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A B S T R A C T

In this study, we model the plasticity of MgO (periclase) using a 2.5-dimensional (2.5D) dislocation dynamics
(DD) simulation approach. This model allows us to incorporate climb in DD simulations to model the creep
behavior at high-temperature. Since a 2D formulation of DD cannot capture some important features of
dislocation activity (e.g. those involving line tension), local rules are introduced to take these features into
account (this is the 2.5D approach). To ensure the validity of such approach, the model is applied over a wide
temperature range with a view in the lower temperature regimes where the newly introduced mechanism
(climb) is not active, to benchmark our model against previous 3D simulations and experimental data. Thus we
consider successfully a low temperature (T≤600 K) regime where plasticity is dominated by dislocation glide in
the thermally activated regime; an intermediate regime (T=1000 K) where plasticity is dominated by
dislocation-dislocation interactions; and a high-temperature regime (1500≤T≤1800 K) which is the actual goal
of the present study and where creep plasticity is governed by dislocation glide controlled by recovery (climb
being considered here). We show that, taking into account the range of oxygen self-diffusion coefficients
available in the literature, our simulations are able to describe properly the high-temperature creep behavior of
MgO.

1. Introduction

Periclase (MgO) is a model ceramic which exhibits the rock salt
structure. It has been extensively studied for several decades because of
its potential uses as a refractory material (Tf > 3000 K at ambient
pressure). Alloyed with ca. 10% iron, MgO is also the second most
abundant phase of the Earth's lower mantle after a magnesium-silicate
named bridgmanite. Therefore, the study of MgO plastic properties is
of great interest in both geophysics and materials science.

Recently, substantial developments have been achieved to model
plasticity based on multiscale numerical modeling with most efforts
being devoted to metallic systems. In non metallic solids, most
developments have been made on MgO because of the general interest
mentioned above and since abundant experimental data are available
for benchmarking. Starting from the atomic scale, the individual
properties of gliding dislocations have been modeled leading to a
satisfactory description of lattice friction and of the critical resolved
shear stresses of single crystal MgO as a function of temperature [1]
and pressure [2]. Recently, this approach has been extended to the
plastic behavior of aggregates under pressure [3]. So far, these models

could only take into account dislocation glide. Since the relevance of
MgO is mostly related to high-temperature applications or to its creep
behavior in the Earth's mantle, a further effort was needed to model
creep in MgO at high temperature. In fact, under these conditions
dislocation climb is expected to play a significant role during creep
deformation and needs to be included in the model.

In this work, we address the influence of climb on MgO plasticity by
using 2.5D-DD simulations. Within this method we use a simplified 2D
framework and we include local rules to take into account the relevant
3D mechanisms. This allows us to adopt a simple model that can
capture the most important 3D dislocation mechanisms and readily
include the interplay between glide and climb in the high temperature
regime.

We first use the 2.5D-DD method to describe the plasticity of MgO
in the low (T≤600 K) and intermediate (T=1000 K) temperature
regimes, where only dislocation glide is active. This allows to bench-
mark our 2.5D approach against 3D-DD simulations. Furthermore,
comparisons with experimental data are also made to show that our
2.5D-DD simulations are able to reproduce the key features of
deformation in these two temperature regimes.
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Then we introduce dislocation climb to model creep in the high
temperature regime (1500≤T≤1800 K). Our results are compared with
data from MgO creep experiments.

2. Method

To model plasticity of periclase we use a 2.5-dimensional (2.5D)
dislocation dynamics (DD) simulation approach. DD simulation is a
modeling tool which describes the collective motion and interactions of
dislocations at the mesoscale. This technique is based on continuum
elasticity theory, which provides the description of the elastic field
induced by dislocations in a crystal, their interactions with each other
and with respect to the stress field resulting from external loading [4].

Although several DD codes have been designed to model different
processes and materials, they all share a few key features. First,
dislocations are discretized into a finite ensemble of line segments.
Then, forces acting on each segment are calculated from elasticity
theory and the velocity of each segment is calculated according to a
material-dependent equation of motion. The displacements of seg-
ments are obtained by integrating velocity with a simple Euler
algorithm. Furthermore, DD codes can account for the relevant
atomistic processes controlling dislocation mobility and interactions
by introducing local rules [5,6]. The treatment of these local rules
constitutes the main difference between DD codes.

3D-DD formulations allow describing dislocation lines of edge,
screw and mixed characters in a three-dimensional space, accounting
for their curvature, topology and interactions. This approach naturally
captures the evolution and organization of dislocation lines but it can
be complex and computationally demanding. A 2D formulation, where
dislocation lines are treated as straight infinite lines, is sometimes
sufficient to address some fundamental questions in plasticity. This
method reduces the number of degrees of freedom with respect to 3D
simulations but makes possible to reach potentially larger amounts of
plastic deformation and to take into account dislocation properties
difficult to model in 3D. On the other hand, the 2D modeling of
dislocation dynamics fails to catch important dislocation properties
such as dislocation line tension which controls, for instance, multi-
plication processes. The latter limitations may be overcome by adopt-
ing the so called 2.5D-DD approach, where additional local rules are
introduced in the 2D simulation plane in order to mimic as closely as
possible important 3D mechanisms, such as dislocation sources or
multiplication [7,8]. This type of simulations has been successfully

employed, for example, to investigate dislocation patterning [8] or to
reproduce the transition between stage I and stage II in fcc metals [9].
In this work, we model dislocation climb by adopting a 2.5D-DD
approach, similarly to Davoudi et al. [10], Keralavarma et al. [11] and
Boioli et al. [12]. To characterize the dislocation behavior of periclase
in a wide range of temperatures, different controlling mechanisms need
to be encompassed in the model.

Within our code, dislocation glide is coupled with climb in order to
investigate plasticity in the high temperature regime, while at low and
intermediate temperatures, which are considered for benchmarking,
climb is expected to play a minor role, and only glide is considered.
Therefore, in this work, the key simulation inputs are the parameters
chosen to characterize glide and climb mobility laws.

Periclase is an ionic face-centered cubic oxide, which exhibits a
rock-salt structure of space group Fm m3 with a lattice parameter
a=4.22 Å. The easiest slip systems are ½ < 110 > {110} followed by
½ < 110 > {100}, both having Burgers vector magnitude b=2.99 Å. At
ambient pressure, dislocations belonging to the½ < 110 > {110} family
glide at lower stresses than dislocations belonging to the ½ < 110 >
{100} family in a wide range of temperatures [13,14]. Therefore, in this
study, we focus on dislocations of the easiest slip family – i.e. ½ < 110
> {110} – by including in the code two slip systems belonging to it. The
simulation box is a square of size Lx=Ly and dislocation lines are
introduced as straight segments of constant length L=1 µm perpendi-
cular to the reference plane. This 2D reference plane in our simulations
is (111), where both the considered glide and climb directions lie, as
sketched in Fig. 1. The slip systems considered are identified by the
Burgers vectors b1=½ [011] and b2=½ [101]. Hence, the dislocation
lines are all of edge character and glide in planes (011) and (101),
respectively (Fig. 1a). The dislocation climb direction is perpendicular
to the glide direction. The reference system chosen for the simulation
box has directions x̂ = [112] and ŷ = [110]. Stress is applied along the ŷ
direction in order to symmetrically load the two slip systems, resulting
in a Schmid factor equal to 0.433 for both of them. Dislocations gliding
in different planes may cross each other and form junctions which are
oriented along the direction of intersection between the two planes.
Planes of the ½ < 110 > {110} family can intersect each other at 90° or
120° and only in the latter case the sum of the two Burgers vectors is
energetically favorable in order to create a junction [14]. The resulting
segment has an edge character and can potentially glide in {112}
planes, which are not among the reported easy slip planes of periclase.
In this study, we consider two glide planes that form an angle of 120°,

Fig. 1. (a) Representation of the cubic cell of MgO (in black) with the chosen Burgers vectors b1 and b2 (red arrows), to which are associated the respective slip planes (green lines). The
reference system axes x̂ and ŷ are identified by the blue arrows. (b) Sketch of the simulation box lying in (111) plane, where dislocations belonging to the two slip systems glide
accordingly to the directions of the two Burgers vectors. Junction Burgers vector bj is also shown. Black, dashed lines show the two climb directions which are perpendicular to the glide
planes (identified by green lines). Stress σ is applied along ŷ direction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article).
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allowing for the formation of junctions with Burgers vector
bj=b1+b2=½ [110], having the same orientation as ŷ (Fig. 1b).

