
HAL Id: hal-01637138
https://hal.science/hal-01637138

Submitted on 17 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rapid Engineering of QA systems using the light-weight
Qanary Architecture

Andreas Both, Kuldeep Singh, Dennis Diefenbach, Ioanna Lytra

To cite this version:
Andreas Both, Kuldeep Singh, Dennis Diefenbach, Ioanna Lytra. Rapid Engineering of QA systems
using the light-weight Qanary Architecture. ICWE 2017, Jun 2017, Rome, Italy. �hal-01637138�

https://hal.science/hal-01637138
https://hal.archives-ouvertes.fr


Rapid Engineering of QA systems using the
light-weight Qanary Architecture

Andreas Both1, Kuldeep Singh2, Dennis Diefenbach3, and Ioanna Lytra3,4

1 DATEV eG, Germany
2 Laboratoire Hubert Curien, Saint Etienne, France

3 Fraunhofer IAIS, Sankt Augustin, Germany
4 Enterprise Information Systems, University of Bonn, Bonn, Germany

Abstract. Establishing a Question Answering (QA) system is time con-
suming. One main reason is the involved fields, as solving a Question
Answering task, i.e., answering a user’s question with the correct fact(s),
might require functionalities from different fields like information re-
trieval, natural language processing, and linked data. The architecture
used for Qanary supports the derived need for easy collaboration on the
level of QA processes. The focus of the design of Qanary was to en-
able rapid engineering of QA systems as same as a high flexibility of the
component functionality. In this paper, we will present the engineering
approach leading to re-usable components, high flexibility, and easy-to-
compose QA systems.

Keywords: Software Reusability, Question Answering, Light-weight Web
Architectures, Service Composition, Semantic Search, Ontologies, Anno-
tation Model

1 Introduction

The Web of Data is growing permanently as well as the industrial data sets. In-
duced by this movement the challenge for retrieving knowledge from such data
sets has gained much importance in research and industry. Question Answer-
ing (QA) is tackling this challenge by providing an easy-to-use natural language
interface for retrieving knowledge from large data sets. However, as QA is a
challenge requiring to solve research questions from many different fields, a QA
system is mostly consisting of many different components (from different research
fields). Hence, enabling easy collaboration between researchers is an important
engineering path while aiming at supporting the research community. Addition-
ally, a reasonable engineering approach is required to enable a loose cooperation
of different researchers.

Earlier, we established a component-oriented approach named Qanary [1]
on top of a RDF vocabulary qa [6]. This approach provides a methodology for
creating QA processes using a central knowledge base (KB) to store all avail-
able QA process data. Here, we will focus on the component model and service
composition following the Qanary methodology. In the demonstration, we will



II A. Both, K. Singh, D. Diefenbach, and I. Lytra

Qanary RDF KB
Triplestore T

inbound RDF data fetched from Gi

outbound RDF data stored in Go

Qanary
Componentprocess(M),

where M = (T, Gi, Go)

Fig. 1. Qanary Component Model (note that Gi might be equal to Go).

use the Qanary reference implementation to show the achievement w.r.t. to the
rapid engineering process that was established. We will show the engineering
process for creating a Qanary Web service as well as a complete Qanary-based
QA system.

2 Related Work

In the context of QA, a large number of systems and frameworks have been devel-
oped in the last years. For example, more than 20 QA systems (in the last 5 years)
were evaluated against the QALD benchmark (cf., http://qald.sebastianwalter.
org). These reasons led to the idea of developing component-based frameworks
that make parts of QA systems reusable. We are aware of three frameworks
that attempt to provide a reusable architecture for QA systems. QALL-ME [4]
provides a reusable architecture skeleton for building multilingual QA systems.
openQA [5] provides a mechanism to combine different QA systems and eval-
uate their performance using the QALD-3 benchmark. The Open Knowledge
Base and Question Answering (OKBQA) challenge (cf., http://www.okbqa.org/) is
a community effort to develop a QA system that defines rigid JSON interfaces
between the components. In contrast, Qanary [1] does not propose a rigid skele-
ton for QA pipelines, instead we allow multiple levels of granularity, enable the
community to develop new types of QA systems (not only pipelines), and focus
on the research tasks.

