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Abstract. The field of Question Answering (QA) is very multi-disci-
plinary as it requires expertise from a large number of areas such as
natural language processing (NLP), artificial intelligence, machine learn-
ing, information retrieval, speech recognition and semantic technologies.
In the past years a large number of QA systems were proposed using ap-
proaches from different fields and focusing on particular tasks in the QA
process. Unfortunately, most of these systems cannot be easily reused,
extended, and results cannot be easily reproduced since the systems are
mostly implemented in a monolithic fashion, lack standardized interfaces
and are often not open source or available as Web services. To address
these issues we developed the knowledge-based Qanary methodology for
choreographing QA pipelines distributed over the Web. Qanary employs
the qa vocabulary as an exchange format for typical QA components. As
a result, QA systems can be built using the Qanary methodology in a
simpler, more flexible and standardized way while becoming knowledge-
driven instead of being process-oriented. This paper presents the compo-
nents and services that are integrated using the qa vocabulary and the
Qanary methodology within the Qanary ecosystem. Moreover, we show
how the Qanary ecosystem can be used to analyse QA processes to de-
tect weaknesses and research gaps. We illustrate this by focusing on the
Entity Linking (EL) task w.r.t. textual natural language input, which is
a fundamental step in most QA processes. Additionally, we contribute
the first EL benchmark for QA, as open source. Our main goal is to show
how the research community can use Qanary to gain new insights into
QA processes.

Keywords: Semantic Web, Software Reusability, Question Answering,
Service Composition, Semantic Search, Ontologies, Annotation Model
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1 Introduction

The amount of data, information, and knowledge available on the Web and
within enterprise environments is increasing constantly. Especially in enterprise
environments a strong trend to better connected data can be observed, lead-
ing to interlinked and accessible data unlocking the company’s information for
intense data analytics and information retrieval. Novel interfaces are required
for enabling users to retrieve information in such scenarios and interact with
it. Natural language interfaces are being considered to bridge the gap between
large amounts of (semi-structured) data and users’ needs. Recent industrial ap-
plications show the capabilities and advantages of natural language interfaces
in the field of Question Answering (QA). These include Apple Siri

6, Microsoft

Cortana
7, and “Ok Google”8. However, these proprietary platforms do not fa-

cilitate experimentation with cutting-edge research approaches, they offer only
limited interfaces for integrating third-party components and they are generally
not open, reusable and extensible by developers and the research community.

Several QA systems have been developed recently in the research commu-
nity, for example, [15,9,5,6]. These systems perform well in specific domains, but
their reusability for further research is limited because of their focus on specific
technologies, applications or datasets. As a result, creating new QA systems
is currently still cumbersome and inefficient. Particularly, the research commu-
nity is not empowered to focus on improving particular components of the QA
process, as developing a new QA system and integrating a component is ex-
tremely resource-consuming. Some first steps for developing flexible, modular
QA systems have started to address this challenge, e.g., [11,7]. However, these
approaches lack several key properties required for constructing QA systems in
a community effort as they are, for example, bound to a particular technol-
ogy environment and have rather static interfaces, which do not support the
evolution of the inter-component data exchange models. For this reason we pre-
sented the qa vocabulary [16] as a flexible and extensible data model for QA
systems. Based on the vocabulary, we developed the Qanary [3] methodology for
integrating components into QA systems; it is independent from programming
languages, agnostic to domains and datasets, as well as enabled for components
on any granularity level within the QA process.

This work presents the Qanary ecosystem: the components and services cur-
rently implemented around the qa vocabulary by using the Qanary methodology.
We present a general workflow that can be used to construct and particularly
analyze as well as optimize future QA systems in a community effort using the
Qanary ecosystem. It can be broken down into two phases: (1.) the identification
and integration of existing state-of-the-art approaches to solve a particular task
in the QA pipeline, and (2.) the derivation of benchmarks for sub-tasks of a QA
process from well-known QA benchmarks such as the Question Answering over

6 http://www.apple.com/ios/siri/
7 http://windows.microsoft.com/en-us/windows-10/getstarted-what-is-cortana
8 https://support.google.com/websearch/answer/2940021?hl=en
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Linked Data (QALD) challenge9. Hence, the described approach is dedicated
to support the engineering process to build components for a QA system and
the system by itself, by using the knowledge-driven approach for flexible compo-
nent integration and quality evaluations. In this paper, we show this workflow
applied to the task of EL, which is key in the QA process. Therefore, we con-
sider components dedicated to the tasks of named entity identification/recogni-
tion (NER) and named entity disambiguation (NED), which are integrated into
the Qanary ecosystem. The included components are the NER tool of DBpedia