Isotropic elastic constants for MgO are used: a shear modulus with
a temperature dependence µ(T)=140 GPa−0.0255×T [15] and a
Poisson ratio ν=0.18 [16]. Where not otherwise specified, an initial
dislocation density ρ=1012 m−2 is set in the simulations, with a linear
simulation frame size Lx=Ly equal to 10 µm.

Laws governing dislocation multiplication and annihilation are
included in the 2.5D-DD code to reproduce these fundamental 3D
mechanisms, as proposed by Benzerga et al. [9] and Gomez-Garcia
et al. [8]. First, a law reproducing the experimental observation that the
dislocation density increases linearly with the plastic strain dρ/dε=m is
used. Here m is the rate at which the dislocation density increases with
the plastic strain, assuming annihilation events not to occur or to be
rare. This law describes the expansion of dislocation loops in a 3D
volume under the influence of a stress field. In the present work, the
constant m is 1·1015 m−2 according to the results of 3D simulations in
duplex slip. Furthermore, an annihilation rule is used to reproduce the
fact that dislocations forming a dipole (i.e. two dislocations having the
same Burgers vector but of opposite sign) can mutually annihilate
when they approach each other. The annihilation rule consists in
allowing dislocations forming a dipole to annihilate when the height of
the dipole (i.e. their distance) is smaller than a critical value given as an
input parameter.

These two rules are applied in all three temperature regimes.
Nevertheless at low and intermediate temperatures, while multiplica-
tion is constantly operating through the motion of dislocation lines, the
annihilation events take place less frequently. This is due to the
absence of recovery processes, such as climb or cross-slip, that allow
dislocations to move from one slip plane to another one, hence
promoting dislocation-dislocation annihilation. In fact, these mechan-
isms are effective only at significant temperatures. As a consequence, in
the first two regimes, annihilation events are quite rare, since disloca-
tions cannot move out of their glide planes and the distance between
two dislocations forming a dipole is given by the distance between their
two slip planes. Thus, the evolution of dislocation density is mostly
governed by the multiplication rule and it increases with the applied
stress.

On the contrary, when at high temperatures climb is active,
dislocations can change their glide plane by climb. Dislocations in a
dipole configuration may consequently approach each other till they
reach the given critical distance and annihilate. The dislocation density
in the third regime is then controlled by the interplay between
dislocation multiplication and dislocation annihilation promoted by
climb. This leads to a steady-state condition where, with respect to
time, the dislocation density fluctuates around an equilibrium value
and the deformation increases linearly. These equilibrium values
depend on the different stresses applied to the simulation box.

Therefore, at ambient pressure, plastic deformation in MgO is
expected to be controlled by several mechanisms depending on the
temperature range investigated. These features and the respective model-
ing approaches will now be presented for the low (T≤600 K), intermediate
(T=1000 K) and high (1500≤T≤1800 K) temperature regimes.

3. Results

3.1. Low temperature regime

At low temperature (T≤600 K), dislocation glide dominates and
plastic flow is controlled by the relatively low mobility of dislocations.
The plastic strain limiting mechanism is then lattice friction which
involves a thermally activated kink-pair nucleation process [1]. In this
thermally activated regime, the velocity vg of a dislocation of length L
can be described by the mobility law proposed by Kocks et al. [17]:
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where b is the magnitude of the Burgers vector, lc is the critical width of
kink pairs, νD is the Debye frequency, kB is the Boltzmann constant and
ΔH τ( ) is the critical activation enthalpy of kink-pair nucleation as a
function of the effective resolved shear stress τ acting on the considered
dislocation. The latter quantity, τ τ τ= +app int is calculated at each
simulation step for each segment, and it represents the combination
of external loading field (τapp) and the internal stress field due to the
dislocation microstructure (τint), both projected along the dislocation
glide direction [12]. In particular, the contribution of τint at one
dislocation position is given by the sum of the elastic fields induced
by all the dislocations in the microstructure (except the one consid-
ered) at such position [4]. T is the temperature.

The kink pair activation enthalpy ΔH τ( ) in Eq. (1) is formalized in
the present study accordingly to Kocks et al. [17]:
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where ΔH0 is the critical activation enthalpy at zero stress, p and q are
empirical parameters, and τP is the Peierls stress. The parameters used
for the glide mobility are provided by Amodeo et al. [1] and reported in
Table 1. Here it must be noted that the dislocation character
considered in the 2.5D-DD simulation frame are of edge type, but
the glide mobility law of Eq. (1), which is identified for screw
dislocations, is applied to all dislocation characters for simplicity
reason.

To model plastic deformation under these conditions, single slip
simulations were run at constant laboratory strain rates (10−4 s−1). Our
model is validated through the comparison of the critical resolved shear
stresses from our 2.5D-DD simulations with experimental [18–22] and
3D-DD [1] data obtained for MgO in the same range of temperatures
and applied strain rates (that is, from 1 to 4.4·10−4 s−1 for all the
experimental data displayed). In Fig. 2(a) the stress-strain curves from
our model are shown: dislocation motion in this regime is thermally
activated and therefore is strongly strain rate dependent. Within
practical computation time, plastic yield can be observed at lower
stresses only if the temperature is raised. A relation between stress and
strain after the yield point could be inferred from our curves, but the
relatively small values of hardening coefficient observed in this phase –
less than 103 MPa as measured by Srinivasan and Stoebe [21] – are
difficult to reach without explicitly fitting some input parameters and
significantly reducing the initial dislocation density. The evaluation of
this feature is thus left to other studies.

In Fig. 2(b) is shown the comparison between the CRSS at different
temperatures obtained in the present work and in different numerical
and experimental studies on MgO.

3.2. Intermediate temperature regime

At 600 K the athermal threshold temperature Ta is reached for½ <
110 > {110} slip [1]. Above Ta, lattice friction vanishes and the CRSS
does not evolve with temperature anymore. In this athermal regime
dislocations move by glide at the free-flight velocity vath commonly

Table 1
Parameters inserted in the glide velocity law for dislocation
mobility in the thermally activated regime (from [1]).

½ < 110 > {110}

τP (MPa) 150
ΔH0 (eV) 1.14
p 0.5
q 2.0
lc (nm) 33.8
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described with a viscous drag equation:

v bτ
B=ath (3)

where b and τ were already defined and B is a viscous drag coefficient
which varies linearly with temperature [4] and describes the complex
interactions between the electric field of a moving dislocation and
various elementary excitations, such as conduction electrons and
phonons [23]. An experimental measurement of B for MgO is lacking,
therefore values between 10−4 and 10−5 Pa s were assigned for our
calculations, depending on the given temperature, knowing that the
free-flight mobility law is not expected to play a relevant role in
simulations describing plasticity in this regime [16]. In fact, the
average velocity of dislocations in the microstructure is limited by
their interactions. For this reason, the forest density controls the plastic
flow.

