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Spatial Evidential Clustering with Adaptive
Distance Metric for Tumor Segmentation in
FDG-PET Images

Chunfeng Lian, Su Ruan, Thierry Denceux, Hua Li, and Pierre Vera

Abstract—While the accurate delineation of tumor volumes
in FDG-PET is a vital task for diverse objectives in clinical
oncology, noise and blur due to the imaging system make it
a challenging work. In this paper, we propose to address the
imprecision and noise inherent in PET using Dempster-Shafer
theory, a powerful tool for modeling and reasoning with uncertain
and/or imprecise information. Based on Dempster-Shafer theory,
a novel evidential clustering algorithm is proposed and tailored
for the tumor segmentation task in 3D. For accurate clustering
of PET voxels, each voxel is described not only by the single
intensity value but also complementarily by textural features
extracted from a patch surrounding the voxel. Considering
that there are a large amount of textures without consensus
regarding the most informative ones, and some of the extracted
features are even unreliable due to the low-quality PET images,
a specific procedure is included in the proposed clustering
algorithm to adapt distance metric for properly representing the
clustering distortions and the similarities between neighboring
voxels. This integrated metric adaptation procedure will realize
a low-dimensional transformation from the original space, and
will limit the influence of unreliable inputs via feature selection.
A Dempster-Shafer-theory-based spatial regularization is also
proposed and included in the clustering algorithm, so as to
effectively quantify the local homogeneity. The proposed method
has been compared with other methods on the real-patient FDG-
PET images, showing good performance.

Index Terms—Lung Tumor Segmentation, Evidential c-Means,
Adaptive Distance Metric, Feature Selection, Spatial Regulariza-
tion, Dempster-Shafer Theory, PET Images.

I. INTRODUCTION

OSITRON emission tomography (PET), with the radio-

tracer fluoro-2-deoxy-D-glucose (FDG), is an advanced
imaging tool generally used in clinical oncology for diagnosis,
staging, and restaging of tumors. In recent years, FDG-PET
has also played an important role in adaptive radiation therapy
treatment planning process. The goal of adaptive radiation
therapy is to improve radiation treatment by incorporating
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the specificities of individual patients, as well as those of
target tumors, to re-optimize the treatment plan early on during
the course of treatment [1]. The utilization of FDG-PET in
adaptive radiation therapy has great benefits [2], including 1)
as a complement to computed tomography (CT), FDG-PET
can help to modify the gross tumor volume (GTV) definition;
2) FDG-PET images can be used to define subvolumes, namely
biological target volumes (BTVs), within the tumor target,
so as to include tumor biological characteristics in adaptive
radiation therapy; 3) some studies, e.g., [3]-[5], have shown
that the functional information provided by PET images can
predict early the treatment outcome before the end of therapy,
offering significant evidence for the adaptation of a more
effective treatment plan.

While the accurate delineation of tumor volumes in FDG-
PET is a pivotal step for all the purposes discussed above,
noisy and blurring images due to the acqusition system make
it a challenging work. To this end, diverse automatic or semi-
automatic PET segmentation algorithms have been proposed,
which include thresholding methods [6], [7], region growing
and level set [8], [9], statistical methods [10], graph-based
methods [11], [12], and clustering methods [13]-[15], etc.

As the most commonly used approach owning simple and
intuitive nature, thresholding methods usually define a con-
stant [6] or an adaptive [7] threshold to differentiate lesions
from background. The disadvantage is that these methods are
sensitive to noise, and have limited performance facing small
or heterogeneous positive tissues. Region growing methods al-
so need to select a threshold value as the stopping criterion. To
improve the robustness of thresholding segmentation against
noise, region growing methods take into account the spatial
context in PET images; however, the performance of these
methods usually depends heavily on the initialization of the
segmentation. Statistical methods assume that positive tissues
and surrounding volumes obey different statistical distributions
of intensities, e.g., a mixture of Gaussian densities [10].
This kind of methods is robust to noise and partial volume
effect caused by the low-resolution imaging system; however,
they are sensitive to heterogeneous uptake of positive tissues.
Graph-based algorithms, e.g., random walks (RW) [16], can
effectively combine global cue with local smoothness by
defining foreground and background seeds as hard constraints.
Based on previous work with good performance [11], [16],
an improved version of the classical RW, namely 3D-LARW
method [12], was proposed recently for the segmentation
of inhomogeneous or small tumor volumes. The potential



disadvantage of these RW methods is that their performance
can be influenced by the quality of seeds.