Spotlight [12], the Stanford NER tool [8] and the Federated knOwledge eXtraction

Framework (FOX) [18] as well as the NED components Agnostic Disambiguation

of Named Entities Using Linked Open Data (AGDISTIS) [20] and the named en-
tity disambiguator of DBpedia Spotlight. In addition two combined approaches
for NER and NED are also provided as components: IBM Alchemy

10 and Lucene

Linker – a component that we implemented following the idea of the QA sys-
tem SINA [15]. Moreover, we devised a benchmark for entity linking (EL) based
on the well-known Question Answering over Linked Data (QALD) challenge.
Our contribution here has three aspects. First, we provide researchers with a
tool for comparing NED and NER w.r.t. QA, thus enabling them to compare
their components with the state-of-the-art just by implementing a Qanary wrap-
per around their novel functionality. Second, we provide the results of comparing
existing tools, i.e., an expressive benchmark for the quality of entity linking com-
ponents w.r.t. natural language questions, thus enabling the QA community to
gain new insights into QA processes. Third, we compute a list of questions that
are completely annotated w.r.t. the entity linking process. Hence, researchers
investigating a processing step of a QA system that comes after entity linking
can reuse these annotations to create an environment for conveniently testing
and continuously improving their components.

As a result, the QA community is empowered to easily reuse entity linking
functionality for QA systems (or for the development of other tools depending
on named entities) and reuse a profound benchmark for QA systems both for the
evaluation of new entity linking components and as input for components active
in the subsequent processing steps of a QA system (e.g., relation detection or
query computation). However, the entity linking functionality and experiments
presented in this paper are just a proof that Qanary’s knowledge-driven and
component-driven approach as well as the previously described general workflow
provides key advantages particularly in contrast to existing systems and other
benchmarks.

The next section describes related work. Sec. 3 gives an overview of our
recent work which laid the groundwork for the Qanary ecosystem. Sec. 4 gives
an overview of the components and services that are available in the Qanary
ecosystem. Sec. 5 describes how the Qanary ecosystem can be used to gain new
insights into QA processes w.r.t. the EL task. Sec. 6 concludes and points to
future research areas.

9 http://greententacle.techfak.uni-bielefeld.de/cunger/qald
10 http://www.alchemyapi.com/
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2 Related Work

In the context of QA, a large number of systems and frameworks have been
developed in the last years. This can be observed for example from the number
of QA systems (> 20 in the last 5 years) that were evaluated against the QALD
benchmark. Many QA systems use similar techniques. For example, there are
services for named entity identification (NER) and disambiguation (NED) such
as DBpedia Spotlight [12] and Stanford NER [8], which are reused across sev-
eral QA systems. These reasons led to the idea of developing component-based
frameworks that make parts of QA systems reusable. We are aware of three
frameworks that attempt to provide a reusable architecture for QA systems. The
first is QALL-ME [7] which provides a reusable architecture skeleton for building
multilingual QA systems. The second is openQA [11], which provides a mech-
anism to combine different QA systems and evaluate their performance using
the QALD-3 benchmark. The third is the Open KnowledgeBase and Question-
Answering (OKBQA) challenge11. It is a community effort to develop a QA
system that defines rigid JSON interfaces between the components. Differently
from these works we do not propose a rigid skeleton for the QA pipeline, instead
we allow multiple levels of granularity and enable the community to develop new
types of pipelines.

Recognizing named entities in a text and linking them to a knowledge base is
an essential task in QA. DBpedia Spotlight [12], Stanford NER [8], FOX [18],
and Alchemy API are a few of the tools dedicated to such tasks. Furthermore,
tools such as DBpedia Spotlight, AGDISTIS [20], Alchemy API etc. not only
identify information units in text queries but also point every named entity to a
knowledge resource for disambiguation.

We are not aware of any work that has tried to compare in a systematic
way existing approaches that tackle sub-processes of QA pipelines, for example
EL. Atdag and Labatut [1] compare a few NER tools applied to bibliographic
text, whereas researchers in [14] present NERD, a framework for evaluating NER
tools in the context of Web data where a wrapper of NER/NED services was
implemented but the independent registration of new services is not possible.
Platforms such as GERBIL [21] and GERBIL for QA12 offer benchmarks for
EL tools and full QA systems and they generate persistent URIs for experi-
ment results. This enables third-party evaluations and citable URIs. Their main
goal is not to gain new insights into the underlying processes but only to gen-
erate one final metric that is publishable. For example, they do not generate a
summary indicating in which cases the corresponding tool succeeded or failed.
In contrast, the Qanary reference implementation is a full-featured framework
for component-oriented QA process creation, which is additionally enabled to
support benchmarking of the included distributed components. We give a com-
parison of the described tools in Table 1.

