-

node, 8-IP hexaedron elements and (b) an unstructured mesh made of 10-node, 4-IP tetrahedron

elements. Both results correspond to the same configuration as shown in Fig. 8.

Figure 11: DCM: time integration algorithm.
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Figure 13: (a) sxy components of sss , sssS, sssFE , sssNS and sssR along the x-axis for the infinitely long

straight screw dislocation.
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Figure 14: (a) syz components of sss , sssS, sssFE , sssNS and sssR along the x-axis for the infinitely long

straight edge dislocation.
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