
HAL Id: hal-01637150
https://hal.science/hal-01637150v1

Submitted on 17 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimental observation of oscillatory cellular patterns
in three-dimensional directional solidification

J. Pereda, F.L. Mota, Lin Chen, B. Billia, D. Tourret, Y. Song, J.-M.
Debierre, R. Guerin, A. Karma, R. Trivedi, et al.

To cite this version:
J. Pereda, F.L. Mota, Lin Chen, B. Billia, D. Tourret, et al.. Experimental observation of oscillatory
cellular patterns in three-dimensional directional solidification. Physical Review E , 2017, 95 (1),
pp.012803. �10.1103/PhysRevE.95.012803�. �hal-01637150�

https://hal.science/hal-01637150v1
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW E 95, 012803 (2017)

Experimental observation of oscillatory cellular patterns in three-dimensional
directional solidification

J. Pereda,1 F. L. Mota,1 L. Chen,1 B. Billia,1 D. Tourret,2 Y. Song,2 J.-M. Debierre,1 R. Guérin,1 A. Karma,2
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We present a detailed analysis of oscillatory modes during three-dimensional cellular growth in a diffusive
transport regime. We ground our analysis primarily on in situ observations of directional solidification experiments
of a transparent succinonitrile 0.24 wt % camphor alloy performed in microgravity conditions onboard the
International Space Station. This study completes our previous reports [Bergeon et al., Phys. Rev. Lett. 110,
226102 (2013); Tourret et al., Phys. Rev. E 92, 042401 (2015)] from an experimental perspective, and results
are supported by additional phase-field simulations. We analyze the influence of growth parameters, crystal
orientation, and sample history on promoting oscillations, and on their spatiotemporal characteristics. Cellular
patterns display a remarkably uniform oscillation period throughout the entire array, despite a high array disorder
and a wide distribution of primary spacing. Oscillation inhibition may be associated to crystalline disorientation,
which stems from polygonization and is manifested as pattern drifting. We determine a drifting velocity threshold
above which oscillations are inhibited, thereby demonstrating that inhibition is due to cell drifting and not directly
to disorientation, and also explaining the suppression of oscillations when the pulling velocity history favors
drifting. Furthermore, we show that the array disorder prevents long-range coherence of oscillations, but not
short-range coherence in localized ordered regions. For regions of a few cells exhibiting hexagonal (square)
ordering, three (two) subarrays oscillate with a phase shift of approximately ±120◦ (180◦), with square ordering
occurring preferentially near subgrain boundaries.

DOI: 10.1103/PhysRevE.95.012803

I. INTRODUCTION

The topic of pattern formation is of paramount importance
in many scientific fields, and the process of pattern selection is
quite complex since it occurs in a highly nonlinear growth
regime [1]. During directional solidification of alloys, the
interface between the solid and the melt exhibits complex
patterns that are analogous to patterns that form in other fields,
such as combustion, fluid dynamics, geology, and biology.
Thus, an understanding of solidification patterns provides a
general theoretical framework that is useful for a broad class
of pattern formation in nature. Moreover, the microstructure
formed in the solid largely controls its mechanical properties so
that further understanding of the basic physical principles that
govern microstructure formation during solidification directly
benefits to the improvement of materials processing [2,3].

In directional solidification of binary alloys, the planar
solid-liquid interface bifurcates into a cellular structure
when the morphological instability parameter, proportional to
ViCi/G with Vi the interface growth velocity, Ci the liquid
concentration at the interface and G the thermal gradient,
exceeds a critical value. Pattern selection actually occurs
under dynamic growth conditions in which the unstable pattern
reorganizes into a rather periodic array.

In situ observation of the solid-liquid interface is a valuable
tool to obtain a detailed knowledge of the entire time evolution
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of the interface pattern. For this reason, extensive use has
been made of transparent organic analogs that solidify like
metallic alloys but are transparent to visible light, so that the
dynamics of the solid-liquid interface can be observed using
classical optical techniques [4–11]. Most experimental studies
with transparent systems have been performed using a thin
sample configuration, the interface being observed from the
side. In that case, a single row of cells or dendrites forms
along the width of the sample, and the pattern observed from
the top (liquid side) can be considered a one-dimensional array.
Even if for a sample thickness larger than ≈25 μm, tip shapes
are three dimensional [12], such thin samples correspond to
a “confined three-dimensional” configuration and the pattern
will be referred to as one dimensional (1D) thereafter. Added
to the relative simplicity of the experimental and optical
systems in such a configuration, another major advantage
is the drastic reduction of convection in the melt, which is
known to strongly affect microstructural pattern formation
[13–17]. Even if studies in thin samples have led to significant
advances in understanding the dynamics of solidification,
quantitative data extracted from thin samples often cannot
be extrapolated to large 3D bulk samples [12,18,19]. The
growth process in a large 3D sample leads to the formation of
extended 2D arrays. The geometrical characteristics, defects,
and neighbor interactions between cells are more complex in
2D arrays formed in bulk samples than in 1D arrays formed
in thin samples. In spite of its importance, the dynamics
of extended 3D patterns still remains poorly characterized
and understood. This is largely due to the experimental
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difficulty of in situ observation in bulk samples and the
necessity of eliminating fluid flow effects, which requires the
reduced-gravity environment of space. The present study was
conducted on board the International Space Station (ISS) in
the framework of the French Space Agency (CNES) project
MISOL3D (Microstructures de Solidification 3D) and NASA
project DSIP (Dynamical Selection of Interface Patterns).
Experiments were realized using the directional solidification
insert (DSI) of the device for the study of critical liquids
and crystallization (DECLIC) developed by CNES which
is dedicated to in situ and real-time characterization of the
dynamical selection of the solid-liquid interface morphology
on bulk samples of transparent materials [20–23].

Systematic studies of pattern formation and dynamics were
conducted in directional solidification of a succinonitrile-
camphor alloy for various thermal gradients G and pulling
velocities V (the solute concentration C0 of the sample
is fixed). In the cellular regime, as growth progresses, the
interface pattern evolves to organize both in terms of spacing
adjustment and ordering [23]. The cellular or dendritic patterns
may undergo secondary instability in domains of control
parameters where other branches of microstructures are more
stable, and thus form preferentially. A diversity of secondary
instabilities can be found in spatially modulated interface
patterns [24,25], but a number of them occur in a narrow
range of growth conditions so that their observation is not
straightforward. In a recent paper [26], we reported the
unprecedented observation of an oscillatory instability in
spatially extended 2D cellular patterns. This type of secondary
instability, often termed “vacillating-breathing mode” has
been experimentally and theoretically studied in thin samples
for both cellular [27–29] and two-phase eutectic interfaces
[30–32], and theoretically predicted for 3D cellular growth
[33,34]. Regarding eutectic systems, one may distinguish
between lamellar and rod morphologies that correspond to
drastically different patterns in thick samples. A recent study of
Perrut et al. [35] reports oscillation in the disordered hexagonal
based rodlike pattern which is formed in thick samples of
transparent alloys. An experimental characterization of the
oscillating mode of cellular patterns was done for a 1D
cellular pattern by Georgelin and Pocheau [28] in thin samples
of transparent alloys. Our experiments revealed extended
cellular patterns oscillating with periods of a few tens of
minutes. In combination with the experiments, dedicated
large-scale phase-field simulations produced breathing modes
of comparable characteristics in terms of period as well as
in terms of spatiotemporal coherence. We recently presented
a phase-field numerical study of these oscillating patterns
[36]. In the following, we present the results of a more in-
depth analysis of experimentally observed oscillating patterns
and supplement the interpretation of those observations by
additional phase-field simulations. The results shed light on
the growth conditions that favor oscillations and the inhibitory
role of crystal disorientation.

In the first part of this paper (Sec. II), we describe the
experimental device as well as the procedures that we apply
to statistically characterize the pattern in terms of primary
spacing and level of disorder. We also present the experi-
mental procedures specifically developed for the analysis of
oscillating patterns. Next, in Sec. III we present the analysis of

results. General characteristics of oscillation patterns, includ-
ing spatial ordering and the relationships between local order
and oscillation coherence, are first presented in Sec. III A. Sec-
tion III B then discusses the conditions for the occurrence of
oscillations including the role of tip splitting and pattern drif-
ting of tilted cells. Conclusions are summarized in Sec. IV.