Clustering methods are suitable for PET image segmenta-
tion, especially considering that positive tissues are usually
inhomogeneous with varying shapes among different patients,
which are hard to be dealt with supervised learning strategies.
In view of the wide application of fuzzy c-means (FCM) in
multimodality medical image segmentation tasks [9], [17],
Belhassen et al. proposed a robust approach, called FCM-
SW [14], working specifically for segmenting heterogeneous
tumors in PET images. In the objective function of FCM-SW,
the spatial context of image voxels is included for modeling
the uncertainty and inaccuracy inherent in PET, thus leading
to more stable segmentation than the classical FCM. As an ex-
tension of FCM and possibilistic clustering [18], an evidential
c-means algorithm (ECM) [19] was proposed in the framework
of Dempster-Shafer theory [20]. A spatial version of ECM,
namely SECM [15], was then proposed recently for lung
tumor delineation in multi-tracer PET images. In the objective
function of SECM, the local homogeneity is quantified by the
weighted sum of the intensity distances from the neighborhood
of each voxel to the cluster prototypes. Finding an alternative
way to directly model the spatial information in the framework
of Dempster-Shafer theory seems to be more appropriate, and
may also further enhance the performance of ECM in low-
quality PET images.

It is also worth noting that in the clustering methods men-
tioned above only intensity values were used to assign voxels
into different clusters. Textural features [21]-[24], which de-
scribe the spatial environment surrounding each voxel, are very
likely to provide complementary information for more accurate
segmentation. However, the challenge to include textures in
tumor segmentation is that a large amount of textures can
be extracted, but there is no consensus regarding the most
informative ones; in addition, some of the extracted features
may be unreliable or inaccuracy due to the noisy and blurring
nature of PET images. Abounding researches [25]-[27] have
shown that a distance metric adapted to the data at hand
could effectively improve the performance of clustering algo-
rithms, and of other unsupervised or semi-supervised learning
methods. However, since many of the existing methods were
not designed specifically for tackling high-dimensional data
that contain unreliable input features, their performance may
decline with this kind of imperfect information.

Noise and imprecision modeling is of great concern for
reliable PET image segmentation [28], e.g., for the blurring
and inhomogeneous positive tissues shown in Fig. 1. In our
study this critical issue is addressed via Dempster-Shafer
theory (DST), a powerful tool for modeling and reasoning with
uncertain and/or imprecise information. As a solid foundation
for the proposed approach, DST is an extension of both the
set-membership approach and probability theory, and has been
proven to have greater expressive power [20]. In the framework
of DST, we propose a new clustering algorithm tailored for
the delineation of tumor volumes in low-quality 3D PET
images. The proposed method has three main objectives: 1)
to add textural features as complementary information for
intensities that used in the above methods, so as to obtain

(@) (b)

Fig. 1. Blurring FDG-PET images shown in the axis plane for two different
patients, where large intra- and inter-tumor heterogeneity can be observed.

more accurate segmentation; 2) to properly adapt distance
metric for well representing the clustering distortions and
the similarities between neighboring voxels rather than using
the simple Euclidean distance directly. Different from the
existing methods (e.g. [25]), a sparsity constraint is included
in the distance metric updating procedure to realize a feature
selection via a low-dimensional feature transformation, thus
limiting the influence of unreliable input features on the
output segmentation; 3) to define a new energy function in
the framework of DST using the concept of Markov random
field (MRF). By reason that MRF offers a reliable way to
consider spatial information [29], [30], the new MRF-based
energy function is included in the objective function of ECM,
and acts as a spatial regularization to effectively quantify the
local homogeneity of PET image voxels.

The rest of this paper is organized as follows. The back-
ground on DST and the original ECM is recalled in Section II.
The proposed method is then introduced in Section III. In Sec-
tion IV, the proposed method is evaluated by a cohort of real-
patient FDG-PET images, and the segmentation performance
is compared with that of other methods. Finally, we conclude
paper in Section V.

II. BACKGROUND

As our method is based on Dempster-Shafer theory (DST)
and the original ECM, they are briefly reviewed in Section-
s II-A and II-B, respectively.

A. Dempster-Shafer Theory

DST is also known as the theory of belief functions
or evidence theory. As a generalization of both probability
theory and the set-membership approaches, it has shown
remarkable applications in divers fields, such as image and
vision analysis [31]-[33], data classification [34]-[39], and
data clustering [40]-[43], etc. In our previous work, two
different methods [44], [45] based on DST were also proposed
to predict cancer treatment outcome using PET images and
clinical characteristics. DST has two main components, i.e.,
the quantification of a piece of evidence and the combination
of different items of evidence.

1) Evidence Quantification: DST is a formal framework
for reasoning under uncertainty based on the modeling of
evidence [46]. Let w be a variable taking values in a finite
domain Q = {wq, - ,w.}, called the frame of discernment.
An item of evidence regarding the actual value of w can be
represented by a mass function m on 2, defined from the



powerset 29 to the interval [0, 1], such that Y~ , - m(A) = 1.
Each number m(A) denotes a degree of belief attached to the
hypothesis that "w € A”. Function m is said to be normalized
if m(@) = 0, where the empty set denotes hypothesis beyond
the finite domain 2. Any subset A with m(A) > 0 is called a
focal element. If all focal elements are singletons, m is said to
be Bayesian; it is then equivalent to a probability distribution.
A mass function m with only one focal element is said to be
categorical and is equivalent to a set.

