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The Pontryagin Maximum Principle in the Wasserstein Space
Benôıt Bonnet, Francesco Rossi

November 17, 2017

Abstract

We prove a Pontryagin Maximum Principle for optimal control problems in the space of proba-
bility measures, where the dynamics is given by a transport equation with non-local velocity.

We formulate this first-order optimality condition using the formalism of subdifferential calculus
in Wasserstein spaces. We show that the geometric approach based on needle variations and on
the evolution of the covector (here replaced by the evolution of a mesure on the dual space) can be
translated into this formalism.

1 Introduction
Transport equations with non-local interaction terms have been intensively studied for decades by various
communities. They were for instance already introduced in statistical physics in 1938 when Vlasov
proposed these equations to describe long-range Coulomb interactions [31]. For such reasons, several
transport equations appear as mean-field limit of particle systems, see e.g. [26, 29]. More recently, the
study of crowd modelling has stimulated a renewed interest for these equations. Indeed, pedestrians
have a long-range perception of their space, and thus choose their path based on long-range interactions.
While such interactions do not enjoy action-reaction properties which are typical in physical models,
methods connected to mean-field limit approaches have shown their adaptability to this setting too.
See e.g. [7, 14, 24, 25]. More generally, the study of other kind of interacting agents, such as opinion
dynamics on networks [8, 23], or animal flocks [6, 15], has been studied with similar techniques.

Several contributions have shown that the natural setting for studying transport equations with non-
local terms is the space of measures endowed with the Wasserstein distance, see e.g. [5]. In this case,
existence and uniqueness of the solution of a Cauchy problem are ensured by a natural Lipschitz condition
[4], and metric estimates for the associated flow are available too [27]. For simplicity, we will only deal
with measures with compact support, for which the Wasserstein distance is always finite.

Beside the analysis of such partial differential equations, it is now of great interest to study control
problems for the transport equation with non-local velocities. Beside few recent results about
controllability [17], most of the contributions in this direction have considered optimal control problems,
i.e. the minimization of a functional where the constraint is a controlled dynamics. Applications of
these problems are of great interest, such as for the reduction of the escape time for a crowd [3, 19],
or for enforcing consensus in an opinion network by minimizing the variance of the opinions (see e.g.
[11, 12, 28]).

Existence of optimal controls has been investigated in [21], as well as in the setting of mean-field
control [1, 2]. Convergence of optimizers via the mean-field limit of the dynamics was also studied with
methods related to Γ-convergence in [20].

The next logical step in the derivation of first-order necessary optimality conditions allowing to
characterize and compute optimal trajectories. While some few specific results were presented in [9],
optimality conditions need a sufficiently rich differential structure, namely to compute derivatives of the
functional to be minimized. In this setting, the state is represented by a measure, for which the adapted
setting is given by subdifferential calculus in Wasserstein spaces. For a thorough introduction, see [5].
We recall the main useful results in Section 2.

Our contribution in this article is to show that, in this general setting, several results of geometric
control can be translated from finite-dimensional dynamical systems to transport equations with non-local
velocities. With this aim, we derive a new Pontryagin Maximum Principle in this infinite-dimensional
setting. While the proof scheme is close to the classical finite-dimensional case, each step requires the
definition of tools adapted to Wasserstein spaces.

1



As a result, the new Pontryagin Maximum Principle (PMP in the following) is formulated in the
language of subdifferential calculus in Wasserstein spaces. In particular, the state-costate variables are
here replaced by a measure on the cotangent bundle, that satisfies mixed boundary conditions. The dy-
namics is given by an Hamiltonian system in the space of measures, similar to what studied in [4]. The
maximized Hamiltonian is given by maximization in an adapted space of controls, namely of functions
satisfying Lipschitz constraints.

In this article, we then prove a PMP for optimal control problems given in the general form

(P)


min
u∈U

[∫ T

0
L(µ(t), u(t))dt+ ϕ(µ(T ))

]
,

s.t.
{
∂tµ(t) +∇ · ((v[µ(t)](t, ·) + u(t, ·))µ(t)) = 0,
µ(0) = µ0 ∈Pc(Rd).

(1)

As already stated, our formulation of the Pontryagin Maximum Principle deeply relies on the formalism
of subdifferential calculus in Wasserstein spaces (see e.g. [5, 13, 22]). In this formalism, the extended
subdifferential ∂φ(µ) (see Definition 18 below) of a functional φ(·) at a given measure µ ∈ Pc(Rd) is
made of transport plans. As it is the case for subdifferential calculus in Banach spaces, there exists
a notion of minimal selection (see Theorem 3 below) among the elements of this subdifferential. The
minimal selection in an extended subdifferential, which we denote by ∂◦φ(µ), plays the same conceptual
role of the gradient of a differentiable functional. The existence of such minimal selection is a consequence
of the regularity hypothesis (see Definition 19 and the corresponding Theorem 3 below), that we impose
to the functionals studied in the following.