Dislocation junction and dipole formation are thought to be the
main mechanisms driving strain hardening in fcc crystals. Cross-slip is
a possible recovery process but is not included in our 2.5D-DD
formulation and the evaluation of its role is left to other studies.
However, an earlier numerical experiment on fcc crystals demonstrates
that, while cross-slip favors the ordering of dislocation microstructures,
it doesn’t substantially influence the dislocation density and the stress-
strain curves at low strain or low dislocation density [24]. Dislocation
interactions and reactions are essentially athermal processes, which
can conveniently be treated by elasticity theory. Dipole formation is
constitutively taken into account in the code and dislocations forming a
dipole are allowed to mutually annihilate when the dipole height is
smaller than a critical distance ra=25b. The latter distance is a fitted
value accounting for all possible annihilation reactions that may exist
in 3D dislocation dynamics. Reproducing junction formation and
destruction in 2.5D is a delicate task since this reaction heavily affects
the macroscopic average behavior of the structure. A junction is formed
when two attractive dislocations gliding in different planes come to a
distance smaller than the average length of junctions under stress,
which is estimated from 3D simulations [25]. When this happens,
dislocations positions are blocked and the interaction stress between
them is set to zero. Once a junction is created, the stress acting on it
will be evaluated at each step in the same way described for single
dislocations in the paragraph above. The junction will remain stable as
long as the stress on each dislocation composing it is lower than a
critical value τj. If this value is exceeded, the dislocations composing
the junction will be unblocked and made free to move. In other words,
τj represents the critical stress needed to break a junction. The local
rule used in the DD code to break a junction is the following: when the
stress (i.e. the sum of τapp and τint) at the junction position reaches the
critical value τj, the junction is broken. This value is formalized by
Gómez-García et al. [8]:
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where ρl is the local density, that accounts for the local spatial
heterogeneities in the dislocation density, and β is a constant that is
set as an input parameter to recover reasonable values of the strength
necessary to destruct the junctions, which in turn affects the flow
stress. ρl is used here to estimate the length of the junction arm which
drives the formation (destruction) of the junction through a zipping
(unzipping) mechanism [8]. A value of β=0.035 is usually assigned for
fcc metals. In this study, the influence of β on the mesoscopic plastic
flow was investigated, running different sets of simulations having the
same the initial configuration and β values of 0.02, 0.05 and 0.1.

In the athermal regime, forest interactions are expected to control
the plastic flow, leading to the commonly observed dislocation
strengthening in fcc crystals. To characterize this type of behavior,
the relation between flow stress and dislocation density must be
investigated. A dislocation strengthening relation, having the form of
the Taylor equation, is usually considered to estimate the macroscopic
strength resulting from all possible local configurations in the micro-
structure:

τ α b ρ= µf (5)

where α is a strengthening coefficient, ρ is taken as the total dislocation
density and τf is the effective average critical stress for all type of
obstacles – i.e. the athermal stress required to overcome the forest
dislocation network [16]. τf can be extracted from our DD simulations
and it represents the stress acting on the microstructure in order to
maintain constant the applied strain rate. This stress depends on the
dislocation density: the higher the latter, the higher will be the stress
applied to achieve the same deformation rate. In fact, as we mentioned
above, in this regime the recovery mechanisms are not efficient,
therefore a high dislocation density raises the number of forest
obstacles which in turn prevent the mobile dislocation segments from
further displacements. Therefore, τf and the corresponding value of the
dislocation density ρ are extracted from each simulation and plotted in
order to estimate α, that provides an evaluation of the strength of the
microstructure.

Simulations in this regime were run at T=1000 K, in the duplex slip
mode, and under a constant strain rate of 10−1 s−1. Different initial
dislocation densities were set equal to 1·1011, 1·1012, 5·1012 and 1·
1013 m−2, in order to encompass a broad range of values for the
estimation of α, which was then compared with results from experi-
ments on fcc crystals and 3D-DD data obtained for MgO. In fact, DD
simulations do not reach large plastic strain amounts, not allowing
large increases in dislocation density either. Therefore, simulations
starting with different initial dislocation densities are run to test forest
strengthening at different virtual levels of strain [22]. No specific rules

Fig. 2. (a) Resolved shear stress as a function of strain obtained at different temperatures in the thermally activated regime. The threshold value of stress at which plastic flow begins is
the critical resolved shear stresses (CRSS). (b) CRSS obtained in this study are compared with results from 3D-DD modeling [1] and other experimental data at different temperatures.
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are provided for the estimation of the average strength and corre-
sponding dislocation density [23], therefore in this study the protocol
defined by Amodeo et al. [16] was employed, in order to better compare
the data obtained: stress and dislocation density measurements are
done after yield point, at relatively low plastic strains, as soon as the
imposed strain rate is reached.

At 1000 K (around 0.3 Tm) the junction formation and destruction
mechanisms drive the deformation behavior of MgO. These mechan-
isms require very high energies, which cannot be provided by thermal
fluctuations, and therefore are considered to be essentially elastic and
athermal processes [23]. Junction unzipping is the main softening
mechanism considered in this regime, since it allows dislocations
previously locked in a sessile junction to move and induce further
plastic deformation. This process is introduced in the code through the
scaling law showed in Eq. (4), where β is a dimensionless measure of
the strength of a specific junction configuration. Varying the value of β
will change the effective stress necessary to destroy junctions (i.e. τj),
influencing the average stress acting on the microstructure (i.e. τf ) in
order to maintain the constant applied strain rate. τf and therefore α
depend on the choice of β . Here we test different values for β in our
2.5D DD simulations to verify for which values we recover the flow
stress and the alpha values obtained by both full 3D DD simulations
results and experimental data. This can be seen in Fig. 3(a), where
simulations run in the same initial configuration with distinct values of
parameter β result in different stress-strain curves. The initial disloca-
tion density is 1·1013 m−2 for each simulation displayed. The value of
junction strength influences the average stress levels of plastic flow in
the microstructure, while the dislocation density, due to the multi-
plication rule described above, remains comparable for all the three
curves. In fact, in Eq. (5), ρ is taken as the total density, that is, twice
the density of intersecting obstacles seen by each slip system during
duplex slip. This process drives the evolution of stress as function of
dislocation density, leading to the different α coefficients we found for

the strengthening relation, which are shown in Fig. 3(b)–(d). For the
three values of β tested – i.e. 0.02, 0.05 and 0.1 – the recovered values
of α are 0.21 ± 0.02, 0.26 ± 0.02 and 0.37 ± 0.03, respectively.

3.3. High temperature regime

The forest mechanism described above leads to a progressive
increase of the resistance offered by the microstructure to dislocation
motion, due to the increase of dislocation-dislocation interactions and
dislocation density with plastic strain. In the absence of a recovery
mechanism, this process leads to the afore-mentioned work hardening
behavior under constant strain-rate loading or to a saturation of strain
under constant load (creep mode). At temperatures high enough – i.e.
around 0.5 Tm – diffusion becomes an important phenomenon for
MgO plasticity, since it favors dislocation climb, a dislocation motion
which involves the exchange of matter through the adsorption or
emission of point defects on segments having edge character.
Dislocation climb outside its initial glide plane helps a dislocation to
bypass obstacles and eventually promote dislocation annihilation,
making climb an efficient recovery mechanism. Eventually, the combi-
nation of glide and climb motions leads to a steady-state regime, where
dislocation multiplication and annihilation compensate each other and
dislocation density does not increase anymore with strain. In this study
we model climb coupled with glide in MgO and we calculate the steady-
state creep strain rates. Our results are only compared with experi-
mental data since this regime has not been modeled yet. Creep
simulations were performed in double slip conditions, at temperatures
from 1500 to 1800 K and constant applied stresses from 30 to 80 MPa.

Dislocation climb is implemented in the code as described by Boioli
et al. [12]. Since climb motion is limited by diffusion, some insights on
this process in MgO are required, in order to consider the proper input
parameters for the proposed mobility law.

During the past decades, diffusion in periclase has been addressed

Fig. 3. (a) Stress as a function of strain for three simulations having same initial settings and different values of junctions’ strength (β). Initial dislocation density is 1·1013 m−2. (b), (c)
and (d) show the different evolution of flow stress as a function of dislocation density, identified by α coefficient, obtained varying the junctions’ strength parameter β.