Corresponding to a normalized mass function m, we can
associate credibility and plausibility function from 2 to [0, 1]
defined as:

Bel(A)=Y_m(B); PI(A)= > m(B).

BCA BNA#£D

(D

Quantity Bel(A) can be interpreted as the degree to which the
evidence supports A, while PI(A) can be interpreted as the
degree to which the evidence is not contradictory to A. A mass
function m can also be transformed into a probability function
for reasoning and decision-making. In Smet’s transferable
belief model [46], the pignistic probability corresponding to
m is defined as:

m(A)

BetP(w,) = IR

>

ACQwqa€A

Y, € O, )

where |A| is the cardinality of the subset A.

2) Evidence Combination: In DST, beliefs are elaborat-
ed by aggregating different items of evidence. The basic
mechanism for evidence combination is Dempster’s rule of
combination [20]. Let m; and ms be two mass functions
derived from independent items of evidence. They can be fused
via Dempster’s rule to induce a new mass function m; & mo
defined as

(m&m)(A) = =5 3 m(Bma(C), )

BNC=A

where Q = )5 -_pmi(B)ma(C) measures the degree of
conflict between evidence m; and ms.

B. Evidential c-Means

Let {X1,...,X,} be a collection of feature vectors in
RP describing n objects belonging to the set of clusters
Q = {wy, - ,we}. ECM is grounded on a new concept
of partition, namely the credal partition [40], which extends
the concepts of hard, fuzzy, and possibilistic partition by
allocating, for each object, a mass of belief, not only to single
clusters, but also to any subset of the whole frame (2. Each
single cluster wy, k € {1,...,c}, is represented by a prototype
Vi € RP. Then, for each nonempty subset A; C €2, a centroid
V; is defined as the barycenter of the prototypes associated
with the singletons in A;, ie., V; = £ 37| s4; Vi, where
sy is binary, and it equals 1 iff wy, eJAj; while ¢; = |A]
denotes the cardinality of A;.

Let V denotes a matrix of size (¢ X p) composed of the
coordinates of the cluster centers such that V}, is the qth
component of the prototype V. ECM looks for a credal

partition matrix M = (m;;) of size (n x 2¢) and for a matrix
V by minimizing the following objective function:

n

Teemn M, V) =3 comidl + Y " 6°mly, @)
=1

=1 A;#0

subject to the constraints m;; > 0, m;p > 0, and

> mij+mg=1, Yi=1,...,n, (5)
{3/A;#0,4;CQ}
where Euclidean metric d7; = || X; — V;||? is adopted in the

original ECM to quantify the distortion between X; and the
center of the focal set A;. Scalar m;; denotes the mass of
the object X; allocated to the credal cluster A;; while m;
denotes that allocated to the empty set, and ¢ is a weighting
parameter. The empty set is used for the detection of outliers.
Coefficient a > 0 controls the degree of penalization of the
subsets according to their cardinality (o = 2 by default), and
coefficient 8 > 1 controls the fuzziness of the credal partition
(8 = 2 by default).

Evidential clustering has been successfully applied in var-
ious domains. For instance, Zhou et al. [43] proposed an
evidential c-medoids method for the clustering of relational
data with pairwise similarities. Makni et al. [41] extended
the original ECM for the segmentation of prostate in multi-
parametric magnetic resonance images. Liu et al. [42] pro-
posed a variant of ECM, based on a modified definition of the
clustering distortions. All the above applications or variants of
evidential clustering are different from the method that will be
proposed in Section III, as the latter one includes a specific
spatial regularization and distance metric adaptation procedure
to delineate tumor volumes in PET images.

III. METHOD

A new approach, called Evidential c-Means integrating
adaptive distance metric and spatial regularization (ECM-MS),
is proposed in this section for tumor segmentation in PET.

Let {X;,...,X,} be a collection of feature vectors in
RP describing n voxels in a volume of interest (VOI). The
VOI is an user-defined box that includes the target tumor. We
assume that all the voxels belong either to the background
(i.e. hypothesis w;) or to the positive tissue (i.e. hypothesis
ws), without existence of outliers. Thus, the whole frame of
clusters is set as 2 = {w1, w2 }. Each mass function m satisfies
m({w1}) +m({wa}) +m(Q) = 1, without existence of m ().
As m(f2) measures the ambiguity regarding the clusters w;
and wo, blurring boundary and severe heterogeneous region
will be assigned to m(£2).

