
HAL Id: hal-01637131
https://hal.science/hal-01637131v1

Submitted on 17 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Introducing Feedback in Qanary: How Users can
interact with QA systems

Dennis Diefenbach, Niousha Hormozi, Shanzay Amjad, Andreas Both

To cite this version:
Dennis Diefenbach, Niousha Hormozi, Shanzay Amjad, Andreas Both. Introducing Feedback in Qa-
nary: How Users can interact with QA systems. ESWC 2017, May 2017, Portoroz, Croatia. �hal-
01637131�

https://hal.science/hal-01637131v1
https://hal.archives-ouvertes.fr

Introducing Feedback in Qanary:

How Users can interact with QA systems

Dennis Diefenbach1, Niousha Hormozi2, Shanzay Amjad3, Andreas Both4

1 Lab. Hubert Curien, Saint Etienne, France, dennis.diefenbach@univ-st-etienne.fr
2 University of Athens, Athens, Greece, nhormozi@di.uoa.gr

3 University of Ottawa, Ottawa, Canada, samja088@uottawa.ca
4 DATEV eG, Germany, contact@andreasboth.de

Abstract. Providing a general and efficient Question Answering system
over Knowledge Bases (KB) has been studied for years. Most of the works
concentrated on the automatic translation of a natural language question into
a formal query. However, few works address the problem on how users can
interact with Question Answering systems during this translation process.
We present a general mechanism that allows users to interact with Question
Answering systems. It is built on top of Qanary, a framework for integrat-
ing Question Answering components. We show how the mechanism can be
applied in a generalized way. In particular, we show how it can be used when
the user asks ambiguous questions.

Keywords: User Interaction, Question Answering Systems, User Interface

1 Introduction

In recent years, there has been a fast growth in available data sets. One very important
use case is finding relevant results for a user’s requests, and by using different data sets.
The field of Question Answering (QA) tackles this information retrieval use case by
providing a (natural language) interface aiming at easy-to-use fact retrieval from large
data sets in knowledge bases (KB). While following this path it could be observed that
additional challenges are rising while the data sets are growing. For example, while
having only recent geospatial information a term like “Germany” can be identified
directly without ambiguity. However, after adding historic data several instances
called “Germany” will be available, representing different entities (over time).

In the past years several question answering systems were published working on-top
of linked data, cf., Question Answering over Linked Data (QALD) [8]. Many QA sys-
tems follow a single interaction approach, where the user asks a question and retrieves
an answer. However, many questions cannot be understood because the context is only
clear in the users’ mind, or because the ambiguity of the considered data set is not
known by the user. Hence, not any kind of question can be interpreted correctly follow-
ing an ad hoc single-interaction approach. User interaction in QA systems (i.e., how
users can influence a QA process) is not well explored. Only a few QA systems exists
involving the user in the retrieval process, e.g., Querix [7], Freya [2], and Canalis [10].

In this paper we extend the Qanary methodology [1] a framework for integrating
Question Answering components. Our main contribution is a generalized user feedback
mechanism in Qanary.

2 Related Work

In the context of QA, a large number of systems have been developed in the last
years. For example, more than twenty QA systems were evaluated against the QALD
benchmark (cf., http://qald.sebastianwalter.org). However, only few of them address
user interaction. Freya [2] uses syntactic parsing in combination with the KB-based
look-up in order to interpret the question, and involves the user if necessary. The user’s
choices are used for training the system in order to improve its performance. Querix [7]
is a domain-independent natural language interface (NLI) that uses clarification dialogs
to query KBs. Querix is not “intelligent” by interpreting and understanding the input
queries; it only employs a reduced set of NLP tools and consults the user when hitting
its limitations. Canali [10] shows completions for a user’s query in a drop-down menu
appearing under the input window. The user has the option of clicking on any such
completion, whereby its text is added to the input window.

Since QA systems often reuse existing techniques, the idea to develop QA systems
in a modular way arise. Besides Qanary, three frameworks tried to achieve this goal:
QALL-ME [6], openQA [9] and the Open Knowledge Base and Question-Answering
(OKBQA) challenge (cf., http://www.okbqa.org/). To the best of our knowledge these
frameworks do not address the problem of integrating user interaction.