11 http://www.okbqa.org/
12 https://github.com/TortugaAttack/gerbil-qa
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Property vs. Tool NERD Gerbil Gerbil-qa Qanary

support for analyzing NER/NED task � � � �
support for analyzing QA process quality � � � �
third party evaluations � � � �
fine-grained information � � � �
traceability of intermediate results � � � �
computation of citable URIs � � � �
Table 1. Overview of tools related to benchmarks in the field of question answering
in comparison to the benchmark functionality of Qanary.

3 The qa Vocabulary and the Qanary Methodology

To advance the QA process, researchers are combining different technologies to
optimize their approaches. However, reusability and extensibility of QA com-
ponents and systems remains a major hurdle. There are many components and
services, which are provided as standalone implementations but can be useful
in QA processes (e.g., the previously mentioned DBpedia Spotlight, AGDISTIS
etc.), but there has so far not been a methodology to integrate them within QA
pipelines. Instead substantial programming efforts had to be invested as each
component provides its own API or integration method.

To address this challenge, and to promote reusability and extensibility of
QA components, we introduced the qa vocabulary [16]. This vocabulary can
represent information that is generated during the execution of a QA pipeline
when processing a question given as speech or text input. Consider, for example,
the question “When was Barack Obama born?”. Typical information generated
by components of a QA pipeline are the positions of named entities (NE) (such as
“Barack Obama”), the ontological relations used to express the relational phrase
in the question (that “born” refers to dbo:birthPlace13), the expected answer type
(here: a date), the generated SPARQL query, the language of the question and
possible ontologies that can be used to answer it.

The rationale of qa is that all these pieces of information can be expressed as
annotations to the question. Hence, these exposed pieces of information can be
provided as an (RDF) knowledge base containing the full descriptive knowledge
about the currently given question.

qa is built on top of the Web Annotation Data Model (WADM)14, a vocabu-
lary to express annotations. The basic constructs of the WADM are annotations
with at least a target indicating what is described and a body indicating the
description.
PREFIX oa: <http :// www.w3.org/ns/oa#>
<anno> a oa:Annotation ;

13 PREFIX dbo: <http://dbpedia.org/ontology/>
14 W3C Candidate Recommendation 2016-09-06, http://www.w3.org/TR/

annotation-model
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oa:hasTarget <target> ;
oa:hasBody <body> .

In qa, a question is assumed to be exposed at some URI (e.g. URIQuestion that can
be internal and does not need to be public) and is of type qa:Question. Similarly
other QA concepts (qa:Answer, qa:Dataset, etc.) are defined in the vocabulary;
please see [16] for further details. As a result, when using qa, the knowledge of the
QA system is now representable independently from a particular programming
language or implementation paradigm because everything is represented as direct
or indirect annotations of a resource of type qa:Question. The qa vocabulary is
published at the persistent URI https://w3id.org/wdaqua/qanary# under the CC0
1.0 license15.

The qa vocabulary led to the Qanary methodology [3] for implementing pro-
cesses operating on top of the knowledge about the question currently processed
within a QA system, leading to the possibility of easy-to-reuse QA components.
All the knowledge related to questions, answers and intermediate results is stored
in a central Knowledge Base (KB). The knowledge is represented in terms of the
qa vocabulary in the form of annotations of the relevant parts of the question.

Within Qanary the components all implement the same service interface.
Therefore, all components can be integrated into a QA system without manual
engineering effort. Via it’s service interface a component receives information
about the KB (i.e., the endpoint) storing the knowledge about the currently
processed question of the user. Hence, the common process within all components
is organized as follows:

1. A component fetches the required knowledge via (SPARQL) queries from
the KB. In this way, it gains access to all the data required for its particular
process.