A. Spatial Regularization

According to the spatial prior of a PET volume, the credal
partition matrix M = {m,}? ; that we want to learn can
be viewed as a specific MRF, where each mass function
m; is a random vector in R3. Let ® = {®(i)}", be
a 3D neighborhood system, where ®(i) = {1,...,T} is
the set of the 71" neighbors of a voxel ¢, excluding ¢. The

corresponding masses of voxels in ®(i) are {m},...,mb},



while the feature vectors of these voxels are {X7,..., X7.}.
In the concept of MREF, the distribution of m; is assumed to
be depended on the predefined 3D neighborhood system, i.e.,
p(mgl{m;}7 ;) = p(m;i|{m{}iea (). Thus, the distribution of
M can be represented as p(M) = Z ! exp {~U(M)}, where
Z is a normalizing constant, and U(M) is an energy function

of the form
= WZ > Cl), (6)

=1 ted(i)

where scalar 7 > 0 is a hyper-parameter, also called the inverse
temperature in physics, which controls the degree of local
homogeneity in a VO The potential function 3,4 ;) C(i, 1)
measures the smoothness around voxel 4, in which C(i,1)
denotes the inconsistency between voxel ¢ and its neighbor
t. In the framework of Dempster-Shafer theory (DST), C(i,t)
can defined as C(i,t) = v;dm?,, where dmj, denotes the
dissimilarity between m; and mi, while v;; is a weighting
factor that will be calculated in the feature space.

In this study, the metric defined by Jousselme et al. [47] is
adopted to represent the dissimilarity between mass functions
of any two adjacent voxels, as it has been commonly used to
calculate the conflict between two different pieces of evidence
that modeled by DST. As the result, the dim;, between m; and
mi, where t € ®(4), is quantified as
(. m;) ) (7)
where Jac is a positive definite matrix whose elements are
Jaccard indexes, i.e., Jac(4, B) =
29\ (). Since Q = {w1,ws} in this study, we have

dm3, = (m; — mi)Jac(m

1 0 05
Jac = 0 1 05 |. ®)
0.5 05 1

It is worth noting that (7) satisfies the requirements for a valid
distance metric. In addition, it effectively accounts for the
interaction between the focal elements of €2 [47].

For instance, let m;, m¢, and m} be three masses on the
same frame 2 = {w;,ws}, with the form of

A | mi(4) mi(A) mi(A)

{wi} | 08 0.4 0.2
{w}!| o0 0 0.6
Q | 02 0.6 0.2

According to this table, m;(A) is more consistent with m? (A)
than with mb(A), as m;(A) and m¢(A) both have mass of
belief on {w; } and no mass of belief on the opposite hypoth-
esis {wy}; while m} is strongly concentrated on {wo}. As a
comparison to (7), if we quantify the dissimilarities via the
simple Euclidean metric, dm?, and dm?, will inappropriately
be identical and equal 0.72. On the contrary, the dissimilarities
deduced by (7) are dm? = 0.36 and dm%, = 0.72, respec-
tively, which measure the distance more reasonably than the
Euclidean metric. Therefore, this measure is used to define
the specific MRF energy function (6). It acts as a spatial
regularization to adaptively quantify the local homogeneity
during the clustering.

The new objective function of ECM including this MRF-
based spatial regularization is proposed as

jescm(M V Z Z Cj ml] 1] +7YZ Z ’thdm

=1 A;#0 i=1ted(i)
9
subject to the constraints m;; > 0, and
> mij=1, Yi=1,...,n, (10)

{3/A;#0,A;CQ}

where V and d?j have the same form as that in (4). Matrix
M = (m;;) has n rows and 3 columns, in which m;; is the
mass of belief attached to the hypothesis that ’the object X;
belongs to the credal cluster A;”. The second term of (9) is
the spatial regularization, in which dm?t (i.e. (7)) measures
the dissimilarity between m; and m!, while ;; is a weighting
factor. The scalar n > 0 controls the influence of this regu-
larization. It should be predetermined by taking into account
the size of the tumor for segmentation. More discussions with
respect to 1 will be presented in Section IV-D3.

B. Adaptive Distance Metric

Apart from intensity of voxels, in this study we also
attempt to include textural features in ECM as complementary
information for more accurate segmentation. The challenge
to this is that a large amount of textures can be extracted,
but without prior knowledge concerning the most informative
features; additionally, these relatively high-dimensional feature
vectors are very likely to contain unreliable variables due to the
noisy and blurring nature of the PET imaging system. Hence,
to obtain a desired segmentation, an adaptive distance metric
and feature selection procedure is necessary.