3 A generalized Feedback Mechanism on-top of Qanary

3.1 The Qanary methodology

QA systems are generally made up by several components that are executed in a
pipeline. Qanary offers a framework to easily integrate and reuse such components.
Here, we briefly describe the Qanary methodology. Qanary components interact with
each other by exchanging annotations (following the W3C WADM5) expressed in the
qa vocabulary [11] and stored in a central triplestore T . For example, an annotation
expressing that the sub-string between character 19 and 32 of the question “Who
is the wife of Barack Obama?” refers to dbr:Barack Obama is expressed as:

PREFIX qa: <https: // w3id.org/wdaqua/qanary#>
PREFIX oa: <http: // www.w3.org/ns/oa#>
<anno1 > a qa:AnnotationOfInstance ;

oa:hasTarget [a oa:SpecificResource ;
oa:hasSource <URIQuestion >;
oa:hasSelector [a oa:TextPositionSelector ;

oa:start "9"^^ xsd:nonNegativeInteger ;
oa:end "21"^^ xsd:nonNegativeInteger]];

oa:hasBody dbr:Barack_Obama .
oa:annotatedBy <http: // wdaqua.eu/ component1 > .
oa:annotatedAt "2017 -02 -22 T21:40:51 +01 :00" .

5 Web Annotation Data Model: https://www.w3.org/TR/annotation-model/

http://qald.sebastianwalter.org
http://www.okbqa.org/
https://www.w3.org/TR/annotation-model/

Note that each annotation also contains information about the components that
created them (oa:annotatedBy) and the time when this happened (oa:annotatedAt).
We consider a QA system with several components C1,. . . ,Cn. Running these
components over a new question q would lead to the following workflow: (1) Qa-
nary is called through an API saying that it should process question q using the
components C1, ...,Cn (this API can be found under: http://www.wdaqua.eu/qanary/
startquestionansweringwithtextquestion). (2) Qanary generates in a triplestore T a new
named graph G where q is stored (using the qa vocabulary). (3) The components are
subsequently called, i.e., the address of the triplestore T and the named graph G is
passed to Ci. Component Ci retrieves annotations from G and uses them to generate
new knowledge about the question. This is written back to G in the form of new an-
notations. (4) When all the components have been called, the address of T and G are
returned. This way full access to all knowledge generated during the process is possible.

The vocabulary that is used for the annotations is described in [11]. The Qanary
methodology and their services are described in [1,4].

3.2 Collecting User Feedback within a Qanary process

A user cannot change the internal algorithm of a component, but only affect the
behavior of a component by the annotations it uses as input. Assume that the user
wants to interact with the process after componentCi. The generalized workflow would
be as follows: (1) Components C1,. . . ,Ci are called (cf., Sec. 3.1). (2) All the generated
knowledge is stored in G. The user or the application accesses G and retrieves the
annotation needed and creates new ones. (3) The QA system is restarted from
component Ci+1, i.e., a QA process executing Ci+1,. . . , Cn is started using T and G.

To avoid conflicting annotations of the same type, we enforce that both the
components and the user create annotation with a timestamp, and the components
read only the annotations with the last timestamp. Note that during the QA process
existing annotations are not deleted, s.t.,G contains a full history of all the information
generated at the different point in time by any component and by the user.

4 Use Cases

We created some user interface components that follow the approach described in
Sec. 3.2. In the back-end we used WDAqua-core0 [5]. It consists of two components:
C1 a query generator that translate a question (in keywords or natural language) into
SPARQL queries and C2 a query executor. The interfaces are integrated in Trill [3], a
reusable front-end for QA systems that can be used for QA pipelines integrated in Qa-
nary. The code can be found under https://github.com/WDAqua/Trill. We first describe
in detail one of the interface components we implemented. It can be used by users
to resolve the ambiguity of a question. We then briefly describe the other interfaces.

Example: Removing Entity Ambiguity from a Qanary process One of the main prob-
lems in QA systems is to disambiguate between different meanings associated to
a user’s question. Given “What is the capital of Germany?”, the sub-string “Ger-
many” can refer to the actual “Federated Republic of Germany” but also to “East
Germany” (former GDR) or “West Germany”, which will lead to different answers.

http://www.wdaqua.eu/qanary/startquestionansweringwithtextquestion
http://www.wdaqua.eu/qanary/startquestionansweringwithtextquestion
https://github.com/WDAqua/Trill

Fig. 1. Snapshot of the disambiguation interface for the question: “What is the capital of
Germany?”. By clicking on “Did you mean” several entities, the question might refereed to,
are shown. These include the actual “Federal Republic of Germany” but also the “Capital of
Germany” (as an entity), “West Germany”, “East Germany”, “Allied-Occupied Germany”
and others. By clicking on the entity, the question is interpreted differently and a new answer
is presented, e.g., if the user clicks on “West Germany”, the answer “Bonn” is computed.