II. EXPERIMENTAL PROCEDURE

A. Directional solidification device DECLIC-DSI

The DSI of the DECLIC facility includes a Bridgman
type furnace and the experimental cartridge; more complete
descriptions of DECLIC and its inserts can be found elsewhere
[20,21]. The Bridgman furnace is composed of a hot zone and
a cold zone located at the top and bottom of the adiabatic
zone, respectively, so that a temperature gradient G can
be generated (between 10 and 30 K/cm). Solidification is
performed by pulling the experimental cartridge containing
the alloy from the hot zone towards the cold zone at a
constant pulling rate V (between 0.1 and 30 μm/s). The
experimental cartridge comprises the quartz crucible and a
system of volume compensation made of stainless steel that is
mandatory to accommodate the specimen volume variations
associated with phase changes. The cylindrical crucible has an
inner diameter of 10 mm and a length that enables about 10 cm
of solidification, allowing the study of the whole development
of extended 2D patterns from their initial stages up to the
permanent regime of growth morphology. The crucible is
equipped with a flat glass window at the bottom and a lens
immersed in the melt at the top. The main observation mode
takes advantage of the complete axial transparency of the
cartridge provided by these last two elements: the light coming
from light-emitting diodes (LEDs) passes through the cartridge
from the bottom to the top, crossing the interface of which the
image is formed on a charge-coupled device (CCD) camera;
these top-view images of the microstructure are used to study
array dynamics and characteristics. On the same cartridge axis,
a Mach-Zehnder interferometer is also set using a He-Ne laser.
The principles of the analysis of the interferometric images can
be found in [37]. In the transverse observation mode, the light
coming from two LEDs crosses the sample from one side to the
other, which provides a real-time control of interface position
and curvature (side-view image). In the current article, images
obtained by the direct axial and transverse observations are
analyzed.

The organic transparent alloy used is a succinonitrile
(SCN) camphor, with a nominal concentration C0 = 0.24 wt %
camphor. The alloy was prepared with SCN purified by NASA
by successive distillation and zone melting. Every step of
sample preparation was carefully realized under vacuum to
avoid humidity contamination. A single crystalline solid seed
with a direction 〈100〉 parallel to the pulling axial direction
was prepared on ground and kept during all the experimental
campaigns. Further details about the experimental procedure
can be found in previous works [23,38].

No direct in situ measurement of the thermal gradient
is available in the DSI as no thermocouple is inserted
inside the sample to avoid thermal perturbations. Control
temperatures are imposed to the regulating areas but these
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areas are not in contact with the cartridge as a gap of 1
mm is necessary for cartridge manipulations. Additionally, the
cylindrical geometry and the conductivity difference between
the quartz crucible and the alloy result in a complex thermal
field that is difficult to characterize. The thermal gradient is
estimated using software packages CRYSVUN R© and CRYSMAS R©
which are designed for the global modeling of solidification
processes in complex furnaces with axial or translational
symmetry [39]. Two different sets of control temperatures
were used that correspond to two different thermal gradients,
estimated by thermal numerical simulation at G1 = 19 K/cm
and G2 = 12 K/cm. A more complete discussion of the
thermal gradient determination can be found in [40]. A range
of pulling velocities from 0.25 to 30 μm/s was studied which
covers a range of microstructures from planar to cellular and
dendritic.

B. Pattern characterization

In situ continuous observation led to a large amount
of images: systematic procedures had to be developed and
validated to extract relevant quantitative data. An example of
raw image is given in Fig. 1(a). Quantitative characterization
of the patterns consists of measuring the evolution, as a
function of time and control parameters, of the parameters that
describe the interface morphology, such as the primary spacing
and the order or disorder level of pattern. Image treatment
and analysis procedures have been developed using several
software packages (such as VISILOG R© or IMAGEJ) to facilitate
exploitation of results.

Primary spacing corresponds to the center-to-center dis-
tance between two first-neighbor cells in top-view images.
Successive operations aiming at enhancing the cell outlines
are applied to obtain an exploitable binary image. Image

treatment is then applied to sharpen the boundaries between
adjacent cells to single lines: the cell center is determined
and each cell is tagged. Segments linking adjacent cells are
measured so that a histogram of the first-neighbor distances
can be drawn to determine the average spacing and its standard
deviation. Additionally, the position of each cell center is
followed through time to evidence cell dynamics and pattern
drift. The number of nearest neighbors is also determined; it
gives information on the quantity of topological defects in the
pattern.

C. Oscillation characterization by top-view observation

In top-view images [see Fig. 1(a) for example], cells appear
bright due to the light guided through their body. A few bottoms
of cell grooves also appear bright but in most cases, the position
of the groove is defined as the dark line separating bright
areas. The size of the bright area will be called “apparent
cell area” in the following. Two videos of oscillating patterns
are given as Supplemental Material [41], corresponding to
top-view observations at V = 0.75 (video 1) and 1 (video 2)
μm/s (G1 = 19 K/cm). On these top-view images, oscillating
cells are characterized by a periodic variation of their apparent
area.

A method was developed to measure the variation of
apparent area Ai(t) of each cell over a large interface area
to characterize oscillation. All measurements are done with
the VISILOG R© software with macroprocedures specifically
developed to tackle large numbers of images.

Starting with the first raw image of a sequence [Fig. 1(a),
extracted from video 2 attached in the Supplemental Material],
each initial grey-level image is transformed into a binary image
ensuring that a large majority of cells are disconnected from
their neighbors [Fig. 1(b)]. At this step, a few cells having

FIG. 1. (a) Example of an initial raw image (3.2 × 3.2 mm2). (b) Binary image evidencing some defects resulting from dark cells (DC),
tip-splitting events (TS), or groove bottoms (GB). (c) Binary image after processing with “opening function”. (d) Contours of apparent cell
area on corrected binary image superimposed on the initial raw image. (e) Tagged binary image (V = 1 μm/s, G1 = 19 K/cm).
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FIG. 2. (a) Evolution of the primary spacing (λ) as a function of the pulled length (L = V t) at G1 = 19 K/cm. Primary spacings for the
same pulling velocity are compared (V = 1 μm/s) for different experimental situations. : long solidification at constant pulling rate; �:
pulling rate jump from V1 = 1 μm/s to V2 = 8 μm/s after 30 mm; �: pulling rate jump from V1 = 8 μm/s to V2 = 1 μm/s after 30 mm. For
experiments with pulling rate jumps, only the data corresponding to the part at V = 1 μm/s are represented. (b) Distribution of the number of
nearest neighbors at different times (or pulled lengths) for the long solidification at constant pulling rate V = 1 μm/s, G1 = 19 K/cm [symbol

in (a)].

grey level below threshold may disappear on the binary image
[e.g., “DC” (dark cell) in Fig. 1(b)]. Other defects also appear
in this binary image, mainly coming from (i) bright flat parts
at groove bottoms (GBs), and (ii) ongoing tip-splitting (TS)
events. Corrections are performed to remove the small objects
due to bright grooves, tip-splitting events, and details attached
to bright area boundaries, to fully disconnect the bright areas
associated with each cell [Fig. 1(c)]. The superimposition of
the contours of apparent cell surfaces after the processing of
the initial image is given in Fig. 1(d). Every single cell is then
tagged [Fig. 1(e)], the position of its center determined, and
its area measured. The same processing is then applied to all
images in the sequence. We keep the same tag number for each
cell over the entire sequence of images. Even if the acquisition
frequency is higher, only one image/min is sufficient for an
efficient analysis. This process is implemented over the whole
sequence to get apparent cell area variation with time.

For a given cell i at a given time t , the apparent area
Ai(t) can be normalized between its maximum (Ai, max) and
minimum (Ai, min) values as

Ãi = Ai(t) − Ai, min

Ai, max − Ai, min
. (1)

The surface area Ai(t) of each cell can be fitted to a periodic
function fi(t) = Bi + Cisin( 2πt

τi
+ ϕi) for which Bi and Ci

as well as the oscillation period τi and the initial phase ϕi

are fitting parameters. We can thus extract the individual
instantaneous phases θi(t) = 2πt

τi
+ ϕi for all the cells.

Considering that experimental curves are quite noisy, fits
have to be performed on at least two periods. Even for these
relatively short durations, the measured transient oscillation
phases may exhibit variations with respect to fitted curves.
Thus, fitted data correspond to a moving average over the
fitting duration rather than exactly instantaneous values. The
normalized oscillation amplitude corresponds to the ratio
between the oscillation amplitude and the average surface
value, namely the ratio Ci/Bi .