3 The Qanary Component Engineering Process
Requirements The core requirements of the Qanary architecture are:

⇤⇥ ��R1 pro-
gramming language independent approach,

⇤⇥ ��R2 combining of components to
different QA processes as easy as possible (no predefinition of specific pattern,
e.g., QA pipeline), and

⇤⇥ ��R3 enabling the researches from different communities
to follow their own research tasks with as few as possible restrictions.

The Qanary Component Model Each Qanary component is an independent
Web service implementing the tiny RESTful interface: process(M). Via the
synchronous interface the component is triggered to process the current user
question. The question (and any process data) is not contained in the message
M, instead it was stored in an RDF KB. Consequently, M = (T, Gi, Go) contains
the endpoint URI of the KB T and the graph Gi in T containing the inbound
information as well as the graph Go in T that should be used to store the com-
puted information (i.e., outbound data flow) for further use in the QA process
(by other components). Finally, the component is returning the focus to the QA

http://qald.sebastianwalter.org
http://qald.sebastianwalter.org
http://www.okbqa.org/


Rapid Engineering of QA Systems using Qanary III

process where other QA components might be called which can use the gen-
erated data. Hence, after being notified by the QA process a component will
fetch the information required for its task from Gi(in T) and perform its task
using this information, cf., Fig. 1. To enable an easy data exchange on com-
mon ground, the RDF vocabulary qa [6] was established (built on top of the
W3C WADM, cf., w3.org/TR/annotation-model) holding the computed information
as annotations of the question. Therefore, within the process the computed data
can be interpreted by any Qanary component. Note that all information stored
in Gi is retrievable by each Qanary component. Hence, no restrictions w.r.t. the
accessible data are imposed (cf.,

⇤⇥ ��R3 ).
Service Composition All Qanary components implement the same lightweight
interface and retrieve/store the data using the qa vocabulary. Hence, the Qa-
nary services can be integrated by combining these components, analogously
to the Pipes and Filters [2] architecture pattern. The Qanary reference imple-
mentation (cf., github.com/WDAqua/Qanary→qanary_pipeline-template) takes advan-
tage of the characteristics of Qanary components. It contains a service registry
(AdminServer) which is called automatically during the start-up phase by all
components. Hence, all Qanary components are known and can be easily com-
posed (cf.,

⇤⇥ ��R2 ), e.g., the following simple user interfaces are provided to create
a QA pipeline using a textual or audio question. There components can easily
be activated and combined by drag and drop (define order in QA pipeline):

http://www.wdaqua.eu/qanary/startquestionansweringwithtextquestion,
http://www.wdaqua.eu/qanary/startquestionansweringwithaudioquestion

Service Implementation The implementation of a Qanary component is sup-
ported using a Maven archetype (cf., github.com/WDAqua/Qanary→ qanary-component-
archetype). It already contains the registration to the AdminServer and several
other functionalities for rapid engineering. Note: There are no restrictions on the
functionality nor the programming language (cf.,

⇤⇥ ��R1 ); however, the reference
implementation is in Java.
Demonstration As an example, we show how to create a QA pipeline providing
the functionality focusing on the engineering tasks. The pipeline is aiming at
answering the question “What is the real name of Batman?”5 (cf., QALD ques-
tion no. 92). It will use a component that already exists in the Qanary ecosys-
tem providing functionality for Named Entity Recognition and Disambiguation
(NER/NED), e.g., the Qanary DBpedia Spotlight component (cf., [3]). It will in-
terlink the sub-string “Batman” to the DBpedia resource dbr:Batman. However,
additional semantics is required to map the textual question to an interpretable
representation. Therefore, we will interactively implement a new component C
(using Qanary’s Maven archetype) which adds new annotations to the Qanary
KB T while analyzing the user’s question. C will serve only the purpose to iden-
tify the relation dbp:alterEgo (i.e., a DBpedia property) while searching for
the sub-string “real name” in the question.