2. The custom component process is started, computing new insights of the
user’s question.

3. Finally, the component pushes the results back to the KB (using SPARQL).

Therefore, after each process step (i.e., component interaction), the KB should
be enriched with new knowledge (i.e., new annotations of the currently processed
user’s question). This way the KB keeps track of all the information generated
in the QA process even if the QA process is not predefined or not even known.
A typical QA pipeline consists of several steps such as NER, NED, relation
identification, semantic analysis, query computation and result ranking. Most
recently we provided a reference implementation of Qanary [17]. We call this
implementation message-driven; it follows the architectural pattern that we have
previously described for search engines in [4]. The processing steps might be
implemented in different components with dedicated technology provided by
distinguished research groups. The message-driven implementation of Qanary [4]
laid foundations for the QA ecosystem. The advantage of such an ecosystem is
that it combines different approaches, functionality, and advances in the QA
community under a single umbrella.
15 https://creativecommons.org/publicdomain/zero/1.0/
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4 The Qanary Ecosystem

The Qanary ecosystem consists of a variety of components and services that can
be used during a QA process. We describe in the following what components
and services are available.
The Qanary ecosystem includes various components covering a broad field tasks
within QA systems. This includes different components performing NER like
FOX [18] and Stanford NER [8] and components computing NED such as DBpe-
dia Spotlight and AGDISTIS [20]. Also industrial services such as the Alchemy
API are part of the ecosystem. Furthermore, Qanary includes a language de-
tection module [13] to identify the language of a textual question. A baseline
automatic speech recognition component is also included in the reference imple-
mentation. It translates audio input into natural language texts and is based on
Kaldi16. Additionally it should be noted that a monolithic QA system compo-
nent was developed in the course of the WDAqua project17 and is integrated
in Qanary. Additional external QA components are included in the ecosystem.
In particular, Qanary includes two components from the OKBQA challenge18

namely the template generation and disambiguation component. All components
are implemented following the REST principles. Hence, these tools/approaches
become easy to reuse and can now be invoked via transparent interfaces. To
make it easy to integrate a new component we have created a Maven archetype
that generates a template for a new Qanary component19. The main services
are encapsulated in the Qanary Pipeline. It provides, for example, a service reg-
istry. After being started, each component registers itself to the Qanary Pipeline

central component following the local configuration20 of the component. More-
over, the Qanary Pipeline provides several web interfaces for machine and also
human interaction (e.g., for assigning a URI to a textual question, retrieving
information about a previous QA process, etc.). Particularly, as each component
automatically registers itself to the Qanary Pipeline, a new QA system can be
created and executed just by on-demand configuration (a concrete one is shown
in Fig. 1). Hence, the reference implementation already provides the features
required for QA systems using components distributed over the Web.

An additional interface allows for benchmarking a QA system created on
demand using Gerbil for QA21, thus allowing third-party evaluation and citeable
URIs. Fig. 2 illustrates the complete reference architecture of Qanary and a few
of its components. Additional services include a user interface for a fully working
QA system. A running demo can be found at http://www.wdaqua.eu/qa.

16 http://kaldi-asr.org
17 http://www.wdaqua.eu
18 http://www.okbqa.org/
19 https://github.com/WDAqua/Qanary/wiki/How-do-I-integrate-a-new-component-in-Qanary%

3F
20 The configuration property spring.boot.admin.url defines the endpoint of the central

component (and can be injected dynamically).
21 http://gerbil-qa.aksw.org
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The code is maintained in the repository at https://github.com/WDAqua/Qanary
under the MIT License22.

5 Gaining new insights into the QA process: The EL task

To show how Qanary can be used to gain new insights into QA processes we focus
here on the EL task. We present the qa vocabulary used to represent the infor-
mation produced by NER and NED tools. Moreover we describe the components
of the Qanary ecosystem that are integrated using the Qanary methodology and
that can be used for the EL task. We describe how we constructed a benchmark
for EL out of QALD. The analysis of the benchmark will show: what are the best
tools to tackle QALD, where are current research gaps, and for which questions
do single tools fail and why.

Finally, we present a new dataset that can be used as a gold standard for a
sub-task of the QA process.

The following workflow is not restricted to the EL task but can be applied
to any other sub-task of the QA process to gain new insights into QA processes.

5.1 The Qanary vocabulary for the EL task

The qa vocabulary is designed to be extensible so as not to constrain the cre-
ativity of the QA community developers. All information that can possibly be
generated and that might need to be shared across QA components can be ex-
pressed using new annotations. This principle follows the understanding that
standards that allow communication between QA components must be defined
by the community. Taking into consideration the state-of-the-art (e.g., [2,20,8]),
the qa vocabulary was extended with standard concepts for NER and NED rep-
resentations. This in particular uniforms the representation of the input and
output of every integrated component, making it easy to compare and analyze
the integrated tools. Note that this does not only hold for tools that can be used
for EL but for every tool integrated into the Qanary ecosystem.

To describe an entity spotted within a question we introduced a dedicated
annotation:
qa:AnnotationOfSpotInstance a owl:Class;

rdfs:subClassOf qa:AnnotationOfQuestion .