III. RESULTS

A. Pattern selection and oscillation characteristics

1. Pattern spatial ordering

Before describing the oscillation features, it is important
to briefly underline the typical characteristics of the extended
2D cellular patterns grown in the range of control parameters
for which oscillation appears. As a representative example, let
us focus on an experiment of about 60 mm of solidification,
starting from rest, at the constant pulling rate of 1 μm/s
and thermal gradient G1 = 19 K/cm. The primary spacing
(λ) evolution with time or, equivalently, with pulled length
(L = V t), is given in Fig. 2(a) (black disks). The data points
correspond to an average through the entire cellular pattern;
the vertical bars correspond to the standard deviation of the
spacing distribution. The primary spacing increases until it
reaches a steady-state value. An image of the steady-state pat-
tern is given in Fig. 3(a): the ring-shaped fast Fourier transform
(FFT) in the inset highlights the high spatial disorder of this
array. The time evolution of disorder is illustrated in Fig. 2(b)
by the evolution of the distribution of the number of nearest
neighbors. A perfect hexagonal tiling would correspond to six
nearest neighbors for each cell. The distributions of Fig. 2(b)
stabilize after roughly 20 mm of growth, with a high number
of topological defects that are mainly instances of five and
seven nearest neighbors. The area marked with a white square
in Fig. 3(a) is enlarged in Fig. 3(b) at three different times (1.5,
6.7, and 14.1 h after the beginning of solidification) and the
number of first neighbors is shown for each cell. Comparing
the two first images confirms the decrease of disorder between
transient and steady state. The comparison of the last two
images reveals that, in spite of a similar global distribution
of number of nearest neighbors, the local topology of the
pattern still evolves, indicating permanent array dynamics.
Such disordered hexagonal arrays are typical from solidified
cellular patterns [42]. Even if the cubic symmetry of the
interfacial energy anisotropy affects the stability of the pattern
[34], in the cellular regime, cell shape does not reflect the
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FIG. 3. (a) Global view of the interface at t = 13.9 h (L = 50 mm), for V = 1 μm/s and G1 = 19 K/cm, with the corresponding FFT
image highlighting the high spatial array disorder. (b) Enlarged view of first neighbors in the area marked with a white square in (a) at different
times: 1.5 h (5.4 mm), 6.7 h (24.1 mm), and 14.1 h (50.8 mm). (c) Enlarged view of area marked with a black square in (a) at different times
t0 = 14.3 h, t0 + τ/4 = 14.6 h, t0 + τ/4 = 14.8 h, and t0 + τ = 15.1 h (oscillation period τ = 48 min).

crystal anisotropy and the overall spatial ordering corresponds
to the natural hexagonal structure of an isotropic self-similar
space filling structure. Defects originate in the first stages
of pattern formation and in interactions of the pattern with
subboundaries, crucible boundary, or other defects; a high
pattern dynamics contributes to maintain the disorder. Similar
behaviors can be found in other typical hexagonal patterns, as
for example in Bénard-Marangoni convection [43].

2. Oscillatory behavior

Oscillating cells are characterized by a periodic variation
of the apparent surface area of each cell (see the Supplemental
Material for videos [41]). The experiment in Fig. 3(a), started
from rest at V = 1 μm/s and G1 = 19 K/cm, is the most

illustrative one: oscillation starts during transient, affects the
whole pattern, and is sustained during the entire solidification.
It will therefore be used as a representative reference and
many characterizations will be performed on this experiment.
In these conditions, each cell in the whole cellular pattern
oscillates. The central area marked with a black square in
Fig. 3(a) is enlarged in Fig. 3(c). In the four-image sequence,
three different cells are marked with yellow dotted lines to
illustrate the variation of their apparent cell surface as a
function of time. Since the center-to-center distances (primary
spacing) remain constant, grooves between cells oscillate
laterally. Cell surface areas increase and decrease periodically.
In Fig. 3(c), τ represents the oscillation period.

The oscillation periods for all oscillating patterns measured
in our experiments are gathered in Table I. Measurements
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TABLE I. Experimental conditions (thermal gradient G, pulling velocity V ) for which oscillating patterns were observed, and corresponding
period of oscillation τ . The last two lines correspond to experiments with pulling rate jumps from V1 to V2 performed after 30 mm of pulling;
solidification was then continued for 30 mm at V2.

G V τ

(K/cm) (μm/s) (min)

19 0.5 124 ± 7
19 0.75 76 ± 12
19 1 48 ± 2
19 1.5 26 ± 3
12 0.5 160 ± 22
19 V1 = 1 (oscillating) → V2 = 8 (nonoscillating) 44 ± 4
19 V1 = 0.35 (planar front growth) → V2 = 0.75 (oscillating) 76 ± 5

show that the oscillation period τ is remarkably uniform
throughout the entire array, in agreement with spatially
extended phase-field simulations [36]. Previous phase-field
simulations also revealed that this period seems unaffected by
the spatial disorder of the pattern so that it depends only on
the experimental control parameters. Additional simulations
presented later in Sec. III B 3 (Fig. 12) also show that the
oscillation period depends predominantly upon the growth
velocity.

The oscillation periods found for extended 3D samples
are one order of magnitude higher than those found in thin
samples (1 < τ < 10 min) [28], which is expected from the
differences of experimental control parameters. In both cases,
however, the period is significantly larger than the solutal
diffusion time τd as τ/τd > 7 in our case and τ/τd > 4 for
confined samples (τd = D/V 2, where D is the solute diffusion
coefficient in the liquid equal to 270 μm2/s). Oscillation has
been observed for only one pulling rate at G2 = 12 K/cm, all
the other measured points being at G1 = 19 K/cm, so that it
is not possible to analyze the dependency of the period with
the thermal gradient. The experimental period as a function
of the pulling rate is represented in Fig. 4; it can be fitted
by the power law τ = 2.8 × 103 V −1.5, with τ in seconds
and V in μm/s, for G1 = 19 K/cm. Despite the different
alloys and geometries, the exponent and prefactor obtained
are both similar to those found in breathing modes in thin
samples [28]. In thin samples, the confinement imposes cells

FIG. 4. Oscillation period τ as a function of pulling velocity V

(G1 = 19 K/cm): �, experimental; - -, fit by the power law t =
2.8 × 103 V −1.5, with τ in s and V in μm/s.

to arrange in a row. Yet, for a sample thickness above ≈25 μm,
tip shapes are no longer ribbonlike (2D) but actually 3D
[12], meaning that thin samples are not exactly 2D but rather
represent a “confined-3D” configuration. The Péclet number
(Pe = λV/D) is used to compare the cell size (λ) to the solutal
length (D/V ). In both thin and 3D samples, interactions are
limited to first neighbors since Pe ≈1 (0.5 < Pe < 1.5 in
our experiments). This probably justifies the similar power
law exponent. A possible interpretation for the agreement on
the prefactor could be attributed to the nature of the solvent
(succinonitrile in both cases). Since experimental data for other
alloys is not available, it is currently not possible to check this
interpretation.

3. Local oscillation coherence

Examples of surface area measurements as a function of
time, for V = 1 μm/s and G1 = 19 K/cm, are given in Fig. 5
that illustrate different possible regimes of oscillation and
synchronization among neighboring cells. The coexistence of
these different kinds of oscillation modes leads to complex
dynamics in the 3D samples. In Fig. 5(a), we can see a
“standard” oscillation, adopted by many cells on long duration,
which corresponds to a periodic and regular oscillation of the
cell area between its minimal and maximal values. The average
area remains constant, as do the oscillation period and phase
value. In Fig. 5(b) an example is given of oscillation with
tip-splitting events occurring in the course of cell oscillation.
Two types of tip-splitting events are illustrated. The first
type, following the circles ( ) in Fig. 5(b), is illustrated in
Figs. 6(a)–6(d) (at about t = 7 h of growth): the parent cell [
of Fig. 5(b)] splits into two represented by squares ( and �),
the full one dominates ( ) and oversteps the empty one, and
oscillation resumes unaffected. The second type, following
the squares ( ) in Fig. 5(b), is shown in Figs. 6(e) and 6(f) (at
t = 10 h of growth): after splitting, the two new cells survive
and enlarge; they oscillate with the same phase at the beginning
as a doublet element in the array until they decouple and insert
as separate elements in the array, which is marked by phase
shifting. An example of phase shifting not associated to tip
splitting, but rather to a change of neighbor synchronization,
is given in Fig. 5(c). The cells marked with triangle ( ) and
circle ( ) oscillate with their own phases, while the cell noted
with diamond ( ) first oscillates in phase with the circles ( )
and then shifts to oscillate in phase with the triangles ( ).
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FIG. 5. Different oscillation behaviors observed experimentally for V = 1 μm/s and G1 = 19 K/cm started from rest. (a) Standard
oscillation. (b) Oscillation with tip-splitting events: the first tip splitting of the parent cell ( ) around 7 h leads to two cells ( and �)
among which only one survives ( ); this cell is also subject to a tip splitting after about 10 h, and the two cells survive, oscillate in phase for
some time before shifts out of phase and is eventually eliminated. (c) Oscillation with phase shift: the cell marked with is initially in phase
with before shifting its phase to synchronize with .