In our previous work [37], a supervised method has been
proposed to learn a low-rank dissimilarity metric for improv-
ing the performance of distance-based classifiers on high-
dimensional datasets containing unreliable and imprecise fea-
tures. Also, as has been discussed in Section I, a distance
metric adapted to the data will be beneficial for ECM and other
clustering methods. But adapting distance metric in clustering
is distinct from metric learning in classification, as in the
former case only weak knowledge can be gathered to guide
the procedure. Therefore, in line with but different to [37],
we look for a matrix D € RP*? during clustering, under the
constraint ¢ < p, by which the dissimilarity between any two
feature vectors, say X; and Xs, can be represented as

(X1, X)) = (X1 — X2)DD'(X; — X2). (1)

In other words, matrix D transforms the original feature space
to a low-dimensional subspace, where important input features
will have a strong impact when calculating the dissimilarity. To
find such a transformation matrix D, the distances d?j used
in (9) is calculated via (11). The spatial regularization that
defined by (6) is also used to adapt the distance metric. More
specifically, for each voxel ¢ and its neighbor ¢, we define the
weighting factor that used in (9) as v;; = (X; —XZ)DD/ (X;—
X tZ)/ Then during the minimization of (9), a large dissimilarity
dm?t between m; and m! will reveal that current distance



measure (11) is inadequate, and it should be adjusted at the
next step to reduce the dissimilarity between X; and X7, so
as to bring the two adjacent voxels closer together.

Based on the above analysis, the objective function (9)
integrating adaptive distance metric can be updated as

Tin(M,V,D) =3 3" m?(X, - V;)DD (X, - V)
i=1 A;70

> dm}(X; — X})DD'(X; — X})'
=1 ted(:)

+7
i

+A Dl —log { (X,

— ’

- sz) ) ’
(12)

— X,,)DD’ (X,

subject to the constraints m;; > 0 and (10). In (12), matrix
M = (m;;) and V have the same form as that in (9). The
dissimilarities between neighboring mass functions, i.e., dm?t,
are still quantified by (7). The /3 ;-norm sparsity regularization
(i.e. the third term)

p

D[]z =

i=1

13)

is included to select input features during feature transforma-
tion. By forcing rows of D to be zero, this sparsity term only
selects the most reliable input features to calculate the linear
transformation, thus controlling the influence of unreliable
input features on the clustering result. Scalar A is a hyper-
parameter that controls the influence of this regularization. The
last term of (12) is used to prevent the objective function being
trivially solved with D = 0, which collapses all the features
vectors into a single point. Vectors X,, and X, are two
predetermined prototypes (or seeds) for the positive tissue and
the background, respectively. A simple and easy initialization
of them will be discussed in Section III-C.

Finally, a desired distance metric determined by (12) should
satisfy 1) neighboring voxels are similar (realizing via the
second term), and 2) the tumor seeds and the background seeds
are widely separated (realizing via the last term).

C. Optimization

Subject to m;; > 0 and (10), Vi € {1,...,n} and j €
{1, 2, 3}, the objective function (12) can be minimized in an
EM-like iterative optimization scheme, so as to automatically
determine M for a given case. Based on the whole frame of
clusters 2 defined at the beginning of this section, the number
of clusters ¢ equals 2 in our applications.

1) Initialization: To guide the clustering procedure of
ECM-MS, especially to control the integrated metric updating
step, we firstly initialize the mass functions and the cluster
centers via the original ECM algorithm. A very small number
of voxels are then automatically selected as the seeds with
predefined cluster labels. More specifically, based on the initial
mass functions, image voxels are classified into three credal
clusters, i.e., cluster {w;}, cluster {wz}, and cluster Q. To
ensure the reliability and to control the number of the selected
seeds, the tumor seeds are determined as the voxels whose

Algorithm 1: ECM-MS

Input feature vectors {X1,..., X, } € RP; the spatial
neighborhood ®(i) of each voxel i; the hyper-parameters
n and \; initial M(©), V(©) and D(©); the tumor and
background seeds ;
for=1,2,... do
E-step: calculate M) using the efficient
interior-point algorithm [48] with (14), M(—1),
VU1 and DD
M-step I: calculate V() according to (16) and M® ;
M-step II: calculate D®) via the Beck-Teboulle
proximal gradient algorithm [49] with (17), M),
VO, and DD
if no significant change of J.’;, then

| break;
end

end
Output the final M*, V*, and D*;

intensity values are higher than that of the third quartile
voxel in the cluster {w;}; while, the background seeds are
determined as the boundary of the VOI. After that, the mass
functions for the tumor and background seeds are fixed as
m({w1}) = 1 and m({ws}) = 1, respectively. In addition,
the two prototypes, i.e., X,, and X,,, used in (12) are
calculated as the barycenters of the tumor and background
seeds, respectively. The output dimension, namely the number
of columns ¢ in D, is then determined by applying principle
component analysis on all the feature vectors {X1,..., X, }.
The initial D is constructed by the top 95% eigenvectors.

Then, the optimization procedure alternates between cluster
assignment (i.e. M estimation) in the E-step, and both proto-
type determination (i.e. V estimation) and metric adaptation
(i.e. D estimation) in the M-step.