If in the question “When was Barack Obama born?” a spotter detects “Barack
Obama” as an NE, this fact can be expressed by the following annotation, where
oa:SpecificResource and oa:hasSelector are concepts of the WADM to select a part
of a text.
<anno1> a qa:AnnotationOfSpotInstance .
<anno1> oa:hasTarget [

a oa:SpecificResource ;
oa:hasSource <URIQuestion >;
oa:hasSelector [

22 https://opensource.org/licenses/MIT
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Fig. 1. Snapshot of the Web interface for defining a textual question and a sequence
of components to process it (here only NED/NER components where registered).

Fig. 2. The Qanary reference architecture implementation highlighting the NER/NED
components.
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a oa:TextPositionSelector;
oa:start "9"^^ xsd:nonNegativeInteger;
oa:end "21"^^ xsd:nonNegativeInteger

]
] .

For named entities, we define the new concept qa:Named Entity and a correspond-
ing annotation subclass (i.e., annotations of questions whose body is an instance
of qa:NamedEntity):
qa:NamedEntity a owl:Class ;
qa:AnnotationOfInstance a owl:Class ;

owl:equivalentClass [
a owl:Restriction ;
owl:onProperty oa:hasBody ;
owl:someValuesFrom qa:NamedEntity
] ;

rdfs:subClassOf qa:AnnotationOfQuestion .

If an NED tool detects in the question “When was Barack Obama born?” that
the text “Barack Obama” refers to dbr:Barack_Obama23, then this can be expressed
(using oa:hasBody) as:
<anno1> a qa:AnnotationOfInstance ;

oa:hasTarget [
a oa:SpecificResource ;
oa:hasSource <URIQuestion > ;
oa:hasSelector [

a oa:TextPositionSelector ;
oa:start "9"^^ xsd:nonNegativeInteger;
oa:end "21"^^ xsd:nonNegativeInteger

]
] ;
oa:hasBody <dbr:Barack_Obama > .

Note that using annotations provides many benefits thanks to the inclusion of
additional metadata such as the creator of the information, the time and a trust
score. However, this information is omitted here for readability.

5.2 Reusable NER and NED components

The following components integrated into the Qanary ecosystem solve the task
of NER, NED or the combined task of EL.

– Stanford NER (NER) is a standard NLP tool that can be used to spot
entities for any ontology, but only for languages where a model is available
(currently English, German, Spanish and Chinese) [8].

– FOX (NER) integrates four different NER tools (including the Stanford
NER tool) using ensemble learning [18].

– DBpedia Spotlight spotter (NER) uses lexicalizations, i.e., ways to ex-
press named entities, that are available directly in DBpedia [12].

– DBpedia Spotlight disambiguator (NED), the NED part of DBpedia
Spotlight, disambiguates entities by using statistics extracted from Wikipedia
texts [12].

23 PREFIX dbr: <http://dbpedia.org/resource/>
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– AGDISTIS (NED) is a NED tool that uses the graph structure of an
ontology to disambiguate entities [20].

– ALCHEMY (NER + NED): Alchemy API24 is a commercial service
(owned by IBM) exposing several text analysis tools as web services.

– Lucene Linker (NER + NED) is a component that we implemented
following the idea of the SINA QA system [15], which employs information
retrieval methods.

Note that thanks to the integration as Qanary components all these tools
can be interwoven, i.e., each NER tool can be combined with each NED tool
just by configuration.

5.3 A QALD-based benchmark for EL in QA

To compare the different entity linking approaches, we created a benchmark
based on the QALD (Question Answering over Linked Data) benchmark used
for evaluating complete QA systems. The QALD-6 training set25, which is the
recent successor of QALD-5 [19], contains 350 questions, including the questions
from previous QALD challenges. For each question, it contains a SPARQL query
that retrieves the corresponding answers. For example, the following SPARQL
query corresponds to the question “Which soccer players were born on Malta?”.
PREFIX dbr: <http :// dbpedia.org/resource/>
PREFIX dbo: <http :// dbpedia.org/ontology/>
SELECT DISTINCT ?uri WHERE {

?uri a dbo:SoccerPlayer .
?uri dbo:birthPlace dbr:Malta .