FIG. 6. Examples of characteristic tip-splitting events: (a)–(d) tip splitting with overgrowth of one of the “daughter” cells by its “sister”;
(e),(f) tip splitting where the two “daughters” survive and grow (t0 = 6.89 h, V = 1 μm/s and G1 = 19 K/cm).
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FIG. 7. (a) Enlargement of the square area with white border of Fig. 3(a). Some cells are tagged to identify their instantaneous
phases on the unit circle presented in (b); the same color of tag denotes that phases are close (L = 56 mm, t = 15 h, V = 1 μm/s, G1 =
19 K/cm).

During the process of phase shift, no change of first neighbor
is observed for the cell noted with diamonds ( ).

One of the striking features of the 1D oscillating patterns
reported by Georgelin and Pocheau [28] is the systematic phase
opposition observed between adjacent cells, implying a long-
range spatiotemporal coherence. The situation is significantly
different in our 2D patterns that exhibit a high level of
topological disorder. Similarly, Perrut et al. [35] report the
observation of a spatially incoherent mode of oscillation in
disordered rodlike eutectic pattern; no coherent oscillation
mode was found. The existence of long-range coherence may
thus be attributed to the forced spatial ordering of cells in a
1D row in thin sample experiments. Yet, even if the patterns
in our experiments do not display long range order, small
areas presenting a square or a hexagonal local arrangement
may exhibit local oscillation coherence, as exemplified by
regions marked by the dashed red lines in Fig. 3(a). Their size,
however, is always limited to a few cells. Next, we examine
the spatiotemporal coherence of the oscillation, in relation to
the characteristics of the pattern order.

The surface areas Ai(t) of each cell in the white-bordered
square region of Fig. 3(a), enlarged in Fig. 7(a), have been
analyzed to extract the individual instantaneous phases θi(t) =
2πt
τi

+ ϕi , as described in Sec. II C. About 50 of these
pseudoinstantaneous phases are plotted on the unit circle
[Fig. 7(b)] for a solidification time of t = 15 h (V = 1 μm/s;
G1 = 19 K/cm). If we extend the analysis to include about
350 cells, the unit circle is randomly filled. This large scatter of
phases on the circle indicates the absence of global oscillation
coherence. Moreover, adjacent cells do not present systematic
phase relation. To illustrate this, we focus on the group of cells
labeled in color in Fig. 7(a), and identified by their numbers
on the unit circle of Fig. 7(b). Let us consider the cell 1 and
see its phase relations with its neighbors: cell 1 oscillates in
phase with 10, in phase opposition with 47, in quadrature
of phase with 6 and 9, in nearly quadrature of phase (77◦)
with 41, and with a phase difference of 150° with 2. This

lack of coherence is related to the intrinsic lack of order of
the extended patterns comparable to liquid structures with
numerous topological defects. Phase-field simulations have
shown that, if no specific order is imposed, the pattern displays
the same spatial disorder and lack of oscillation coherence as in
experiments, whereas long-range coherence sustained for long
duration over the entire array may be obtained when starting
from a perfect hexagonal arrangement, or enforcing a perfect
hexagonal pattern [26,36].

Experimentally, we observed the synchronization of neigh-
boring cells in a few areas where local spatial ordering was
maintained long enough. For example, cells 1–7 of Fig. 8(a)
display a hexagonal order. The variation of their apparent areas
reveals three groups of cells (1-2-3, 4-5-6, and 7) organized
as three subarrays that oscillate with the same period, with all
the cells of the same subarray oscillating in phase (Fig. 9).
Phase shifts between the three subpatterns are of the order
of ±120◦, as seen in Fig. 8(b), where the surface area of
one cell of each group is represented as a function of time.
In spite of its local character, this configuration is similar
to the synchronization observed in the numerical simulations
starting from a perfect hexagonal array, thus confirming that
coherence directly results from the hexagonal ordering [26,36].
A qualitatively similar hexagonal mode was found in earlier
numerical studies, albeit in the high velocity limit or with a
two-sided phase field model [34]. Considering the equivalence
of the three subarrays in the oscillation, phase shifts between
the three subarrays of cells are expected to be ±120◦ but
measurements reveal that phase shifts are somewhat different
from these ideal values, even if this does not modify the
fundamental dynamics of the three subarrays. In Fig. 9, cells
1–3 oscillate in phase; 4–6 also oscillate in phase but with
a ≈149◦ phase shift with respect to the first group; while
the central cell 7 oscillates with a ≈−130◦ phase shift with
respect to the first group. The origin of the departure of phase
shifts from the ideal value of 120° is in part disorder. In
a perfect hexagonal tiling, one would expect by symmetry
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FIG. 8. (a) Interface area presenting a locally hexagonal order formed by cells 1–7. (b) Apparent areas of cells of the three subarrays

distinguished in the hexagonal structure formed by cells 1–7 ( , cell 3; , cell 4; and , cell 7) (L = 56 mm, t = 16 h, V = 1 μm/s,
G1 = 19 K/cm).

that each cell would play the same role in the oscillations,
thus exhibiting similar oscillations periods and amplitudes. In
practice, disorder induces local variations of primary spacing,
making this ideal situation out of reach. Moreover, previous
phase-field simulations have shown that perfect hexagonal
patterns also exhibit a second oscillation mode of longer
period that affects the oscillation amplitudes and phase shifts
between the three subarrays [36]. The phase shifts among
the three groups of cells oscillate around 120◦ with a much
longer period (e.g., with a period of about 7 h for V = 1 μm/s
and G = 13 K/cm in Fig. 13 of Ref. [36]). The fact that this
secondary oscillation requires a sustained perfect hexagonal
pattern over a long time prevents its observation in the current

FIG. 9. Instantaneous phases of the cells tagged in Fig. 8(a)
reported on the unit circle (t = 16 h, V = 1 μm/s, G1 = 19 K/cm).
The same tag color indicates that cells oscillate in phase.

experiments. The relative importance of topological disorder
and of this long oscillation mode is difficult to evaluate,
as experimental patterns are far from perfectly hexagonal;
however, these two elements offer an explanation for measured
phase shifts differing from ±120◦.

A detailed analysis of the surrounding area of these locally
ordered patterns shows that this coherence is limited to first
neighbors, as illustrated in Fig. 8(a): cells that are in phase
with one of the three groups of the hexagon are tagged with
the same color, phase shifts from one to another of these
two groups are identified by bicolored numbers, all grey
tags correspond to other values of phases. Most of the cells
surrounding the hexagon formed by cells 1–7 have phases
tagged in grey, corresponding to none of the three subarrays
of the hexagon. The coherence does not extend to the hexagon
formed by cells 3, 6, 9, 10, 11, 12, and 20 (dotted lines)
even if some cells are shared. For instance, since cell 9 is
adjacent to cells 3 and 6, it should be in phase with cell 7
which is not the case: it oscillates in phase with 1, 2, and
3. The instantaneous phases of these cells, placed on the
unit circle in Fig. 9, show that coherence is lost beyond first
neighbors.

Another example of synchronization is illustrated in Fig. 10,
this time in a square pattern: cells 10, 54, and 57 of Fig. 10(a)
oscillate together, in phase opposition with the other group
(43, 48, 55, 56). The surface area of one cell of each group is
represented as a function of time in Fig. 10(b). In the extended
2D patterns where the natural underlying order is mainly
hexagonal, we can attribute the appearance of square order to
the particular coupling between cells and grain subboundaries
that occurs during the first stages of cellular pattern formation.
Groups of cells in contact with a grain subboundary arrange
themselves perpendicularly to this subboundary, so that at this
stage, many cells situated on one side of the subboundary are
facing a cell on the other side, like in a square tiling [44]. Such
an organization along subboundaries can be seen for example
in Fig. 10(c).
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FIG. 10. (a) Oscillation in a regular square structure for V =
1 μm/s and G1 = 19 K/cm. (b) Cells 43, 48, 55, and 56 oscillate in
phase; as do cells 10, 54, and 57; and the two groups oscillate in phase
opposition as illustrated by the apparent surface areas as a function
of time for one cell of each subarray ( , cell 54; , cell 43). (c) Top
view of the interface at t = 2.3 h (8.3 mm) where the subboundaries
are visible with cells arranged perpendicular to them.