The demonstration will finish while creating and executing the QA pipeline
using the service composition and showing the result of the question.
5 Full description at https://github.com/WDAqua/Qanary/wiki/ICWE-2017-demo

http://www.w3.org/TR/annotation-model
https://github.com/WDAqua/Qanary/tree/master/qanary_pipeline-template
http://www.wdaqua.eu/qanary/startquestionansweringwithtextquestion
http://www.wdaqua.eu/qanary/startquestionansweringwithaudioquestion
https://github.com/WDAqua/Qanary/tree/master/qanary-component-archetype
https://github.com/WDAqua/Qanary/tree/master/qanary-component-archetype
https://github.com/WDAqua/Qanary/wiki/ICWE-2017-demo


IV A. Both, K. Singh, D. Diefenbach, and I. Lytra

Discussion Here, we have demonstrated the main advantage a developers re-
ceives while integrating a component in the Qanary ecosystem. A rapid engi-
neering process is provided and a created component can easily be interweaved
with the already existing ones. A basic installation of a QA pipeline provided
with a user interface called Trill can be found at http://www.wdaqua.eu/qa.

4 Conclusion
In this paper we presented the component model of the reference implemen-
tation of the Qanary framework. Qanary components are easy to implement
as it was shown in the paper. However, one of the core features is the option
to (re)combine components to QA systems without adopting the component’s
source code, while still having the full freedom of dedicating a (new) compo-
nent to a completely new functionality. This new functionality might use data
from the Qanary triplestore never used before in this particular combination.
Hence, as all features are data-driven, allowing to add new functionality to the
whole QA system from a local component independently. Additionally, the com-
ponent model is language-independent and driven by the power of linked data
which enables additional features like polymorph data types included in the in-
bound data. Our main contribution is a component-based architecture enabling
developers to create or re-combine components following a plug-and-play ap-
proach. While aiming at an optimal system w.r.t. a given use case (scientific)
developers are enabled to rapidly create new/adapted QA systems from the set
of Qanary components available. Hence, we are handing the scientific QA com-
munity an easy-to-use approach reducing the investments for engineering tasks
during typical tasks.

Acknowledgments This project has received funding from the European Union’s Horizon 2020

research and innovation program under the Marie Sklodowska-Curie grant agreement No 642795.

References
1. A. Both, D. Diefenbach, K. Singh, S. Shekarpour, D. Cherix, and C. Lange. Qanary

– a methodology for vocabulary-driven open question answering systems. In The

Semantic Web. Latest Advances and New Domains: 13th Int. Conf., ESWC, 2016.
2. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-

Oriented Software Architecture - Volume 1: A System of Patterns. Wiley, 1996.
3. D. Diefenbach, K. Singh, A. Both, D. Cherix, C. Lange, and S. Auer. The Qanary

Ecosystem: getting new insights by composing Question Answering pipelines. In
International Conference on Web Engineering, ICWE. Springer, 2017.

4. Ó. Ferrández, Ch. Spurk, M. Kouylekov, I. Dornescu, S. Ferrández, M. Negri,
R. Izquierdo, D. Tomás, C. Orasan, G. Neumann, B. Magnini, and J.L.V. González.
The QALL-ME framework: A specifiable-domain multilingual Question Answering
architecture. J. of Web Semantics: Science, Services & Agents on the WWW, 2011.

5. E. Marx, R. Usbeck, A. Ngonga Ngomo, K. Höffner, J. Lehmann, and S. Auer.
Towards an Open Question Answering Architecture. In SEMANTiCS, 2014.

6. K. Singh, A. Both, D. Diefenbach, and S. Shekarpour. Towards a Message-Driven
Vocabulary for Promoting the Interoperability of Question Answering Systems. In
IEEE International Conference on Semantic Computing, ICSC, 2016.

View publication statsView publication stats

http://www.wdaqua.eu/qa
https://www.researchgate.net/publication/315859644

	Rapid Engineering of QA systems using the light-weight Qanary Architecture