To allow the user to choose between different options we use the workflow presented
in Sec. 3.2. In the example implementation, C1 produces 30 SPARQL query candi-
dates which are ranked based on relevance and stored in T using the annotations
qa:AnnotationOfSparqlQueries. E.g., for the given question the first 3 candidates are:

1. SELECT ?x WHERE { dbr:Germany dbo:capital ?x . }
2. SELECT ?x { VALUES ?x { dbr:Capital of Germany } }
3. SELECT ?x WHERE { dbr:West Germany dbp:capital ?x . }

For the disambiguation interface we extract 30 queries from the endpoint, ex-
tract the resources from them (in the example dbr:Germany, dbr:Capital of Germany,
dbr:West Germany) and show them to the user. By clicking on one of the resources,
the corresponding query is ranked first and the re-ranked queries are written to
the triple-store using again the annotations qa:AnnotationOfSparqlQueries. C2 is called
which executes the first-ranked query. Finally the answer is shown. The example is
implemented as a user interface component in Trill and shown in Fig. 1.

Additional Examples Similarly to the above interface we have also created a user
interface component that allows a user to directly choose between SPARQL queries.
This interface component can for example be used, by expert users, to construct a
training data set to learn how to rank SPARQL queries. We created also two interfaces
components for language and knowledge base selection. They are easy-to-use drop
down menus. The user selects the knowledge base or the language. Each time a new
question is sent to the back-end the corresponding annotations selecting the language
or the knowledge base are generated. A demo with the different interface components
can be found under www.wdaqua.eu/qa.

www.wdaqua.eu/qa

5 Conclusion and Future Work

In this paper we have showed a generalized feedback for QA processes. It is an
approach on-top of the Qanary framework. Qanary provides an established paradigm
for collecting knowledge about a given user question in a triplestore. Our extension
provides a mechanism for the user to interact with any type of information that is
stored in the triplestore. Hence, computing the correct answer through the feedback
of the user is thereby enabled on various steps during the QA process. This leads
to the novel option not only to create a QA system from the Qanary ecosystem, but
also to establish an interactive QA process on-top of it. All these arrangements are
dedicated to support the QA research community in improving QA processes.

In the future, we will extend the user interface components and collect training
sets for the community to be used for improving the involved back-end components,
the overall QA process, and particularly the quality of QA.

Acknowledgments This project has received funding from the European Union’s Horizon 2020

research and innovation program under the Marie Sklodowska-Curie grant agreement No 642795.

References

1. A. Both, D. Diefenbach, K. Singh, S. Shekarpour, D. Cherix, and C. Lange. Qanary a
methodology for vocabulary-driven open question answering systems. In ESWC, 2016.

2. D. Damljanovic, M. Agatonovic, and H. Cunningham. Freya: An interactive way of
querying linked data using natural language. In ESWC, 2011.

3. D. Diefenbach, S. Amjad, A. Both, K. Singh, and P. Maret. Trill: A reusable Front-End
for QA systems. In ESWC P&D, 2017.

4. D. Diefenbach, K. Singh, A. Both, D. Cherix, C. Lange, and S. Auer. The Qanary Ecosys-
tem: getting new insights by composing Question Answering pipelines. In ICWE, 2017.

5. D. Diefenbach, K. Singh, and P. Maret. WDAqua-core0: A Question Answering
Component for the Research Community. In ESWC, 7th Open Challenge on Question

Answering over Linked Data (QALD-7), 2017.
6. Ó. Ferrández, Ch. Spurk, M. Kouylekov, I. Dornescu, S. Ferrández, M. Negri, R. Izquierdo,

D. Tomás, C. Orasan, G. Neumann, B. Magnini, and J.L.V. González. The QALL-ME
framework: A specifiable-domain multilingual Question Answering architecture.

7. E. Kaufmann, A. Bernstein, and R. Zumstein. Querix: A natural language interface
to query ontologies based on clarification dialogs. In ISWC, 2006.

8. V. Lopez, C. Unger, P. Cimiano, and E. Motta. Evaluating question answering over linked
data. Web Semantics Science Services And Agents On The World Wide Web, 2013.

9. E. Marx, R. Usbeck, A. Ngonga Ngomo, K. Höffner, J. Lehmann, and S. Auer. Towards
an open question answering architecture. In SEMANTiCS, 2014.

10. Giuseppe M Mazzeo and Carlo Zaniolo. Question answering on RDF KBs using
controlled natural language and semantic autocompletion. Semantic Web Journal

(under review), 2016.
11. K. Singh, A. Both, D. Diefenbach, and S. Shekarpour. Towards a message-driven vocab-

ulary for promoting the interoperability of question answering systems. In ICSC, 2016.

View publication statsView publication stats

https://www.researchgate.net/publication/316665838

	Introducing Feedback in Qanary: How Users can interact with QA systems