R. Reali et al. Materials Science & Engineering A 690 (2017) 52–61

56



both experimentally and theoretically. The latter approach suggests
that interstitial magnesium and oxygen in periclase are energetically
unfavorable: Hirsh and Shankland [26] and references therein suggest
enthalpies of 12.4 and 15.2 eV for Frenkel defect formation, for Mg and
O respectively. Being these enthalpies rather high, interstitials con-
centrations in periclase are expected to be very low at equilibrium. Alfè
and Gillian [27], through Monte Carlo calculations, find values of
formation enthalpy for Schottky defect in periclase around 6.7 eV,
almost half of the required energy to create a Frenkel defect. Vacancy
mechanism is thus expected to be dominant in periclase diffusion.
Diffusion of oxygen may also be assisted by the divacancy defect, which
consists in the pairing of a cationic vacancy with an oxygen vacancy
[28]. Therefore, while defining the activation volume for diffusion, the
formation of both anionic and cationic vacancies will be considered.

Van Orman and Crispin [29] calculated the equilibrium concentra-
tion of intrinsic vacancies having a formation energy of 6.7 eV (the
Schottky pair free energy of formation) and found out that the
equilibrium concentration would be a few ppm at any temperature
up to the melting point. It is thus likely that vacancy formation is
controlled by extrinsic impurities, most notably the aliovalent, posi-
tively-charged, solutes like Fe3+, Al3+ and Cr3+. These trivalent species
are contained also in ultra-high purity MgO crystals and tend to be
present at higher concentrations than monovalent substitutional
cations in normal crystals. Extrinsic vacancies will thus mainly have
cationic character, with the concentration of extrinsic anion vacancies
depending on the inverse of cationic impurities concentration.
Therefore, in periclase, while it can be stated that extrinsic cationic
vacancies control the Mg self-diffusion at any temperature (also in
high-purity crystals) up to the melting point, the same thing is not
likely to happen for oxygen vacancies with respect to oxygen self-
diffusion. For this reason and also due to the larger ionic radius of
oxygen compared to magnesium, oxygen self-diffusion coefficients DOx

sd

are 2 or 3 orders of magnitude smaller than those of magnesium at any
investigated temperature ([29] and references therein). This implies
that absorption or emission of a full MgO unit by a dislocation line is
limited by the oxygen vacancy migration and formation processes,
since the enthalpy required to form and migrate an oxygen vacancy is
much higher than the one required for magnesium. Oxygen self-
diffusion is thus the rate-limiting mechanism of diffusion in periclase
and will be considered in what follows as the controlling factor on
dislocation climb as well.

Thus, for the implementation of diffusion in the climb mobility, the
value of the self-diffusion coefficient Dsd is taken equal to the oxygen-
self diffusion coefficient DOx

sd . This coefficient is expressed with the
Arrhenius-type formula:

D D D exp ΔH
k T= = −sd

Ox
sd

sd

B
0

⎛
⎝⎜

⎞
⎠⎟ (6)

where D0 is a pre-exponential factor and ΔHsd is the activation enthalpy
for oxygen self-diffusion that accounts for point defects formation and
migration enthalpy. Here the two parameters D0 and ΔHsd are taken
from experimental data. As we can see from Eq. (6), diffusion is a

thermally activated process: this explains why dislocation climb mo-
tion, which is directly linked to the diffusion of point defects (Eqs. (6)
and (7)), plays an important role in the high temperature regime. At
the same time, this process is negligible at low temperatures, where
diffusion is extremely slow, and therefore does not contribute sig-
nificantly to the deformation behavior. The diffusion coefficient of
oxygen has been measured experimentally in a wide range of tempera-
tures and sample compositions. Van Orman and Crispin [29] provide a
plot which summarizes most of the experimental data on oxygen
diffusion in periclase at ambient pressure. Experimental values of the
diffusion coefficients display an important variability, embracing up to
five orders of magnitude in the temperature range investigated
experimentally, which spans from 1100 to 2500 K.

In this study we choose to run the main body of creep simulations
using the oxygen self-diffusion coefficient measured by Yoo et al. [30],
which provides a single linear fit for a wide range of temperatures. Also,
their values fall roughly in the middle of the variability range of
experimental measurements. To evaluate the influence of DOx

sd on the
simulated creep strain rates, tests were made using also the extreme
experimental values measured so far. The parameters and temperature
ranges in which they were obtained are shown in Table 2. Oishi and
Kingery [31] provide the upper bound value, using samples containing
impurities. The inferred mechanism driving oxygen diffusion was
assumed to be impurity-controlled or a structure-sensitive process,
with the activation energy corresponding to ion mobility. On the other
end, Yang and Flynn [32] measured diffusion coefficients on MgO
crystals having an ultra-high degree of purity and obtained the smallest
values of oxygen self-diffusion coefficients ever observed experimen-
tally. At high temperatures they find an activation energy of 6.9 eV for
oxygen diffusion, a value consistent with the activation enthalpy for
intrinsic diffusion. However, at lower temperatures, diffusion becomes
less activated with a slope resembling that of other studies, with an
activation energy of 2.66 eV. This latter value has been chosen, since
the range of temperatures investigated in this study falls within this
deviation from intrinsic behavior. The temperature at which the data
gathered from these studies overlap is around 1700 K, therefore this
value was set for simulations addressing the variability of creep strain
rates with respect to the chosen oxygen self-diffusion coefficient, DOx

sd .
These variations on the creep strain rates are displayed and results are
put in perspective with respect to creep data obtained in experiments.

Assuming steady-state conditions, the flux of vacancies from and to
the dislocation line is calculated by solving the diffusion equation
showed in Eq. (6), allowing for the analytical expression of climb
velocity [4,33]:

v η D
b exp τ Ω

k T
c
c= −c

Ox
sd

c

B

∞

0

⎡
⎣⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥⎥ (7)

where DOx
sd is the oxygen self-diffusion coefficient described above and η

is a geometrical factor which depends on the geometry of the flux field.
Ω=18.7 Å3 is the activation volume for self-diffusion, which is here
considered to be equal to the formation volume of Mg and O vacancies
and is calculated from the unit cell volume of periclase – i.e. Ω=a3/Z
where Z=4 is the number of formula units per unit cell. τc is the effective
stress resolved in the climb direction, that is, perpendicular to the glide
directions of the two simulated slip systems and is taken positive
(negative) if it favors vacancy emission (adsorption). c∞ is the vacancy
concentration far from the dislocation lines (i.e. far from the sources
and sinks of vacancies) and c0 is the intrinsic equilibrium vacancy
concentration at a given temperature; c exp ΔH k T= ( / )f B0 , where ΔHf is
the intrinsic vacancy formation enthalpy. We assume that far from the
dislocations, the vacancy concentration is constant and equal to the
intrinsic equilibrium concentration – i.e. c∞=c0 [12,34]. It is also
assumed that the dislocation line is saturated with jogs. The latter
assumption implies a cylindrical flux around the dislocation, identified

by η π ln= 2 / R
rc

⎛
⎝⎜

⎞
⎠⎟ where R and rc represent the two radii of the cylindrical

Table 2
Experimental values of self-diffusion pre-exponential factor (D0) and activation enthalpy
(ΔHsd) to compute oxygen self-diffusion coefficient DOx

sd . The main body of simulations
was run using the value provided by Yoo et al. [30] while a test was made using also the
others at 1700 K [31,32], for which the calculated numerical values of DOx

sd are also
shown. Data of Yang and Flynn [32] are shown for both the high and low temperature
regimes and only the latter values are employed in the model.

D0 (m2/s) ΔHsd (eV) T Range (K) DOx
sd (m2/s) at 1700 K References

2.5·10−10 2.71 1570–2020 2.7·10−18 [31]
1.8·10−10 3.24 1270–1920 5.2·10−20 [30]
1.0·10−14 2.66 1450–1700 1.5·10−22 [32]
7.6·10−3 6.91 1700–2400

R. Reali et al. Materials Science & Engineering A 690 (2017) 52–61

57



surfaces through which the vacancy flux is calculated. rc is the core
radius and R is taken as a fraction of the average dislocation distance.
Being within the logarithmic term, the R r/ c ratio does not significantly
affect the climb velocity values and here is taken constant and equal to
100 [12,34].

