Pure climb creep mechanism drives flow in Earth’s lower mantle - Archive ouverte HAL
Article Dans Une Revue Science Advances Année : 2017

Pure climb creep mechanism drives flow in Earth’s lower mantle

Résumé

At high pressure prevailing in the lower mantle, lattice friction opposed to dislocation glide becomes very high, as reported in recent experimental and theoretical studies. We examine the consequences of this high resistance to plastic shear exhibited by ringwoodite and bridgmanite on creep mechanisms under mantle conditions. To evaluate the consequences of this effect, we model dislocation creep by dislocation dynamics. The calculation yields to an original dominant creep behavior for lower mantle silicates where strain is produced by dislocation climb, which is very different from what can be activated under high stresses under laboratory conditions. This mechanism, named pure climb creep, is grain-size–insensitive and produces no crystal preferred orientation. In comparison to the previous considered diffusion creep mechanism, it is also a more efficient strain-producing mechanism for grain sizes larger than ca. 0.1 mm. The spe-cificities of pure climb creep well match the seismic anisotropy observed of Earth's lower mantle.
Fichier principal
Vignette du fichier
Boioli-et-al(2017)PureClimbCreep.pdf (3.66 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01637562 , version 1 (17-11-2017)

Licence

Identifiants

Citer

Francesca Boioli, Philippe Carrez, Patrick Cordier, Benoît Devincre, Karine Gouriet, et al.. Pure climb creep mechanism drives flow in Earth’s lower mantle. Science Advances , 2017, 3 (3), ⟨10.1126/sciadv.1601958⟩. ⟨hal-01637562⟩
756 Consultations
70 Téléchargements

Altmetric

Partager

More