2) E-step: Given V and D, the minimization of (12) only
relates to the first two terms, which turns to be a quadratic
problem with respect to the mass functions M = (m;;). The
derivative of (12) concerning the mass function m; (€ R?),

Vi € {1,...,n}, can be written as
a ms
(:977;:" =2m;B + 2 gb}') dfj(mi —m;j)Jac, (14)
J )

where the matrix Jac is defined by (8), df; = d*(X;, X;) is
measured by (11), and

C%dQ(X’iavl) 0 B 0
B = 0 Ad2(X;, Va) o |,
0 0 C%dz(Xi,‘/g)

15)
where d?(X;,V;) is also measured by (11). Based on the
derivation (14), an efficient interior-point algorithm with a
limited-memory BFGS approximation of the Hessian ma-
trix [48] is adopted to solve the quadratic problem, so as to
obtain the matrix M at current step.

3) M-step I: The updating of the prototypes is only in-

fluenced by the first term of (12). Let f; = Z?:l c?mfj and
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Fig. 2. Three different tumors delineated by ECM-MS. The first column demonstrates volumes in 3D, where, based on the manually segmentation by
clinicians, the green region consists of the true positive and true negative voxels, the magenta region consists of the false positive voxels, while the orange
region consists of the false negative voxels. For each tumor volume in the first column, more detailed results, slice by slice in the axial plane, are shown in
the following columns correspondingly, where the contours delineated by ECM-MS (green line) are compared with that delineated by clinicians (blue line).

gj = >y &;mi; X, Vi € {1,2,3}, the centers of the clusters
{w1} and {w2} are calculated, respectively and directly, as
V, = 2f2(2g1+93)+f3(91—9g2).
4f1fatfa(f1+f2) ’
{V2 _ 2f1i2g2+93)+f3(92—91).
frfet+fa(fi+f2)

4) M-step II: It is worth noting that the objective function
(12), excluding the third term, is differentiable as a function
of the transformation matrix D; while, the third term (i.e. the
sparsity regularization) is only partly smooth with a singularity
at D = 0. For this reason, the proximal Forward-Backward
splitting (FBS) algorithms [49] are efficient alternatives to
solve the metric updating problem formulated in this step.
More precisely, the derivative of the differentiable part of (12)
concerning D can be written as

(16)
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based on which the Beck-Teboulle proximal gradient algorith-
m [49], an improved version of the classical FBS methods with
computational simplify and fast convergence rate, is executed
to obtain a required distance metric at current step.

The optimization procedure of the proposed ECM-MS
method is briefly summarized in Algorithm 1.

D. Post-Processing & Decision-Making

To further improve the segmentation performance, mass
functions obtained by Algorithm 1 can be post-processed. For
each voxel i, the mass functions {m?,...,m%} in the 3D
neighborhood ®(7), i.e., voxels surrounding i, are viewed as T
independent pieces of evidence regarding the cluster label of <.
We assume that the reliability of each evidence m! is inversely
proportional to the spatial distance between ¢ and ¢. Let this
spatial distance be s%. Then, based on Dempster’s discounting

procedure [20], each piece of evidence mi, Vt € {1,...,T},
can be weighted by a coefficient y; = exp(—s%), so as to
obtain a discounted mass function
wmi({w;}) = mmi({w;}), Vi=12,
2 i
=1- Zj:l wmy({w;}).

Using the Dempster’s rule of combination (3), the discounted
mass functions obtained by (18) are fused with the mass
function m; to output a renewed mass function m;. On the
other hand, the above procedure can also be regarded as a
filtering operation in a small cubic window.

After that, a hard partition of image voxels can be obtained
via maximizing the pignistic probability calculated by (2). In
the final crisp segmentation, only the connected component
with the maximum number of positive voxels will be recog-
nised as the target tumor, thus effectively handling complicated
segmentation tasks, e.g., the situation that target tumor is close
to heart or mediastinum with high-uptake in the VOI. The
same operation has also been applied to all the compared
methods in Section IV, so as to improve their performance.

wmi(Q) e

IV. EXPERIMENTS AND RESULTS

In this section, the proposed ECM-MS was evaluated by
the FDG-PET images acquired for non-small cell lung can-
cer (NSCLC) patients. The performance of ECM-MS was
compared with that of a constant thresholding method using
40% of the maximum intensity in the lesion (T40%) [6],
an adaptive thresholding method (TAD) [7], 3D-LARW [12],
FCM-SW [14], SECM [15], and also the original ECM [19].

A. Material and Features

The FDG-PET images of 20 NSCLC patients were studied.
These patients were injected by an average activity of FDG
of 261 £+ 48 MBq. The obtained PET acquisitions have the
same anisotropic resolution of 4.06 x 4.06 x 2 mm3, and
were quantified using standardized uptake values (SUV). The
tumor lesions were then manually delineated by experienced
clinicians, with the volumes range from 1.9 mL to 135.8 mL.