Creep simulations were run to model plasticity of MgO at high
temperatures (over 0.5 Tm), where motion by climb is included.
Dislocation glide and climb occur on very different time scales,
especially in the athermal regime. This difference is accounted in the
code by considering two different time steps, with a scheme close to the
one proposed by Keralavarma et al. [11]. First, the creep stress is
applied to the structure and all the glide events are resolved using the
small glide time step, during which plastic strain Δε is evaluated. Once
the configuration in the microstructure gets to a quasi-equilibrium or
“jammed” state, dislocations do not glide anymore and the strain
saturates. At this point, climb motion is allowed by applying to
dislocations the mobility law described in Eq. (7) and by integrating
it through the longer climb time step. Once a displacement of a full
Burgers vector is reached by climb, the mobility is switched back to
glide again and the procedure is repeated iteratively throughout all the
simulation.

Creep results at 1600 K are shown in Fig. 4. Fig. 4(a) displays the
strain vs time curves obtained from simulations run with (red curve),
and without (green curve), including climb motion. After the initial
transient stage, glide alone is not capable of producing further
deformation: in fact, once the quasi-equilibrium condition is reached,
dislocations are trapped into local minimum energy configurations and
do not glide anymore under the applied stress (which is constant). In
Fig. 4(b) are shown the strain contributions in a creep simulation
where both glide and climb are included. The strain produced by
dislocations moving in their glide plane (blue curve) is significantly
larger than the strain produced by dislocations moving outside their
glide plane (green curve). The total strain as a function of time is also
shown (red curve, same as the one in Fig. 4a). It is noted, therefore,
that even if climb is included, strain is mostly due to dislocations
moving by glide. Climb allows dislocations to escape from their glide
planes and to be released from “jammed” configurations to eventually
bypass obstacles or annihilate. The dislocation microstructure is
therefore relaxed and other dislocations are free to move by glide until
a new “jammed” state is reached. The repetition of this process leads to
the steady-state creep regime, characterized by a constant deformation
rate for a given load. This is verified by the linear increase of strain with
time that can be observed from the red curves of Fig. 4(a) and (b).

Fig. 5(a) demonstrates that the steady-state condition is observed
for different values of applied stress, with strain varying linearly with

respect to time for all the curves obtained. The steady-state condition is
confirmed also from the evolution of the dislocation density with time,
shown in Fig. 5(b), where, after the initial transient, the density
fluctuates around a constant value. At a given temperature, the
equilibrium density values increase with increasing stress, since the
higher the latter, the easier it is to unzip the junctions. These
observations confirm that multiplication and annihilation are acting
simultaneously during simulations, counterbalancing each other. The
former mechanism is related to strain production, which in turn results
to be originated by glide motion (Fig. 4b); while the latter is triggered
by dislocation getting untangled by climb to other planes to further
interact and eventually annihilate.

This study shows that the interplay of glide and climb mechanisms
leads to the steady-state creep behavior observed in experiments.

The steady-state creep strain rates depend exponentially on the
temperature, therefore the following Arrhenius-type equation is com-
monly used to describe high temperature deformation:

ε ε σ exp Q
k Ṫ = ̇ −n

B
0

⎛
⎝⎜

⎞
⎠⎟ (8)

where Q is the activation enthalpy for creep and σ is the applied stress.
Q, n and ε0̇ are generally assumed to be constant and to depend on the
mechanism controlling the plastic creep behavior. For MgO, variables
like substitutional iron content and oxygen partial pressure seem to
have no influence on the power law creep [35].

Our creep results are presented in Fig. 6. The investigated
temperatures span from 1500 to 1800 K and the applied creep stresses
from 30 to 80 MPa. Fig. 6(a) shows the creep strain rates obtained from
the 2.5D-DD simulations as a function of the creep stress, for all tested
temperatures. A constant slope is found for these strain rate-stress
curves at any temperature. The derivative of the logarithm of creep
strain rate with respect to the logarithm of creep stress gives the value
of the power law stress exponent, n. All the measurements of n fall
within the respective errors with an overall average value of 2.9 ± 0.2.
Fig. 6(b) shows the creep strain rates as a function of the reciprocal
temperature, for all the tested creep stresses. The activation enthalpy
for creep Q can be obtained from the slope of the derivative of strain
rate logarithm with respect to the reciprocal temperature T . We obtain
a constant value of 3.1 ± 0.2 eV for Q.

Knowing the values of n and Q it is possible to fit also the third
parameter of the power law, ε0̇, obtaining a value of 0.019 ± 0.001 s−1.
In Fig. 7 our data are presented together with the respective power law
equations, which are plotted using the three averaged parameters at
different temperatures.

Fig. 4. (a) Strain as a function of time for two simulations run at 1600 K with constant applied load of 60 MPa with (red curve) and without (green curve) including climb mechanism.
(b) red curve: total strain as a function of time, same of red curve of (a), where both glide and climb are included. εglide climb+ is compared with its components due to dislocation glide

(εglide, blue curve) and climb (εclimb, green curve). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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Our numerical approach is capable of describing plasticity of MgO
at high temperatures, since the relevant mechanisms acting during
creep deformation are now included in this formulation.

4. Discussion

In the thermally activated regime, the agreement between the CRSS
values obtained from our model and previous data is remarkable
(Fig. 2b), especially with the 3D-DD outputs of Amodeo et al. [1]. The
comparison with experiments is somehow more complex, since triva-
lent impurities can interfere with the gliding dislocations, while the
modeled motion relies on the overcoming of lattice friction alone.
Therefore, for a better comparison, we select experimental data
obtained from samples having low impurity contents or being heat
treated before analysis [18–22] in order to avoid the impurity-related
strengthening effect.

The strengthening coefficients obtained in this study from simula-
tions at 1000 K – i.e. α=0.21, 0.26 and 0.37 – need to be compared
with available experimental and numerical data. In the adopted 2.5D-
DD framework, according to Gómez-García et al. [8], α≈0.25. The
intermediate value is in fair agreement also with the result of α=0.24
obtained by Amodeo et al. [16] from 3D-DD simulations on MgO for
the ½ < 110 > {110} family. The most reliable estimate from DD
simulations on fcc crystals, on the other hand, yields α≈0.35 for a
reference forest density of 1012 m−2 [24]. Basinski and Basinski [36]
show that in fcc crystals α varies from 0.5 at lowest densities to about
0.2 for the highest ones, the densities varying from 1010 to 1014 m−2.
Amodeo et al. [16] explain this difference between values of α for MgO
and other fcc crystals by either a lack of collinear annihilations, an
important ingredient in fcc metals’ forest strengthening, or to be due to
the higher number of slip systems per family in fcc (12 instead of 6 in

MgO). Despite small deviation from the α value found in 3D-DD
simulations [16], an overall agreement between the recovered α values
and the data available in literature is found. In the athermal regime,
plasticity of MgO is controlled by a forest mechanism, as it is
commonly observed in fcc metals. We notice that this behavior is
significantly different from other mantle phases, for which a signifi-
cantly larger lattice friction is envisaged at comparable temperatures,
resulting in considerably higher stresses to obtain plastic deformation
[37–40].

The results obtained in the low and intermediate temperature
regimes prove that the 2.5D-DD approach is suitable to model

Fig. 5. (a) Strain as a function of time for simulations at 1600 K with applied loads from 30 to 70 MPa. Steady-state condition is reached. (b) Dislocation density as a function of time for
the same curves of (a).

Fig. 6. (a) Creep strain rates as a function of applied creep stress σ for the different temperatures. (b) Variation of creep strain rates as a function of the reciprocal temperature T for all
the applied stresses. Color lines represent the fitting of the data for (a) and (b). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article).

Fig. 7. Creep strain rates as a function of applied stress. Color lines represent the power
law curves plotted for the different temperatures using the power law parameters
obtained from previous fittings. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article).