B. Occurrence and inhibition of oscillation

1. Parameter range of occurrence

The oscillation mode was observed in a narrow range of
pulling rates: from 0.5 to 1.5 μm/s for G1 = 19 K/cm, and at
0.5 μm/s for G2 = 12 K/cm. This range is relatively close
to the critical velocity Vc, corresponding to the transition
from planar to cellular fronts, which is equal to 0.25 μm/s
for G1, and 0.16 μm/s for G2 [40,45]. The oscillation modes
are bounded in the velocity range 2 < V/Vc < 6, which is in
good agreement with the results obtained for thin samples at
V/Vc ≈ 4.5 [28].

Oscillation is not always observed during the entire ex-
periment. The entry named “Oscillation start” of Table II
characterizes the beginning of noticeable oscillation, which
always occurs during the initial transient while the interface
velocity increases. Using the side-view observation of the
interface and analyzing the interface motion [40], it is possible
to estimate the corresponding instantaneous interface velocity
(Vi). The range of primary spacing measured at this time is
also given. (The drift velocity Vd data in each column, as well
as the second table entry, “Oscillation stop in the left side,”

are explained and discussed later.) The last entry, “Oscillation
end,” indicates whether oscillation continues until the end of
the experiment (label “end” in column L) or ceases while
pulling, in which case the value in column L indicates the
solidified length at which oscillation stops; interface velocity
Vi and primary spacing λ are also given. In the following
subsections, we discuss conditions and events that either
promote or inhibit those transient or sustained oscillatory
modes. (Thus, additional entries in Table II are discussed in
further detail in Sec. III B 4, pertaining to oscillation inhibition
by pattern drift.)

2. Link to tip-splitting events

In the thin sample experiments of Georgelin and Pocheau
[28], tip splitting or disappearance by overgrowth inhibited
oscillation: two adjacent cells of an overgrown cell tended
to restabilize in a doublet structure and tip-splitted cells also
turned to stable doublet structures, leading to the conclusion
that phase defects inhibit the oscillatory instability. This
behavior is not observed in our extended 2D pattern for which
the spatial reorganization is strong and the associated phase
shifting is regularly observed, and where local doublets are not
stable (see Fig. 5 and its discussion in Sec. III A 3). Multiplet
growth modes were observed in the DECLIC-DSI, but not in
the range of control parameters yielding cell oscillations.

3. Link to individual cell stability

Previous phase-field simulations have shown that oscilla-
tory modes of cells in a hexagonal arrangement occur for
narrow ranges of primary spacings close to the limits of
stability of individual cells [26,36]. Depending on control
parameters, the stable spacing branch can be continuous
or exhibit a stable spacing gap. Similarly as described in
[36], we calculated the stability range for a single cell in
a hexagonal pattern for pulling velocities V = 1.0 and 1.5
μm/s and various temperature gradients, using the recently
reassessed solute partition coefficient for succinonitrile -
0.24 wt % camphor, k = 0.07 [45]. Other parameters of the
phase-field simulations are liquid solute diffusion coeffi-
cient D = 270 μm2/s; interface Gibbs-Thomson coefficient
� = 6.478 × 10−8 K m; liquidus slope mL = −1.365 K/wt %
camphor; surface tension anisotropy ε4 = 0.011. The finite
difference grid spacing �x/W = 1.2, and the diffuse interface
width is W/d0 = 198 for V = 1.0 μm/s and 160 for 1.5 μm/s,
with d0 = �/[mLC0(1 − 1/k)] the interface solute capillarity
length. Further details of simulations procedures are given in
[36].

The resulting stability maps for cells in a hexagonal
pattern appear in Fig. 11, represented as the stable cell tip
undercooling � as a function of the primary spacing λ. The
opening of the stable spacing gap appears for G ≈ 25 K/cm
for V = 1.0 μm/s [Fig. 11(a)] and G ≈ 31 K/cm for V =
1.5 μm/s [Fig. 11(b)]. This stable λ gap narrows down and
ultimately closes when decreasing the temperature gradient,
when increasing the growth velocity or for high interfacial
anisotropies [20]. As described in [36], oscillations occur
toward the high-λ end of the leftmost (low-λ) stable branch,
at both limits of the rightmost (high-λ) branch in the case of
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TABLE II. Evolution of the characteristics of the oscillating patterns between the onset of oscillation and the end of experiment or oscillation
cessation (G1 = 19 K/cm). The characteristics may be given for the whole interface or they may refer to specific regions of the interface (left
or right), if different behaviors were noted between the two sides of the interface. In that case, oscillation ceases prematurely on the left side
for characteristics given in the central column. In the entry “Oscillation end,” we refer either to the end of experiment (“end”) or to a specific
value of pulled length if oscillation ceases before the end of experiment. Oscillation start and stop times are denoted by the pulled length L at
which they occur (equivalent to time: L = V t). Vi corresponds to the instantaneous interface growth velocity; λ is the primary spacing and Vd

is the average drift velocity of the pattern (component of the cell tip growth rate normal to the optical axis). In the last entry, some values are
presented in italics because there is no longer oscillation.

Interface Oscillation start Oscillation stop in the left side Oscillation end

V (μm/s) zone L (mm) Vi (μm/s) λ (μm) Vd (μm/s) L (mm) Vi (μm/s) λ (μm) Vd (μm/s) L (mm) Vi (μm/s) λ (μm) Vd (μm/s)

0.5 Whole 9 0.49 259 ± 51 0.008 End 0.50 269 ± 57 0.009
0.75 Left 10 0.74 213 ± 39 0.010 31 0.74 245 ± 44 0.015 End 0.75 (298 ± 55 0.022)

Right 206 ± 41 0.004 225 ± 45 0.005 312 ± 49 0.005
1 Whole 6 0.92 225 ± 50 0.007 End 1.00 280 ± 41 0.007
1.5 Left 6 1.44 196 ± 34 0.060 20 1.47 199 ± 34 0.064 30 1.49 (203 ± 31 0.065)

Right 204 ± 43 0.017 222 ± 51 0.023 224 ± 42 0.039

existence of a gap, as well as in the immediate vicinity of the
stability gap opening.

Thus, we also simulated breathing oscillations of three
subarrays of cells in a hexagonal arrangement in the vicinity
of the stability gap opening, for set primary spacings and
different temperature gradients (see [36] for further details).
These simulations are represented with diamond symbols
in the insets of Fig. 11, with symbol size representing the
oscillations amplitude. Figure 12 summarizes the amplitudes
(a) and periods (b) of the resulting breathing oscillations.
Figure 12(b) clearly shows that the oscillation period depends
only upon the growth velocity V , since variations of a few
minutes are of the order of the accuracy on the fitting of the
period. Figure 12(a) shows that, in the vicinity of the stability
gap, the amplitude of oscillations increases with G, i.e., it
increases when getting closer to the gap opening. For a given
temperature gradient, the amplitude also decreases when the
primary spacing increases. Moreover, as expected from the
difference in G at which the stability gap opens, oscillations
occur within a lower temperature gradient range for a lower
velocity.

The two gray background zones in Fig. 12(a) show
amplitudes that do not yield breathing mode oscillations. When
the oscillation amplitude is lower than 0.1, the oscillations
are essentially noisy, showing little to no synchronization
between the three cell groups. On the other hand, when the
oscillation amplitude gets higher than 0.8, the oscillations
ultimately lead to the elimination of one of the cells. Cell
elimination is expected as the amplitude gets closer to 1, since
an oscillation of constant amplitude equal to 1 corresponds
to the minimum cell area Ai, min tending to zero. Therefore,
oscillation of cells is expected to yield breathing modes when
the oscillation amplitude is between 0.1 and about 0.8.