THE DICE COEFFICIENTS (DSC), THE HAUSDORFF DISTANCES (HD) IN VOXEL, AND THE MEAN SURFACE DISTANCE (MSD) IN VOXEL OBTAINED BY
DIFFERENT SEGMENTATION METHODS ON THE FDG-PET IMAGES FOR THE NSCLC PATIENTS. ALL THE RESULTS ARE PRESENTED AS MEAN=£STD.

TABLE I

T40% TAD 3D-LARW ECM SECM FCM-SW ECM-MS
DSC || 0.733 £0.114 | 0.706 4 0.129 || 0.800 £ 0.078 || 0.722 +0.142 | 0.763 £0.13 | 0.839 £0.094 || 0.862 + 0.048
HD || 5.119 £5.089 | 5.002 &+ 5.528 || 5.642 + 5.573 || 5.699 £ 4.732 | 5.125 + 3.823 | 3.996 £ 3.514 || 2.544 £+ 1.349
MSD || 0.647 £ 0.513 | 0.725 £+ 0.627 || 0.560 £ 0.535 || 0.697 +0.701 | 0.559 £ 0.347 | 0.351 £ 0.295 || 0.216 + 0.098

T40%

TAD ECM

Original images

SECM 3D-LARW FCM-SW

Fig. 3. Contours delineated by different methods (from the second column to the last column) for five different tumor volumes shown in the axis plane. The
first column represents the input images with contours delineated by expert clinicians. The delineation by the seven algorithms (green line) is compared with

that by clinicians (blue line) in the following columns.

Considering that the image resolution is anisotropic, a
(3 x 3) window in 2-D was defined to extract features to
be used in the proposed ECM-MS. Using this window, the
average SUV, the maximum SUYV, the minimum SUYV, the
range of SUV (i.e. maximum—minimum), and the standard
deviation of SUV were calculated as features for the centering
voxel. The gray level size zone matrix (GLSZM) [23] was
adopted to extract seven texture features, as its effectiveness
in PET image characterization has already been evaluated [4].
Similarly, the gray-level co-occurrence matrix (GLCM) [21]
was also utilized to extract fifteen features. To sum up, for
each voxel, a 28-dimensional feature vector was extracted,
consisting of 6 SUV-based, 7 GLSZM-based, and 15 GLCM-
based features.

B. Evaluation Criteria

Regarding the manual delineation by clinicians as the ref-
erence, all the segmentation methods were evaluated by three
criteria, i.e., the Dice coefficient (DSC), the Hausdorff distance
(HD), and the mean absolute surface distance (MSD). Let Sy
and S5 be two segmentations with the corresponding bound-
aries By and By. Then, DSC = 2|S; N Sa|/ (|S1] + |Sa2]),
which measures the overlap between the regions of two

different segmentations. The HD metric defines the maximum
distance between the contours of two different segmentations;
while, as the complementary, the MSD metric measures how
much on average the two contours differ. More information
with respect to HD and MSD can be found in [50].

C. Results

To demonstrate the performance, as examples, three dif-
ferent PET volumes segmented by ECM-MS are shown in
Fig. 2, where the three rows (from the top to the bottom)
correspond to a large tumor, a small tumor, and a heterogenous
tumor, respectively. The first column of Fig. 2 presents the
tumor volumes in 3D. Using the manually segmentation by
clinicians as the reference, the green region consists of the true
positive and true negative voxels, the magenta region consists
of the false positive voxels, while the orange region consists of
the false negative voxels. For each tumor volume, the second
column to the last column of Fig. 2 show the corresponding
results slice by slice in the axis plane (from the top to the
bottom), where the green and blue line represent the contours
delineated by ECM-MS and clinicians, respectively. As can be
seen, the delineation by ECM-MS is in consistent with that by
clinicians for all the three examples. It is also worth noting
that, for the severely heterogenous tumor shown in the third
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Fig. 4. (a) a heterogeneous FDG positive tissue; (b) represents the corre-
sponding map of mass function m({Q2})) obtained by ECM-MS; (c) and
(d) are the credibility and plausibility map for the hypothesis of tumor
(i.e. Bel({w1}) and Pl({w1})), respectively; while (e) is the corresponding
pignistic probability map (i.e. BetP(w1)).

row, ECM-MS blocked some voxels out from the solid tumor
delineated by clinicians. It indicates that the proposed method
may could offer helpful information regarding the radiation
necrosis during RT or ART. This property will be discussed
in more detail in the next subsection.

The segmentation results obtained by all the methods on
the 20 FDG-PET volumes are summarized and compared in
Table I, from which we can find that the proposed method
obtained better performance, both DSC and HD, than the
other six algorithms. To be more comprehensive, the visual
examples obtained by these methods are also presented in
Fig. 3 for comparison. The first column of Fig. 3 presents
the axis slices of five different tumors, where the first row
is a slice corresponds to a large tumor, the second and
the third rows represent two small tumors, while the last
two rows represent two heterogenous tumors. The second
column to the last column of Fig. 3 compare the contours
delineated by the seven different methods (green line) with
that delineated by clinicians (blue line). As can be seen, the
contours delineated by the proposed method (the last column)
are more in consistent with the reference contours in this
experiment, especially for the small tumors and heterogenous
tumors.