R. Reali et al. Materials Science & Engineering A 690 (2017) 52–61

59



plasticity of MgO. This allows us to do a step further and model creep
conditions by including the climb mechanism in the same simulation
framework. Creep results are usually described in term of a power law.
The stress exponent is often considered as an indicator of the
controlling mechanisms acting during creep deformation. In fact,
diffusion creep results in a linear dependence between stress and
strain rates, while dislocation creep is commonly identified by a stress
exponent between 3 and 5. In this study, we observe a constant stress
exponent close to 3 for the considered temperature and applied stress
range. Several theoretical models predict the same exponent [41].

The value of creep activation enthalpy Q obtained from our
calculations is 3.1 ± 0.2 eV, close to the oxygen self-diffusion enthalpy
from Yoo et al. [30] – i.e. 3.24 eV – that we used as input parameter in
Eq. (6) for all the simulations displayed in Fig. 6. Experimentally, it is
recognized that for metals the activation energies of creep agree with
the ones of self-diffusion of the slowest species [42], while for oxides
and silicates such a correlation is not completely clear. Here we find the
same agreement, demonstrating that climb is the limiting mechanism
in high temperature creep. This is not surprising since the climb
mobility is several orders of magnitude 10–13 depending on the
considered creep stresses and temperatures) slower than the glide one.

A compilation of experimental values for n and Q [13,35,42–49] is
provided in Table 3. First, it is worth pointing out that experimental
conditions may vary substantially, making the comparison more
difficult. Nevertheless, concerning the power law exponent, the values
found in experiments generally agree with the ones proposed by
predictive models. A deviation of n towards higher values is observed
at lower temperatures [13,43]. In the latter case, this may be due to the
presence of precipitates in some MgO samples, which would influence
the creep behavior, while in the former case the deviation could be due
to the fact that other extrinsic processes may become more important

at lower temperatures, widening the variability range of n. These
impurity-related interactions are not taken into account in our
formulation, since it reproduces deformation in MgO single crystals
where the role of impurities appears only through the point defect
concentration introduced in the pre-exponential factor of the diffusion
equation. Thus, in this study, the value of the power law exponents
represents a lower limit of the predicted variability.

The activation enthalpy of creep gathered from experiments, on the
other hand, often mirrors the one of oxygen self-diffusion in MgO. This
is in agreement with our study. A slightly higher activation enthalpy in
some cases is found and an interpretation of this difference is provided
by Wolfenstine and Kohlstedt [35]. They propose that this energy
difference could be due to jog formation enthalpy, which in climb-
controlled creep may be an important factor, estimated at 1.2 eV. The
remaining portion of creep activation enthalpy equals the one of
oxygen self-diffusion, which agrees with the results reported in this
study. In our formulation the jog formation energy is not included,
since it is assumed that the dislocation lines are saturated with jogs.
This provides an explanation of the difference we observe between our
data and some experimental creep activation enthalpy values.

The influence of oxygen self-diffusion coefficients on strain rates is
displayed in Fig. 8(a). The variability of four orders of magnitude
between the extreme values of the diffusion coefficients [29] is reduced
to three orders of magnitude of difference for the resulting creep strain
rates.

To better compare our results with the experimental data on creep
in MgO, another point of discussion must be addressed. The lowermost
self-diffusion values obtained by Yang and Flynn [32] result from
diffusion measurements performed on crystals having an exceptional
degree of purity. These crystals do not show any significant impurity
content and the surface damage contribution to diffusion is dramati-
cally reduced. Such features contribute to lower the active impurity
level during diffusion by a factor of ten below the one of high-quality
commercial MgO [50]. Moreover, there is no evidence in the biblio-
graphy cited in Table 3 that the samples used in creep experiments
were somehow resembling the ones of Yang and Flynn [32] in terms of
crystal growing technique, impurity content and surface damage
extent. Therefore, the latter samples are not considered representative
with respect to the diffusion mechanism acting in the ones subjected to
creep experiments. Considering as input parameters for self-diffusion
those experimental results controlled by extrinsic oxygen diffusion
[30,31] that better resemble the conditions at which natural crystals
are subjected to creep, it is possible to focus on the upper half of the
graph of Fig. 8(a) to draw a better comparison with experimental data.
In these conditions, the strain rates obtained in this study bracket the
experimental results for MgO, as can be viewed in Fig. 8(b).

Table 3
High temperature creep power law parameters obtained from experiments on MgO. SC
and PC refer to single crystal and polycrystalline samples respectively.

Type of test Sample T Range (K) n Q (eV) References

3-pt bend SC 1723–1973 4.0–7.0 3.5–7.0 [43]
3-pt bend SC 1573–1903 3.0 5.8 [44]
Compression SC 1333–1773 4.8 [45]
Tension SC 1473–1773 3.8 – 4.5 4.1 [46]
Compression PC 1573–1733 3.2 3.3 [47]
Compression PC 1473–1773 2.6 4.55, 4.81 [48]
Compression PC 1473 3.3 2.21 [42]
Compression SC 1573–1773 3.4 4.61 [35]
Compression SC 1950–2000 3.0, 1.3 [49]
Compression SC 1673–2073 4.2–8.5 3.6–4.4 [13]

Fig. 8. Creep strain rates as a function of stress (color lines) at 1700 K using different oxygen self-diffusion coefficients as input parameters for the 2.5D-DD code (a) and their
comparison with experimental data (black lines) (b). Numerical values for DOx

sd at 1700 K are provided in Table 2. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article).
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5. Conclusions

In the present work we applied a newly developed 2.5D-DD
approach to MgO for the first time, in order to reproduce its
deformation under three different temperature regimes. At low and
intermediate temperatures our results agree with previous numerical
(3D-DD) and experimental evidences, providing a benchmark on the
validity of our approach. This allowed us to do a step further and
introduce dislocation climb at high temperatures, where this mechan-
ism has a relevant role on creep of MgO crystals. This was not feasible
in previous 3D-DD formulations, due to the computational complexity
of coupling phenomena occurring on very different time scales (such as
dislocation glide and climb). Results in this regime mirror the available
experimental data on high temperature creep of MgO, confirming that
the present numerical tool is capable of reproducing the plastic
behavior of this phase under varying conditions and driving mechan-
isms.

Acknowledgment

Financial support by the European Research Council under the
Seventh Framework Program (FP7), ERC Grant no. 290424 Rheoman,
is gratefully acknowledged. Computational resources have been pro-
vided by the CRI-Université de Lille 1.

References

[1] J. Amodeo, P. Carrez, B. Devincre, P. Cordier, Multiscale modelling of MgO
plasticity, Acta Mater. 59 (2011) 2291–2301. http://dx.doi.org/10.1016/j.acta-
mat.2010.12.020.

[2] J. Amodeo, P. Carrez, P. Cordier, Modelling the effect of pressure on the critical
shear stress of MgO single crystals, Philos. Mag. 92 (2012) 1523–1541. http://
dx.doi.org/10.1080/14786435.2011.652689.

[3] J. Amodeo, S. Dancette, L. Delannay, Atomistically-informed crystal plasticity in
MgO polycrystals under pressure, Int. J. Plast. 82 (2016) 177–191. http://
dx.doi.org/10.1016/j.ijplas.2016.03.004.

[4] J.P. Hirth, J. Lothe, Theory of Dislocations, Wiley, 1992.
[5] A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T.G. Pierce,

V.V. Bulatov, Enabling strain hardening simulations with dislocation dynamics,
Model. Simul. Mater. Sci. Eng. 15 (2007) 553–595. http://dx.doi.org/10.1088/
0965-0393/15/6/001.

[6] L.P. Kubin, G. Canova, M. Condat, B. Devincre, V. Pontikis, Y. Bréchet, Dislocation
microstructures and plastic flow: a 3D simulation, Solid State Phenom. 23–24
(1992) 455–472. http://dx.doi.org/10.4028/www.scientific.net/SSP.23-24.455.

[7] D. Gómez-García, B. Devincre, L.P. Kubin, Forest hardening and boundary
conditions in 2-D simulations of dislocation dynamics, MRS Proc. 578 (1999) 131.
http://dx.doi.org/10.1557/PROC-578-131.