For the experiment at 1.5 μm/s and G1 = 19 K/cm, os-
cillation ceases before the front reaches the applied pulling
velocity. This may be qualitatively understood from the results
of Figs. 11 and 12(a). When the velocity increases from
1 to 1.5 μm/s, the stability gap opening occurs for higher
gradients (Fig. 11) and, for a given gradient, the amplitude of
oscillations tends to zero [Fig. 12(a)]. The disappearance of
oscillation can then be attributed to the progressive increase of
velocity during transient growth. A progressive decrease of the

FIG. 11. Stability maps for a quarter of cell in a hexagonal pattern for a pulling velocity V = 1 μm/s (a) and 1.5 μm/s (b), and different
temperature gradients (shown with different colors and symbols, with steps of 2 K/cm, and 1 K/cm in the vicinity of the stability gap), plot as
tip undercooling � of the stable cells vs primary spacing λ. The thick yellow line is a schematic illustration of the stability limit in the (
,�)
plane. Zoomed-in insets mark configurations explored for oscillatory breathing mode oscillations (Fig. 12).
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FIG. 12. Breathing mode oscillations amplitude (a) and period (b)
vs temperature gradient G for different cases represented in the insets
of Fig. 11. Gray background zones in (a) represent noisy oscillations
exhibiting no neighbor synchronization for low amplitudes (�0.1),
and configurations unstable with respect to elimination and/or tip
splitting for high oscillation amplitudes (�0.8).

thermal gradient would have a similar effect, but for such very
low pulling rates, the impact of latent heat rejection—which
is the most evident origin of thermal gradient decrease—is
very weak. Furthermore, while oscillations in the current
simulations only appear for G > 21 K/cm at V = 1 μm/s,
only small additional uncertainties on material parameters or
on the temperature gradient would be sufficient to predict
steady oscillations at V = 1 μm/s and no oscillations for
V = 1.5 μm/s for a given temperature gradient (e.g., here
for G ≈ 22 K/cm instead of the estimated experimental value
19 K/cm).

In the experiments, the average primary spacing that
marks the onset of oscillation decreases when the interface
velocity increases, following the dependence upon V of the
spacing stability gap (Fig. 11). For all pulling rates, the
range of measured spacings is �λ/λ ≈ 0.2 during the whole
experiment (�λ: standard deviation of a primary spacing
distribution). In contrast with simulations of perfect hexagonal
patterns [Fig. 12(a)], experimental analyses do not reveal
a significant dependence of the amplitude of oscillation on
primary spacing, as illustrated in Fig. 13(a): the normalized
oscillation amplitude is ≈0.2 regardless of the spacing (≈250
cells measured at V = 1 μm/s). Table II shows that between
the onset of oscillation and the end of experiment (or the
cessation of oscillation), the average spacing increases from
4 to 50% depending on pulling velocities, the maximum
variation of 50% being obtained for the experiment at V =
0.75 μm/s. To test the sensitivity of oscillation amplitude to
these large primary spacing variations, the amplitudes have
been measured in a domain containing about 50 cells during
four successive time sequences, corresponding to different
distributions of primary spacings [Fig. 14(a)]. In spite of
the large increase of the primary spacing, all cells oscillate,
and no significant difference of oscillation amplitudes is
noticed. A slight decrease of oscillation amplitude can be
evidenced by averaging all the data points by primary spacing
classes of 10 μm [Fig. 14(b)] but, considering the strong
dispersion observed in Fig. 14(a), the slope is too low to be
conclusive.

The independence of oscillation amplitude with primary
spacing is in sharp contrast with the simulations for perfect
hexagonal patterns in Fig. 12(a), clearly showing a decrease
of amplitude as the spacing increases. This is an indication
that the sustained spatial reorganization in spatially extended
samples may contribute to homogenizing the oscillation
amplitude throughout the sample. To test this interpretation,
we plot in Fig. 13(b) the oscillation amplitudes as a function
of the primary spacing for the 51 cells in the spatially
extended simulation for k = 0.21, ε4 = 0.007, V = 1 μm/s,
and G = 28 K/cm from [36], which exhibits a wider range
of spacings. The width of primary spacing distribution �λ/λ

is similar to the experimental one (≈0.2) and the average

FIG. 13. Distribution of normalized oscillation amplitudes vs individual primary spacing for (a) experimental normalized amplitudes
reported for 250 cells (measured between 13.5 and 16.5 h of solidification, V = 1 μm/s, G1 = 19 K/cm); (b) 3D phase field simulation for 51
cells between 2 and 10 h of solidification (spatially extended simulation with k = 0.21, ε4 = 0.007, V = 1 μm/s, G = 28 K/cm [36]).
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FIG. 14. Long time evolution of the primary spacing observed in the experiment at V = 0.75 μm/s, used to extend the analysis performed
in Fig. 13: (a) the experimental normalized oscillation amplitudes as a function of primary spacing are reported for ≈50 cells, for four different

time intervals, namely : 4.1–8.5 h; : 8.5–13.7 h; : 13.7–16.3 h; ◦: 16.3–21.9 h. In (b), all data points are averaged by classes of primary
spacing of 10 μm width to evidence the weak dependence of the oscillation amplitude upon primary spacing (V = 0.75 μm/s, G1 = 19 K/cm).

of normalized amplitudes of area oscillation is ≈0.2, with
no dependence on the spacing, also like in the experiments.
Thus, while sustained oscillations in a perfect hexagonal
arrangement typically exhibit a variation of oscillation period
and amplitude with the primary spacing [Fig. 12(a)], the
overall oscillation of cells in a large pattern, accompanied
with constant rearrangement of the pattern and evolution of
spacings, exhibits little dependence of the oscillation period
and amplitude upon the spacing distribution in the sample. It is
also interesting to observe that all amplitudes in experiments
and in the spatially extended simulation of Fig. 12 show a
highest density around an amplitude of 0.2, which was found
from Fig. 11(a) to be about the lowest amplitude at which
breathing modes may be observed. This may indicate that
higher amplitude oscillations in Fig. 14(a) may be metastable,
and that the few data points at higher amplitudes in Fig. 13(a)
may correspond to transient oscillatory states (e.g., just before
or after tip-splitting events).

Additionally, a noteworthy discrepancy between simula-
tions and experiments pertains to selected spacings that are
larger in experiment than simulation (see, e.g., Fig. 13).
This discrepancy was already pointed out in previous articles
[26,36]. It may be due in part to uncertainties on alloy
and control parameters (e.g., solute diffusion coefficient,
interfacial anisotropy, or temperature gradient). Several of
those parameters have thus been reassessed (thermal gradient
G [40]) and remeasured (partition coefficient k [45]). However,
the revised values have not up to now enabled us to resolve
the discrepancy between simulated and observed spacings. It
should be noted, however, that the range of experimentally
measured spacings at V = 1 μm/s and G1 = 19 K/cm, i.e.,
from about 240 to 340 μm in Fig. 13(a), falls within the
continuous stable branch for hexagonal ordered patterns in
Fig. 11(a). Since the simulations to explore the array stability
have been carried out for perfectly ordered hexagonal patterns,
it is possible that a stable pattern within a larger spacing range
encompassing the experimentally observed spacings could
develop oscillations in the presence of spatial disorder. Addi-
tional factors could be critical in the spacing selection process.

The history of the sample, with a pattern stabilizing higher
within the spacing stability range due to transient thermal
history [40], should be considered, as well as the influence
of solid-state solute diffusion. Furthermore, experiments can
depart in several aspects from the ideal case of a perfectly
oriented and well-ordered single crystal modeled in phase-field
simulations. Experiments include imperfections that can help
destabilize the solid-liquid interface during the early stages of
morphological instability, thereby affecting spacing selection,
slight deviations of the 〈100〉-growth direction from the
pulling direction that induces a drift of the microstructure,
or subgrains and concomitant subboundaries, resulting from
the polygonization of the initially single crystal seed, which
promote square ordering of cellular arrays. Those effects and
others could cause dynamically selected cell spacings to be
larger in the experiments than the simulations and warrant
further investigation. Despite this quantitative discrepancy,
current phase-field simulations reproduce the main salient
features of the oscillatory modes.

4. Inhibition due to pattern drift

An additional interesting observation, detailed in Table II
and observable in videos provided in the Supplemental
Material [41], is the fact that the part of the interface
affected by oscillation may evolve during pulling. For V = 1
and 0.5 μm/s, once oscillation starts, it affects the whole
interface for the remainder of pulling with all cells oscillating.
For V = 0.75 μm/s [see Supplemental Material [41] and
Fig. 15(a)], oscillation initially affects the whole interface
but after about 31 mm of pulling (≈11.5 h), cells on the left
side of the interface stop oscillating, with characteristics given
in the second entry of Table II [labeled “stable region” in
Fig. 15(a)], while the oscillation continues on the right side
[labeled “oscillating region” in Fig. 15(a)]. The same kind
of situation is observed for V = 1.5 μm/s [see Fig. 16(a)],
with oscillation stopping on the left side of the interface
after about 20 mm of pulling (≈3.7 h); the complete stop of
oscillation, on the right side of the interface, after ≈30 mm
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FIG. 15. (a) Top view of the interface during steady-state growth (t = 15 h; L = 40.5 mm) for V = 0.75 μm/s and G1 = 19 K/cm. (b)
Evolution of the primary spacing as a function of the pulled length (L) for the two regions identified in (a): stable region (�); oscillating region
(♦). (c) Trajectories of the cells in the boxed areas of (a) between 8.5 h (23 mm) and 16 h (43 mm).