}

EL tools should provide functionality to interlink the named entities present
in the question with DBpedia (or other data), i.e., they should be able to identify
“Malta” and link to it the resource http://dbpedia.org/resource/Malta. Our bench-
mark compares the URIs generated by an EL tool with the resource URIs in
the SPARQL query (i.e., those in the http://dbpedia.org/resource/ namespace)26,
which are obviously required for answering the question. Hence the gold standard
for each question is given by all resource URIs in the SPARQL query.27

24 http://alchemyapi.com
25 Training Questions of Task 1: http://qald.sebastianwalter.org/index.php?x=

challenge&q=6
26 Note that resources of the type http://dbpedia.org/ontology/* would match a DB-

pedia property or class and therefore are not considered here.
27 This definition of the gold standard ignores the order of the URIs. In practice this

definition rarely causes problems, but in theory one could construct counter-examples
that pinpoint the limitations. Imagine the question “What German actors were not
born in Germany?”, and imagine that the word “German” got linked to the entity
dbr:Germany and “Germany” to dbr:Germans – clearly a wrong linking, but “correct”
w.r.t. our gold standard definitions. However, in QALD there are no questions in
which such a mix-up is likely to happen.
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Precision(q) = # correct URIs retrieved by the EL configuration for q

# URIs retrieved by the EL configuration identifying NE in q

Recall(q) =# correct URIs retrieved by the EL configuration for q

# gold standard answers for q

F1-measure(q) =2 × Precision(q) × Recall(q)
Precision(q) +Recall(q)

Fig. 3. Metrics used in the EL benchmark

The metrics for a question q are calculated as defined in the QALD bench-
mark and are reported in Fig. 328. The metrics over all questions are defined as
the average of the metrics over the single questions. The corresponding bench-
mark component is available at https://github.com/WDAqua/Qanary.

Note that this procedure can be generalized and applied to many sub-processes
of a QA pipeline. For example, one might establish a benchmark to recognize
relations or classes, a benchmark to identify the type of the SPARQL query re-
quired to implement a question (i.e., a SELECT or an ASK query), a benchmark
for identifying the answer type (i.e., list, single resource, . . . ) and so on.

We used our benchmarking resource described above to evaluate EL tools.
We have identified different strategies to annotate entities in questions. These
include using the spotters Stanford NER, FOX, DBpedia Spotlight Spotter, the
NED tools AGDISTIS, and the DBpedia Spotlight disambiguator, as well as the
(monolithic w.r.t. NER and NED) EL tools Alchemy and Lucene Linker. Each
of them is implemented as an independent Qanary component, as presented
in Sec. 5.2. According to the Qanary methodology the computed knowledge
about a given question is represented in terms of the qa vocabulary and can be
interpreted by the benchmark component.

For the benchmark all three NER components are combined with each of the
two NED components. All questions of QALD-6 are processed by each of the six
resulting configurations, and by the two monolithic tools. The benchmark was
executed exclusively using the service interface of the Qanary Pipeline.

Table 2 shows the benchmark results. The “Fully detected” column indicates
the number of questions q where some resources were expected and the EL
configuration achieved Recall(q)=1. The column “Correctly Annotated” indicates
for how many questions we obtained Precision(q)=Recall(q)=1. Finally, the table
shows for each configuration the precision and recall metrics over all questions.

28 In the corner cases where the number of system answers or the number of gold stan-
dard answers is zero we follow the same rules that are used in the QALD evaluation;
see https://github.com/ag-sc/QALD/blob/master/6/scripts/evaluation.rb.
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Pipeline configuration
Fully
de-
tected

Correctly
Anno-
tated

Precision Recall F1-measure

StanfordNER + AGDISTIS 200 195 0.76 0.59 0.59
StanfordNER + Spotlight disamb. 209 189 0.77 0.62 0.61
FOX + AGDISTIS 189 186 0.83 0.56 0.56
FOX + Spotlight disambiguator 199 192 0.86 0.59 0.58
Spotlight Spotter + AGDISTIS 209 204 0.75 0.62 0.62
Spotlight spotter + disambiguator 242 213 0.76 0.71 0.68
Lucene Linker 272 0 0.01 0.78 0.03
Alchemy 143 139 0.91 0.42 0.42

Table 2. Benchmark of the QALD-6 data using the Qanary reference implementation.

5.4 Discussion

We presented the Qanary methodology, which allows to interweave the analysed
tools. Thanks to the qa vocabulary we can collect (from the SPARQL endpoint)
the results produced by every configuration. A detailed overview showing for
each question if the pipeline configurations lead to a recall resp. F-measure of 1
can be found at:

https://raw.githubusercontent.com/WDAqua/Qanary/master/ICWE-results/● Recall_1.csv and● F-measure_1.csv.

We analysed both this data and the results presented in Table 2 to draw some
conclusions on the performance of the used tools with respect to QALD.

For some QALD-6 questions none of the pipeline configurations is able to
find the required resources, for example:

– Q1: “Give me all cosmonauts.” with the following resources requested in the
SPARQL query: dbr:Russia, dbr:Soviet_Union. For this question one should
be able to understand that cosmonauts are astronauts born either in Rus-
sia or in the Soviet Union. Detecting such resources would require a deep
understanding of the question. Q201 is similar: “Give me all taikonauts.”.