[8] D. Gómez-García, B. Devincre, L.P. Kubin, Dislocation patterns and the similitude
principle: 2.5D mesoscale simulations, Phys. Rev. Lett. 96 (2006) 8–11. http://
dx.doi.org/10.1103/PhysRevLett.96.125503.

[9] A. Benzerga, Y. Bréchet, A. Needleman, E. Van Der Giessen, Incorporating three-
dimensional mechanisms into two-dimensional dislocation dynamics, Model.
Simul. Mater. Sci. Eng. 12 (2004) 557–559. http://dx.doi.org/10.1088/0965-
0393/12/3/C01.

[10] K.M. Davoudi, L. Nicola, J.J. Vlassak, Dislocation climb in two-dimensional
discrete dislocation dynamics, J. Appl. Phys. 111 (2012). http://dx.doi.org/
10.1063/1.4718432.

[11] S.M. Keralavarma, T. Cagin, A. Arsenlis, A.A. Benzerga, Power-law creep from
discrete dislocation dynamics, Phys. Rev. Lett. 109 (2012) 1–5. http://dx.doi.org/
10.1103/PhysRevLett.109.265504.

[12] F. Boioli, P. Carrez, P. Cordier, B. Devincre, M. Marquille, Modeling the creep
properties of olivine by 2.5-dimensional dislocation dynamics simulations, Phys.
Rev. B 92 (2015) 014115. http://dx.doi.org/10.1103/PhysRevB.92.014115.

[13] J.L. Routbort, Work hardening and creep of MgO, Acta Metall. 27 (1979) 649–661.
[14] P. Carrez, P. Cordier, B. Devincre, L.P. Kubin, Dislocation reactions and junctions

in MgO, Mater. Sci. Eng. A 400–401 (2005) 325–328. http://dx.doi.org/10.1016/
j.msea.2005.03.071.

[15] B. Karki, R. Wentzcovitch, S. de Gironcoli, S. Baroni, High-pressure lattice
dynamics and thermoelasticity of MgO, Phys. Rev. B 61 (2000) 8793–8800. http://
dx.doi.org/10.1103/PhysRevB.61.8793.

[16] J. Amodeo, B. Devincre, P. Carrez, P. Cordier, Dislocation reactions, plastic
anisotropy and forest strengthening in MgO at high temperature, Mech. Mater. 71
(2014) 62–73. http://dx.doi.org/10.1016/j.mechmat.2014.01.001.

[17] U. Kocks, A. Argon, M. Ashby, B. Chalmers, J. Christian, T. Massalski, Progress in
Material Science, Pergamon, 1975.

[18] F. Appel, B. Wielke, Low temperature deformation of impure MgO single crystals,
Mater. Sci. Eng. 73 (1985) 97–103. http://dx.doi.org/10.1016/0025-5416(85)

90299-X.
[19] C. Barthel, (Ph.D. thesis), University of Gottingen, 1984.
[20] F. Sato, K. Sumino, The yield strength and dynamic behaviour of dislocations in

MgO crystals at high temperatures, J. Mater. Chem. 15 (1980) 1625–1634.
[21] M. Srinivasan, T.G. Stoebe, Temperature dependence of yielding and work-

hardening rates in magnesium oxide single crystals, J. Mater. Sci. 9 (1974)
121–128. http://dx.doi.org/10.1007/BF00554762.

[22] C. Hulse, J. Pask, Mechanical properties of magnesia single crystals in corn
pression, J. Am. Ceram. Soc. 43 (1960) 373–378. http://dx.doi.org/10.1177/
058310248001200917.

[23] L.P. Kubin, Dislocations, Mesoscale Simulations and Plastic Flow 5, Oxford
University Press, 2013.

[24] R. Madec, B. Devincre, L.P. Kubin, From dislocation junctions to forest hardening,
Phys. Rev. Lett. 89 (2002) 255508. http://dx.doi.org/10.1103/
PhysRevLett.89.255508.

[25] B. Devincre, L. Kubin, T. Hoc, Physical analyses of crystal plasticity by DD
simulations, Scr. Mater. 54 (2006) 741–746. http://dx.doi.org/10.1016/j.scripta-
mat.2005.10.066.

[26] L.M. Hirsch, T.J. Shankland, Equilibrium point defect concentrations in MgO:
understanding the mechanisms of conduction and diffusion and the role of Fe
impurities, J. Geophys. Res. 96 (1991) 385–403. http://dx.doi.org/10.1029/
90JB02175.

[27] D. Alfè, M. Gillan, Schottky defect formation energy in MgO calculated by diffusion
Monte Carlo, Phys. Rev. B – Condens. Matter Mater. Phys. 71 (2005). http://
dx.doi.org/10.1103/PhysRevB.71.220101.

[28] K. Ando, Y. Kurokawa, Y. Oishi, Oxygen self-diffusion in Fe-doped MgO single
crystals, J. Chem. Phys. 78 (1983) 6890–6892. http://dx.doi.org/10.1063/
1.444635.

[29] J. Van Orman, K. Crispin, Diffusion in oxides, Rev. Mineral. Geochem. 72 (2010)
757–825. http://dx.doi.org/10.2109/jcersj1950.74.851_215.

[30] H. Yoo, B.J. Wuensch, W.T. Petuskey, Oxygen self-diffusion in single-crystal MgO:
secondary-ion mass spectrometric analysis with comparison of results from gas –
solid and solid – solid exchange, Solid State Ion. 150 (2002) 207–221.

[31] Y. Oishi, W.D. Kingery, Oxygen diffusion in periclase crystals, J. Chem. Phys. 33
(1960) 905–906. http://dx.doi.org/10.1063/1.1731286.

[32] M. Yang, C. Flynn, Intrinsic diffusion properties of an oxide: MgO, Phys. Rev. Lett.
73 (1994) 1809–1812.

[33] D. Caillard, J.L. Martin, Thermally Activated Mechanisms in Crystal Plasticity 8,
Elsevier, 2003.

[34] F. Boioli, A. Tommasi, P. Cordier, S. Demouchy, A. Mussi, Low steady-state stresses
in the cold lithospheric mantle inferred from dislocation dynamics models of
dislocation creep in olivine, Earth Planet. Sci. Lett. 432 (2015) 232–242. http://
dx.doi.org/10.1016/j.epsl.2015.10.012.

[35] J. Wolfenstine, D.L. Kohlstedt, Creep of (Mg,Fe)O single crystals, J. Mater. Sci. 23
(1988) 3550–3557. http://dx.doi.org/10.1007/BF00540494.

[36] S.J. Basinski, Z.S. Basinski, Plastic deformation and work hardening, Dislocations
Solids 4 (1980) 261–362.

[37] J. Durinck, B. Devincre, L. Kubin, P. Cordier, Modeling the plastic deformation of
olivine by dislocation dynamics simulations, Am. Mineral. 92 (2007) 1346–1357.
http://dx.doi.org/10.2138/am.2007.2512.

[38] J. Girard, G. Amulele, R. Farla, A. Mohiuddin, S.I. Karato, Shear deformation of
bridgmanite and magnesiowüstite aggregates at lower mantle conditions, Science
351 (2016) 144–147. http://dx.doi.org/10.1126/science.aad3113.

[39] A. Kraych, P. Carrez, P. Hirel, E. Clouet, P. Cordier, Peierls potential and kink-pair
mechanism in high-pressure MgSiO3 perovskite: an atomic scale study, Phys. Rev.
B – Condens. Matter Mater. Phys. 93 (2016) 1–9. http://dx.doi.org/10.1103/
PhysRevB.93.014103.

[40] S. Ritterbex, P. Carrez, K. Gouriet, P. Cordier, Modeling dislocation glide in
Mg2SiO4 ringwoodite: towards rheology under transition zone conditions, Phys.
Earth Planet. Inter. 248 (2015) 20–29. http://dx.doi.org/10.1016/
j.pepi.2015.09.001.

[41] J. Weertman, Theory of steady-state creep based on dislocation climb, J. Appl.
Phys. 26 (1955) 1213–1217. http://dx.doi.org/10.1063/1.1721875.