FIG. 16. Top view of the interface at t = 2.3 h (L = 12 mm) (a) and 10.8 h (58 mm) (b), with V = 1.5 μm/s and G1 = 19 K/cm. In (b)
the arrows represent the trajectories of the cells followed from 6 to 11 h of solidification (32–59 mm), and three different zones are zoomed 2.5
times to evidence the difference of morphology between the cells of the left side, which are clearly tilted, and the cells of the right side.
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of pulling could be attributed to the increase of the growth
velocity that reaches the limit of possible oscillating conditions
(close to 1.5 μm/s) as previously discussed in Sec. III B 3. In
the following paragraphs, we determine the source of early
oscillation inhibition on the left part of the interface for the
experiments at V = 0.75 and 1.5 μm/s.

First, we analyze possible differences of primary spacing
in the two regions of the interface. In Fig. 15(b), the primary
spacing evolution is characterized in the two interface regions
for the experiment at 0.75 μm/s; the dashed line marks the
end of the oscillation on the left side. No significant difference
appears in the primary spacing distributions between the two
interface regions, meaning that the difference of oscillating
behavior does not come from primary spacing differences.

The key to understanding the origin of oscillation inhibition
in these two experiments is given by the observation of
the pattern at V = 1.5 μm/s once the microstructure is well
developed: in Fig. 16(b), a clear morphological difference
is observed between the left region that displays inclined
structures and the right region that does not. Inclined structures
are due to a misalignment between the preferred growth
direction 〈100〉 and the pulling (thermal) axis. In practice, the
growth direction changes from the thermal gradient direction
at low velocity to the closest 〈100〉 direction when pulling
rate increases [46,47], meaning that the growth direction will
be misoriented with respect to the pulling (thermal) axis if
no 〈100〉 direction is perfectly aligned with this axis. Inclined
structures are particularly well revealed by the pattern drift that
they induce in the lateral direction (i.e., in the plane normal to
the optical axis). Three areas or subgrains are then identified
corresponding to different drift directions as indicated by
the white arrows in Fig. 16(b). On the other hand, the right
side of the interface presents better-oriented structures, which
oscillate for long periods of time (i.e., until the front reaches a
critical velocity that inhibits oscillations, as discussed before).
For V = 0.75 μm/s, no obvious microstructural difference is
observed between the two interface regions, since the effects of
misorientation decrease when the pulling velocity decreases.
Trajectories of cells both in the stable and oscillating regions
framed in white in Fig. 15(a) are represented for a duration of
7.5 h in Fig. 15(c): a collective drift caused by a misorientation
between the crystal 〈100〉 and the pulling axis is evidenced in
both regions but its amplitude is much higher in the stable
region, witnessing a higher drift velocity in this region.

Based on these observations, we systematically character-
ized the drift in all experiments. The average values of drift
velocities are given in Table II. At 0.75 and 1.5 μm/s, the
left side of the interface is systematically marked by higher
drift velocities as compared to the right side, meaning that the
misorientation of the left side is higher than that of the right
side. At least one vertical subboundary splits the interface in
these experiments, which is not the case for other velocities.
Moreover, the drift velocities in the experiments at 0.5 and
1 μm/s are low, comparable to the ones in the right side of
the interface of the experiment at 0.75 μm/s. The origin of
the subboundaries is not clear: we started the experimental
campaign with a single crystal, with a 〈100〉 direction aligned
with the pulling axis as closely as possible, and only the
very top of the solid seed was remelted. We may however
suggest dislocation reorganizations into subboundaries, and

thus seed crystal polygonization, due to successive thermal
cycles, especially considering that the experiments at 0.75
and 1.5 μm/s have been performed near the end of the
experimental campaign, several months after the experiments
at 0.5 and 1 μm/s.

We now analyze whether the misorientation itself, or the
resulting drift, is at the origin of the inhibition of oscillations.
If inhibition was directly due to misorientation, transient
oscillation in the left part of the interface at V = 0.75 and
1.5 μm/s would not occur, as the misorientation is a fixed
characteristic of the crystal. A more plausible hypothesis is that
the resulting drift inhibits oscillation when a threshold of drift
velocity is reached, and that this threshold depends on pulling
velocity. Drift and oscillation have their own dynamics, but the
oscillation is based on a subtle evolution of the concentration
field at the tip of the cell and adding a drift could affect the
dynamics of oscillation by modification of this concentration
field, and eventually inhibit it if the drift is too important.

On this basis, a direct approach is to compare the dynamics
of oscillation and drift. A first criterion can be built by
defining the characteristic times of these two phenomena.
For oscillation, the natural timescale is the oscillation period
τ , and for drift, a characteristic time τd can be defined as
the time necessary for a cell to glide the most characteristic
distance in the array, namely the cell width (or the primary
spacing), λ/Vd . In Fig. 17, the ratio τd/τ is reported for the
different data sets given in Table II. A possible threshold at a
ratio τd/τ ≈ 3 appears, below which oscillation is inhibited.
Below this threshold, the drift velocity becomes too high (i.e.,
τd gets too low), and the drift dynamics disturbs and stops

FIG. 17. Ratio of the characteristic times of drift τd and oscillation
period τ as function of growth rate (Vi), for the different data sets
given in Table II: the filled triangles ( ) correspond to oscillating

conditions whereas the empty triangles ( ) correspond to oscillation
inhibition. Diamonds ( ) correspond to nonoscillating conditions,
using the oscillating period measured in the same area before the
oscillation stops. The cross (x) corresponds to the oscillation stop
at V = 1.5 μm/s in the right side of the interface, explained by the
analysis of the stability gap and its relation to oscillation (cf. Fig. 11)
(G1 = 19 K/cm).
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FIG. 18. Analysis of the characteristics of the cells during the growth stage at V = 1 μm/s after a jump of pulling rate from V = 8 μm/s.
Maps of (a) drift direction and (b) drift velocity of each cell, and (c) primary spacing, with dashed lines indicating frontiers between regions
of different drift directions, indicated by arrows (length of arrows not proportional to drift velocity). V = 1 μm/s, G1 = 19 K/cm, t = 4.3 h,
L = 41.8 mm (30 mm at 8 μm/s + 11.8 mm at 1 μm/s).

the oscillation dynamics. Another possible criterion can be
obtained by considering the oscillation of the growth velocity
as reported by Georgelin and Pocheau [28], and comparing the
amplitude of the velocity oscillation in the pulling direction to
the drift velocity (normal to the pulling): these two components
correspond to small deviations from the ideal situation of
a stable cell growing parallel to the pulling velocity. For a
ratio above unity, oscillation dominates, whereas it is inhibited
below unity. Practically, top-view observations do not enable
us to measure the amplitude of the velocity oscillation, and
side views of the entire pattern do not allow us to isolate
such velocities for individual cells. However, if we consider
the data reported by Georgelin and Pocheau (Fig. 3 of [28]),
the amplitude of oscillation of growth velocity in the pulling
direction is of the order of a few percent of the pulling
velocity. Considering our values in Table II, we see that the
inhibition of oscillation in the left side of the interface for
the experiments at 0.75 and 1.5 μm/s occurs respectively for
drift velocities equal to 2% and 4.2% of the pulling velocity:
such values are very likely comparable with amplitudes of
velocity oscillations. Further investigations remain necessary
to investigate theoretically and experimentally the effect of
drift on the oscillations.

5. Influence of pulling velocity history

All the experiments discussed above describe long solidifi-
cation experiments starting from rest at constant pulling rates,
but we also performed experiments with pulling rate jumps
after 30 mm of growth, especially starting from or jumping
to V = 1 μm/s (G1 = 19 K/cm). Experiments starting from
V = 1 μm/s enabled us to verify the reproducibility of the first
half of the long experiment starting from rest, in terms of oscil-
lation characteristics and primary spacing (triangles in Fig. 2).