D. Discussion

1) Uptake Analysis in FDG-PET: In addition to the crisp
segmentation results presented in Section IV-C, ECM-MS can
also be adopted to gain deeper insight into the FDG uptake.
As an example, a heterogeneous positive tissue is shown in
Fig. 4 (a). Then, for all the voxels available in (a), subfigure
(b) presents the masses of belief that attached to the whole
frame of hypothesis (i.e. m(f2)). It can be found that the
possible radiation necrosis in the white circle, and the blurry
boundary of the target are assigned high values of m(f2),
which means that these high uncertainty and imprecision re-
gions were successfully recognised by ECM-MS. The similar
knowledge can also be obtained in subfigure (e), which shows
us the pignistic probability with respect to the hypothesis of
tumor, i.e., BetP(wy) calculated by (2). Based on (1), the
credibility and plausibility map for the hypothesis of tumor
(i.e. Bel({w1}) and Pl({w1})) are presented, respectively, in
(c) and (d) of Fig. 4. As a piece of additional information,
they can be regarded as the lower and upper bounds for the
probability of each voxel belonging to the cluster of tumor.

2) Role of different modules in (12): To evaluate the influ-
ence of the spatial regularization, the sparsity regularization,
and the post-processing step (i.e. fusion of mass functions
updated by (18) in Section III-D) on the final segmentation,

TABLE 11
SEGMENTATION PERFORMANCE WITHOUT THE SPATIAL REGULARIZATION
(NO SPATIAL), THE SPARISTY REGULARIZATION (NO ||D||2,1), AND THE
UNCERTAINTY REDUCTION (NO POST-PROCESSING), RESPECTIVELY.
No spatial No ||D]|2,1 No post-processing ~ECM-MS
DSC 0.789 4+ 0.097 0.846 + 0.067 0.857 £0.047 0.862 + 0.048
HD 3.535 4 2.385 2.685 + 1.449 2.544 +1.349 2.544 + 1.349
MSD 0.389 £ 0.205 0.248 +0.117 0.217 £ 0.098 0.216 4+ 0.098

0.9
0.86

Nnoa 0.8

0.02

3 537 9 2 ) 2
(a) (b) (© (d)

Fig. 5. The Dice coefficient (i.e. the intensity value) as a function of A and
7. (a) to (c) correspond to four different tumors delineated by clinicians with
the volumes of 51.20 mL, 135.80 mL, 18.33 mL and 8.10 mL, respectively.

we orderly excluded them from ECM-MC. Then, the cor-
responding segmenation results are summarized in Table II.
We can find that the spatial penalty and the sparsity penalty
effectively improved the accuracy of the proposed method.
Based on this foundation, the post-processing operation further
enhanced the segmentation performance, as it can refine the
contour of output target, and can also deal with false negative
voxels inside the tumor contour.

3) Parameter Setting: The two hyper-parameters utilized
in ECM-MS, i.e, n and A\ of (12), control the influence of
the spatial regularization and the influence of the sparsity
regularization, respectively. To maximize the segmentation
performance, they should be determined taking into account
the size of the tumor. As an illustration, we orderly chose a n
and a A from {0.01,...,0.09,0.1,...,0.9} and {1,...,10},
respectively. Then, ECM-MS was applied on two relatively
large tumors (volumes of 51.20 mL and 135.80 mL delineated
by clinicians) and two relatively small tumors (volumes of
18.33 mL and 8.10 mL). The segmentation results were finally
quantified using DSC, and is summarized in Fig. 5. It can be
found that for the large tumors (i.e. (a) and (b)), ECM-MS had
relatively better performance with n € [0.01, 0.09]; while, for
the two small tumors (i.e. (c) and (d)), n € [0.1,0.9] is better.
Thus, in our experiment, A was set to 8, while  was set to
0.01 and 0.2, respectively, for large and small tumors.

V. CONCLUSION

In this study, we have investigated to address the impreci-
sion and noise inherent in FDG-PET images via Dempster-
Shafer theory (DST), a powerful tool for modeling and rea-
soning with uncertain and/or imprecise information. Based on
DST, an evidential clustering algorithm integrating adaptive
distance metric and MRF-based spatial regularization has
been proposed for the delineation of tumor volumes in FDG-
PET images. The experimental results obtained on twenty
real-patient PET stacks have shown the effectiveness of the
proposed method. Considering that DST is also widely used
for the information fusion task, as the future work, we will
study how to include the anatomical information provided by



CT into the proposed segmentation algorithm, so as to further
improve the tumor delineation performance in FDG-PET.
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