[42] T. Langdon, J. Pask, The mechanism of creep in polycrystalline magnesium oxide,
Acta Mater. 18 (1970) 505–510.

[43] R.L. Cummerow, High-temperature steady-state creep rate in single-crystal MgO,
J. Appl. Phys. 34 (1963) 1724. http://dx.doi.org/10.1063/1.1702668.

[44] W.S. Rothwell, A.S. Neiman, Creep in vacuum of MgO single crystals and the
electric field effect, J. Appl. Phys. 36 (1965) 2309. http://dx.doi.org/10.1063/
1.1714469.

[45] A.G. Atkins, D. Tabor, Mutual indentation hardness of single-crystal magnesium
oxide at high temperatures, J. Am. Ceram. Soc. 2412 (1967) 195–198.

[46] A. Clauer, B. Wilcox, High temperature tensile creep of magnesium oxide single
crystals, J. Am. Ceram. Soc. 59 (1976) 89–96.

[47] J.B. Bilde-Sorensen, Dislocation structures in creep-deformed polycrystalline MgO,
J. Am. Ceram. Soc. 55 (1972) 606–610.

[48] J. Hensler, G. Cullen, Stress, temperature, and strain rate in creep of magnesium
oxide, J. Am. Ceram. Soc. 51 (1968) 557–559.

[49] K.S. Ramesh, E. Yasuda, S. Kimura, Negative creep and recovery during high-
temperature creep of MgO single crystals at low stresses, J. Mater. Sci. 21 (1986)
3147–3152. http://dx.doi.org/10.1007/BF00553350.

[50] M.H. Yang, C.P. Flynn, Ca2+ and 18O2− diffusion in ultrapure MgO, J. Phys.
Condens. Matter 8 (1996) L279–L283. http://dx.doi.org/10.1088/0953-8984/8/
18/001.

R. Reali et al. Materials Science & Engineering A 690 (2017) 52–61

61

http://dx.doi.org/10.1016/j.actamat.2010.12.020
http://dx.doi.org/10.1016/j.actamat.2010.12.020
http://dx.doi.org/10.1080/14786435.2011.652689
http://dx.doi.org/10.1080/14786435.2011.652689
http://dx.doi.org/10.1016/j.ijplas.2016.03.004
http://dx.doi.org/10.1016/j.ijplas.2016.03.004
http://refhub.elsevier.com/S0921-5093(17)30262-9/sbref4
http://dx.doi.org/10.1088/0965-0393/15/6/001
http://dx.doi.org/10.1088/0965-0393/15/6/001
http://dx.doi.org/10.4028/www.scientific.net/SSP.23-24.455
http://dx.doi.org/10.1557/PROC-578-131
http://dx.doi.org/10.1103/PhysRevLett.96.125503
http://dx.doi.org/10.1103/PhysRevLett.96.125503
http://dx.doi.org/10.1088/0965-0393/12/3/C01
http://dx.doi.org/10.1088/0965-0393/12/3/C01
http://dx.doi.org/10.1063/1.4718432
http://dx.doi.org/10.1063/1.4718432
http://dx.doi.org/10.1103/PhysRevLett.109.265504
http://dx.doi.org/10.1103/PhysRevLett.109.265504
http://dx.doi.org/10.1103/PhysRevB.92.014115
http://refhub.elsevier.com/S0921-5093(17)30262-9/sbref13
http://dx.doi.org/10.1016/j.msea.2005.03.071
http://dx.doi.org/10.1016/j.msea.2005.03.071
http://dx.doi.org/10.1103/PhysRevB.61.8793
http://dx.doi.org/10.1103/PhysRevB.61.8793
http://dx.doi.org/10.1016/j.mechmat.2014.01.001
http://refhub.elsevier.com/S0921-5093(17)30262-9/sbref17
http://refhub.elsevier.com/S0921-5093(17)30262-9/sbref17
http://dx.doi.org/10.1016/0025-5416(85)90299-X
http://dx.doi.org/10.1016/0025-5416(85)90299-X
http://refhub.elsevier.com/S0921-5093(17)30262-9/sbref19
http://refhub.elsevier.com/S0921-5093(17)30262-9/sbref19
http://dx.doi.org/10.1007/BF00554762
http://dx.doi.org/10.1177/058310248001200917
http://dx.doi.org/10.1177/058310248001200917
http://refhub.elsevier.com/S0921-5093(17)30262-9/sbref22
http://refhub.elsevier.com/S0921-5093(17)30262-9/sbref22
http://dx.doi.org/10.1103/PhysRevLett.89.255508
http://dx.doi.org/10.1103/PhysRevLett.89.255508
http://dx.doi.org/10.1016/j.scriptamat.2005.10.066
http://dx.doi.org/10.1016/j.scriptamat.2005.10.066
http://dx.doi.org/10.1029/90JB02175
http://dx.doi.org/10.1029/90JB02175
http://dx.doi.org/10.1103/PhysRevB.71.220101
http://dx.doi.org/10.1103/PhysRevB.71.220101
http://dx.doi.org/10.1063/1.444635
http://dx.doi.org/10.1063/1.444635
http://dx.doi.org/10.2109/jcersj1950.74.851_215
http://refhub.elsevier.com/S0921-5093(17)30262-9/sbref29
http://refhub.elsevier.com/S0921-5093(17)30262-9/sbref29
http://refhub.elsevier.com/S0921-5093(17)30262-9/sbref29
http://dx.doi.org/10.1063/1.1731286
http://refhub.elsevier.com/S0921-5093(17)30262-9/sbref31
http://refhub.elsevier.com/S0921-5093(17)30262-9/sbref31
http://refhub.elsevier.com/S0921-5093(17)30262-9/sbref32
http://refhub.elsevier.com/S0921-5093(17)30262-9/sbref32
http://dx.doi.org/10.1016/j.epsl.2015.10.012
http://dx.doi.org/10.1016/j.epsl.2015.10.012
http://dx.doi.org/10.1007/BF00540494
http://refhub.elsevier.com/S0921-5093(17)30262-9/sbref35
http://refhub.elsevier.com/S0921-5093(17)30262-9/sbref35
http://dx.doi.org/10.2138/am.2007.2512
http://dx.doi.org/10.1126/science.aad3113
http://dx.doi.org/10.1103/PhysRevB.93.014103
http://dx.doi.org/10.1103/PhysRevB.93.014103
http://dx.doi.org/10.1016/j.pepi.2015.09.001
http://dx.doi.org/10.1016/j.pepi.2015.09.001
http://dx.doi.org/10.1063/1.1721875
http://refhub.elsevier.com/S0921-5093(17)30262-9/sbref41
http://refhub.elsevier.com/S0921-5093(17)30262-9/sbref41
http://dx.doi.org/10.1063/1.1702668
http://dx.doi.org/10.1063/1.1714469
http://dx.doi.org/10.1063/1.1714469
http://refhub.elsevier.com/S0921-5093(17)30262-9/sbref44
http://refhub.elsevier.com/S0921-5093(17)30262-9/sbref44
http://refhub.elsevier.com/S0921-5093(17)30262-9/sbref45
http://refhub.elsevier.com/S0921-5093(17)30262-9/sbref45
http://refhub.elsevier.com/S0921-5093(17)30262-9/sbref46
http://refhub.elsevier.com/S0921-5093(17)30262-9/sbref46
http://refhub.elsevier.com/S0921-5093(17)30262-9/sbref47
http://refhub.elsevier.com/S0921-5093(17)30262-9/sbref47
http://dx.doi.org/10.1007/BF00553350
http://dx.doi.org/10.1088/0953-8984/8/18/001
http://dx.doi.org/10.1088/0953-8984/8/18/001

	Modeling plasticity of MgO by 2.5D dislocation dynamics simulations
	Introduction
	Method
	Results
	Low temperature regime
	Intermediate temperature regime
	High temperature regime

	Discussion
	Conclusions
	Acknowledgment
	References