– Q13: “Are tree frogs a type of amphibian?”; requested resources: dbr:Hylidae,
dbr:Amphibian.
The problem here is that the scientific name of “tree frogs” is Hylidae and
there is no such information in the ontology except in the free text of the
Wikipedia abstract.

– Q311: “Who killed John Lennon?”; requested resource: dbr:Death_of_John_
Lennon.
The problem is that one would probably assume that the information is
encoded in the ontology as a triple like “John Lennon”, “killed by”, “Mark
David Chapman” but this is not the case. Even if in the question the actual
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NE is “John Lennon”, DBpedia happens to encode the requested information
in the resource “Death of John Lennon”. A similar case is Q316 (“Which types
of grapes grow in Oregon?”), where the resource dbr:Oregon_wine is searched.

Spotter comparison An unexpected result is that FOX as a spotter has a lower
recall than the Stanford NER tool, even though FOX also includes the results of
Stanford NER. This can be seen from comparing the recall of the configurations
that combine these tools with AGDISTIS or the DBpedia Spotlight disambigua-
tor. The reason is that, for example, in Q101 (“Which German cities have more
than 250,000 inhabitants?”) the word “German” is tagged by the Stanford NER
tool as “MISC” (miscellaneous). However, FOX only supports the tags “PERS”
(person), “ORG” (organisation), and “LOC” (location). This explains why FOX
has a lower recall but a higher precision than Stanford NER.

The spotters based on NLP (e.g., Stanford NER and FOX) perform worse
than the DBpedia Spotlight Spotter, which is mainly based on vocabulary match-
ing. Syntactic features do not suffice to identify “Prodigy” in Q114 (“Give me
all members of Prodigy.”) or “proinsulin” in Q12 (“Is proinsulin a protein?”).
Moreover, there are cases like Q109 (“Give me a list of all bandleaders that play
trumpet.”), where bandleaders is not an NE in the NLP sense but is modeled as
a resource in the DBpedia ontology. Similarly, in Q133 (“Give me all Australian
nonprofit organizations.”), the resource dbr:Australia is expected for the adjective
“Australian”.

NED comparison The results show that the DBpedia Spotlight disambiguator
performs better than AGDISTIS w.r.t. QA. AGDISTIS works on co-occurrences
of NE. These occur often in longer texts but are rare in questions. If only one NE
is spotted, AGDISTIS can only decide based on the popularity of the resources
but not on the context as DBpedia Spotlight does.

EL comparison The best spotter, the DBpedia Spotlight spotter, and the best
NED, the DBpedia Spotlight disambiguator, also perform best in the EL task.
Only the Lucene Linker has a higher recall but must be followed by a disam-
biguation tool in the next step to increase precision. The Alchemy API shows
the lowest recall.

Our evaluation does not permit the conclusion that the combination of DB-
pedia Spotlight spotter and disambiguator should be recommended in general.
The best choice may depend on the questions and on the particular form of
dataset. The DBpedia Spotlight disambiguator, for example, is tightly connected
to Wikipedia; even its algorithm cannot be ported to other ontologies. Alchemy,
despite showing a very low F1-score and recall, could be a useful resource for
QA over other datasets, such as Freebase or Yago. This is one of the many rea-
sons that makes Qanary in general a valuable resource. For a new QA scenario,
Qanary empowers developers to quickly combine existing tools and more easily
determine the best configuration. Moreover, a detailed analysis of the configura-
tions can help to detect the main problems of the different strategies to further
improve the complete QA process or just individual components. Hence, using
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PREFIX qa: <http ://www.wdaqua.eu/qa#>
PREFIX oa: <http ://www.w3.org/ns/openannotation/core/>
PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema#>
PREFIX dbr: <http :// dbpedia.org/resource/>
PREFIX git: <https :// github.com/dbpedia -spotlight/>
<anno1> a qa:AnnotationOfInstance > ;

oa:annotatedAt "2016 -04 -30 T15 :00:43.687+02:00"^^ xsd:dateTime ;
oa:hasTarget [

a oa:SpecificResource > ;
oa:Selector [

a oa:TextPositionSelector ;
oa:end 4 ;
oa:start 21

] ;
oa:hasSource <URIQuestion >
] .

oa:hasBody dbr:Margaret_Thatcher ;
oa:annotatedBy git:dbpedia -spotlight .

Fig. 4. Example data of Q178: “Was Margaret Thatcher a chemist?”