In the experiments with a different pulling velocity history,
starting at V = 4 or 8 μm/s and jumping to 1 μm/s after 30
mm of growth, oscillation was not triggered in the 1 μm/s
growth stage. Because those two experiments are quite similar,
let us focus on the jump from V = 8 μm/s to 1 μm/s. The

primary spacing evolution after the jump of velocity is reported
on Fig. 2 (square points: the primary spacing evolution during
the 8 μm/s growth stage is not shown, explaining that the
data starts from L = 30 mm): the average spacing is smaller
than the one obtained in the experiment starting from rest,
but the two distributions superimpose on roughly half of
their width. In spite of this superposition, no oscillating cell
is observed after the jump of pulling rate, even in small
areas of larger spacing. The detailed analysis of the 1 μm/s
growth stage reveals several regions of various drift directions
and speeds mapped in Figs. 18(a) and 18(b). The primary
spacing is quite homogenous [Fig. 18(c)], except along some
of the lines that border the different drifting regions where a
lower primary spacing is observed. Along these specific lines,
that correspond to converging boundaries, we also observe
numerous cell eliminations. We attribute the origin of these
different drifting regions to the 8 μm/s growth stage during
which the high pulling rate leads to more dendritic patterns
combined to a highly concave front. Those two elements
lead to a tilting of the growth direction with respect to the
pulling axis, possibly due to the combined effect of crystalline
misorientations, as previously discussed [46,47], and thermal
gradient misorientation at concave growth front [38,48]. A
crystalline misorientation induces translational drift when the
thermal gradient is aligned to the pulling axis but combined to
the misorientation of the thermal gradient due to concavity,
of axial symmetry, a complex variation of tilting of the
growth direction throughout the pattern is observed. After
the pulling rate jump, even if the front has returned to a
macroscopically flat shape, the multiple drifting areas indicate
that the growth directions remain the ones selected before the
jump. Consequently, in the 1 μm/s growth stage, oscillations
are inhibited by the high drift velocities.

IV. SUMMARY AND CONCLUSIONS

Experiments under low gravity conditions were carried out
in the directional solidification insert of the DECLIC facility
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installed on board the International Space Station as part of
a joint research program between CNES and NASA. The use
of an organic transparent alloy (analog to metallic systems
in terms of solidification behavior) in a large cylindrical
crucible enabled the real-time and in situ observation of
spatially extended patterns and microgravity enabled growth
in a diffusive transport mode. These exceptional conditions
allowed us to observe the dynamics of extended oscillating
cellular patterns. The oscillations, observed in a narrow range
of growth parameters, are manifested as a periodic variation of
the apparent area of cells under top-view interface observation.
We offer here a comprehensive analysis of the experimental
characteristics of oscillating cell arrays, an experimental
counterpart to the phase-field numerical study reported in [36].

In both experiments and simulations, spatially extended
patterns are essentially hexagonal, with six-neighbor cells, but
the density of defects, mainly five- and seven-neighbor cells,
is high. This leads to a highly disordered pattern that keeps
evolving during the whole experiment. This array disorder and
its permanent dynamics, maintained by numerous tip-splitting
events, are of major importance regarding the spatiotemporal
characteristics of oscillation. Numerical simulations have
shown that the lack of long range coherence of oscillation,
which is expressed by the large dispersion of oscillation
phases, is directly related to this disorder [36]. Yet, in small
areas that present a local order of hexagonal or square
arrangement maintained for several oscillation periods, a
synchronization of the oscillation of neighboring cells may
occur. In case of hexagonal tiling, three subarrays appear
oscillating with a phase shift of roughly ±2π/3. A similar
situation is obtained in case of square checkerboardlike
organization near subgrain boundaries, with the two subarrays
of the checkerboard oscillating in phase opposition. These
modes of synchronization are typical for perfectly ordered
patterns, as was demonstrated by numerical simulations, with a
±2π/3 phase shift for hexagons [33,34,36] or phase opposition
for squares [34]. In our experiments and in our spatially
extended simulations, such synchronization is always limited
to few cells.

This behavior contrasts with observations of oscillating
patterns in thin samples previously reported in [28], charac-
terized by long-range coherence, suggesting that the lateral
confinement imposes a higher order level, resulting in a
longer range of coherence of oscillation. Another interesting
difference between our observations in extended 2D patterns
and the ones reported in confined samples is the effect of tip
splitting and elimination. In confined samples, such events
lead to the decrease of the amplitude of the oscillation
that eventually stops: oscillating cells have to be in phase
opposition to oscillate. This is clearly different in our case
for which highly variable phase relations have been observed
between adjacent cells so that any event modifying the local
order can be accommodated in terms of oscillation, with or
without phase shifting.

Oscillation occurs for a narrow range of parameters
bounded, in our case, to the velocity range 2 < V/Vc < 6 (Vc

being the critical velocity for planar interface destabilization).
The oscillation period is remarkably uniform throughout the
entire array and significantly longer than the solutal diffusion
time. The experimental oscillation period as a function of the

pulling rate can be fitted by a power law similar to that found
for breathing modes in thin samples [28].

Close to the higher limit of this velocity range, oscillation
may occur only during the transient growth stage. Phase-field
simulations have shown that sustained oscillations occur for
a narrow range of primary spacings, close to the limits of
stable cell branches, and in the close vicinity of the opening of
spacing stability gap at a given temperature gradient. The tran-
sition from possible oscillating conditions in terms of control
parameters (G, V ) to stable nonoscillatory conditions is thus
marked by the closure of the gap. As this gap closes for lower
G, the amplitude of oscillations along continuous branches
decreases with G within a range of about 5 K/cm below
the stability limit. Moreover, while sustained oscillations of
perfect hexagonal patterns exhibit a strong dependence of the
oscillation amplitude to the primary spacing [36], in spatially
extended disordered systems both experiments and simulations
show that a variation of up to 50% of primary spacing does
not affect the oscillation amplitude and period.

We evidenced the critical influence of pattern drift on
oscillation inhibition. Such a drift consists of a component
of growth velocity in the plane normal to the pulling axis,
which is due to a misalignment between the 〈100〉 preferred
growth direction and the pulling (thermal) axis; the direction
and rate of drift depend on the misorientation angle and
the pulling velocity [47]. In experiments, even if the single
crystal seed has never been remelted, different subgrains
are identified, probably due to a polygonization induced by
thermal cycles. We showed that beyond a threshold of drift
velocity—a function of the pulling velocity—oscillation is
inhibited. The existence of this threshold can be explained
by the perturbation of the dynamics of oscillation. Each tip
drives its surrounding concentration field, and cell oscillation
originates from an oscillation of this concentration field close
to the tip. The drift of the tip perturbs this concentration field,
inhibiting oscillation when the drift becomes significant. We
proposed two criteria to define the threshold in drift velocity
that inhibits oscillation. More systematic experimental and
numerical studies remain needed to clarify this point.

The analysis of experiments with a change of pulling rate
highlights the history dependence of microstructure dynamics.
In these experiments, oscillations are not present when, instead
of starting from rest, we jump from a higher velocity to a
pulling rate corresponding to oscillating conditions when start-
ing from rest. Several differences in the pattern characteristics
and dynamics are highlighted. The most prominent difference
is the observation after the velocity jump of several regions
displaying high drift velocities, and again the inhibition of
oscillation is attributed to pattern drifts.

To conclude, these microgravity experiments provided a
unique opportunity to observe the formation and evolution
of directionally solidified 2D extended arrays in diffusive
transport conditions. Beyond the oscillatory modes described
here, those experiments provided a large variety of results,
covering a large number of topics. Ongoing investigations
include the formation of multiplets, another secondary insta-
bility of the cellular pattern, previously predicted by numerical
simulation and described in thin samples [49–52], as well as the
dynamical selection of the primary spacing. Furthermore, 3D
experiments were found to introduce additional unavoidable
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deviations from ideal models of solidification, which are
negligible or controllable in thin samples, and which affect
the microstructure characteristics and dynamics. For example,
thermal analyses revealed a strong shifting of the thermal
field while pulling, in contrast with the classical hypothesis
of a growth in a frozen thermal field, especially during the
first stages of growth and microstructure formation [40].
Preliminary studies of mechanisms of spacing adjustment
have already highlighted the critical influence of the pattern
drift, resulting from both macroscopic interfacial curvature and
crystalline misorientations [53]. Understanding the influence
of each of these elements is a promising challenge, which

will allow us to address unique phenomena that arise during
large-scale bulk solidification, from both numerical and exper-
imental points of view.
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