Qanary provides insights on the quality of each component w.r.t. the current use
case, leading to an optimization of the system based on the given data.

A combination of tools solving the same task in an ensemble learning ap-
proach is now possible and is recommended as the benchmark results already
indicate. Note that such an analysis is not possible using existing benchmarking
tools such as Gerbil or Gerbil for QA since they only provide a final overall
score. On the other hand such an analysis is needed to detect existing research
gaps and push the advancement of QA further. Hence, following the Qanary
methodology the research community is enabled to develop new QA processes
and components in a joint engineering effort and to validate the given quality
metrics within the specific QA scenario. This again proves the potential impact
of Qanary within the engineering process of QA systems.

5.5 Dataset of Annotated Questions for Processing in QA systems

We provide a new dataset with questions of the QALD-6 benchmark, which
are completely annotated with disambiguated named entities (DBpedia resource
URIs) computed by applying our benchmarking to the EL configurations de-
scribed in Sec. 5.3. This dataset contains 267 questions (out of 350 questions in
the QALD-6 training set) because the components could not annotate the rest.
A Turtle file, representing the results in terms of the qa vocabulary, is published
at https://github.com/WDAqua/Qanary under the CC0 license. A typical fragment of
the provided data is provided in Fig. 4.

We imagine the following usage scenarios for this dataset. It can be used as
input for steps in a QA process following the EL task that require annotated
named entities, such as relation detection or query computation. Consequently,
QA components that depend on the output of the EL task can now be evaluated
without depending on concrete EL components (and without the results being



XVI D. Diefenbach et al.

influenced by possible flaws). Hence, in conjunction with the SPARQL queries
already defined in QALD-6, we established a new gold standard for evaluating
parts of a QA process. We also provide the component for computing this dataset
(cf., Sec. 5.3); it can be extended if improved EL configurations are available or
when a new version of the QALD benchmark is released.

6 Conclusion and Future Work

We have presented the status of the Qanary ecosystem, which includes a variety
of components and services that can be used by the research community. These
include typical components for sub-tasks of a QA pipeline as well as a number
of related services.

Since all messages exchanged between components are expressed using the
qa vocabulary, all information generated during a QA process can be easily kept.
Thanks to this uniform message format it is now possible to easily compare ex-
isting tools and integrate new ones. Moreover, the Qanary methodology allows
to integrate independent, distributed components, implemented in different pro-
gramming languages in a loosely-coupled fashion. This allows the creation of
comprehensive QA systems in a community effort.

Driven by the demand for better QA technology, we propose a general work-
flow to develop future QA systems. It mainly breaks down into two parts: (1.)
the identification and integration of existing state-of-the-art approaches to solve
a particular sub-task in the QA pipeline, and (2.) the derivation of a benchmark
from benchmarks for QA such as QALD. Additionally a new gold standard for
the sub-task can be provided. In contrast to other approaches the qa vocabulary
allows to analyse a QA process. Hence, full traceability of the information used
in the QA process is ensured, enabling, for example, the optimization of the as-
signed components. Additionally, the Qanary methodology allows to create such
processes in a flexible way. This allows researchers to focus on particular tasks
taking advantage of the results of the research community and contributing to
it directly in a reusable way.

We have demonstrated this workflow in the case of EL. This way we realized a
set of reusable components as well as the first benchmark for EL in the context of
QA. All together we have shown how Qanary can be used to gain deep insights
in QA processes. While having such insights the engineering process can be
steered efficiently towards the improvement of the QA components. Hence, the
presented engineering approach is particularly well suited for experimental and
innovation-driven approaches (e.g., used by research communities).

The Qanary ecosystem is maintained and used within the WDAqua ITN
project29 (2015–2018 [10]), where Qanary is the reference architecture for new
components. All artifacts are published under permissive open licenses: MIT for
the software, CC0 for the datasets and the vocabulary.

One of our future task is to populate the Qanary ecosystem with any compo-
nent significant to the QA community. According to the literature, the tasks of
29 http://wdaqua.eu
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relation and answer type detection are of particular relevance, but not yet suf-
ficiently covered by existing components. Additionally, as Qanary provides easy
access to different implementations having the same purpose, ensemble learning
components for all steps within a QA process are becoming possible and will in-
crease the flexibility as well as boost overall QA quality. Hence, our overall goal
is to provide a fully-featured ecosystem for creating QA components and con-
currently supporting the measuring and improvement of particular QA systems
w.r.t. the considered use cases. This aim provides several research challenges,
e.g., the (semi-)automatic creation of self-optimizing QA systems.
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