In this context, the barycenter γ̄◦φ : Rd → Rd (see Definition 16 below) of the minimal selection
is the closest object to what would be a gradient in the sense of subdifferential calculus, in particular
when computing derivatives along curves of measures (see Proposition 21 below). However, barycenters
of extended subdifferentials are not in the classical subdifferentials in general. Yet for a good score of
functionals involved in applications such as potential and interaction energies, relative entropies, variance
functionals (see Section 1.1 for some examples), the minimal selection is induced by its barycenter. In
this case, the latter is referred to as the Wasserstein gradient (see Definition 20 below) ∇µφ(µ) : Rd → Rd
of the functional φ(·) at µ.

The goal of this paper is to prove the Pontryagin-type optimality conditions for (P) that we introduce
in the following main result. In the sequel, we will denote by B2d(0, R) the ball of radius R centered at
0 in R2d, by π1, π2 : R2d → Rd the projection operators on the first and second components and by K a
generic compact subset of Rd.

Theorem 1 (Pontryagin Maximum Principle for (P)). Let (u∗(·), µ∗(·)) ∈ U × Lip([0, T ],Pc(Rd)) be
an optimal pair control-trajectory for (P) and assume that the following hypotheses (H) hold :

(H)

(U) : The set of admissible controls is U = L1([0, T ], U) where U ⊂ C1(Rd,Rd) is a non-empty and
closed subset of

{
v ∈ C1(Rd,Rd) s.t. ‖v(·)‖C0(Rd) + Lip(v(·),Rd) ≤ LU

}
for a given constant

LU > 0.

(L) : The running cost L : (µ, ω) ∈ Pc(Rd) × U 7→ L(µ, ω) ∈ R is Lipschitz in (µ, ω) with respect
to the product metric W2 × C0 over P(K)× U for any compact set K ⊂ Rd. The functional
µ ∈ P(K) 7→ L(µ, ω) is proper, regular in the sense of Definition 19 below, bounded for any
ω ∈ U and K ⊂ Rd compact.

(C) : The terminal cost ϕ : µ ∈ Pc(Rd) 7→ ϕ(µ) ∈ R is proper, regular in the sense of Definition
19 below, Lipschitz with respect to the W2-metric, bounded from below over P(K) for any
compact set K ⊂ Rd.
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(F) : The non-local velocity field v : µ ∈ Pc(Rd) 7→ v[µ](·, ·) ∈ L1([0, T ], C1(Rd,Rd) ∩ L∞(Rd,Rd))
satisfies

|v[µ](t, x)| ≤M(1 + |x|) , |v[µ](t, x)− v[µ](t, y)| ≤ L1|x− y| ,
and ‖v[µ](t, ·)− v[ν](t, ·)‖C0(Rd) ≤ L2W1(µ, ν)

for L 1-almost every t ∈ [0, T ] and all (x, y) ∈ Rd × Rd where M,L1 and L2 are positive
constants. For any compact set K ⊂ Rd and any i ∈ {1, ..., d}, the components µ ∈P(K) 7→
vi[µ](t, x) are regular in the sense of Definition 19 below.

(B) : The barycenter x 7→ γ̄◦ϕ(x) of the minimal selection ∂◦ϕ(µ) in the extended subdifferential of
the terminal cost ϕ(·) at some measure µ ∈Pc(Rd) is continuous.
The barycenter x 7→ γ̄◦L(x) of the minimal selection ∂◦µL(µ, ω) in the extended subdifferential
of the running cost L(·, ω) at some µ ∈Pc(Rd) is locally bounded.
The barycenter x ∈ Rd 7→ γ̄i,◦(t,y)(x) of the minimal selections ∂◦µvi[µ](t, y) in the extended
subdifferentials of the components (vi) of the non-local vector field v[µ](t, x) at some µ ∈
Pc(Rd) is locally bounded for all (t, y) ∈ [0, T ]×Rd. The map y ∈ Rd 7→ γ̄i,◦(t,y)(x) is continuous
for all (t, x) ∈ [0, T ]× Rd.

(D) : The maps µ ∈ Pc(Rd) 7→ ϕ(µ), µ ∈ Pc(Rd) 7→ L(µ, ω) and µ ∈ Pc(Rd) 7→ v[µ](t, x) are
differentiable along measure curves generated by Lipschitz-in-time, continuous and bounded
perturbations of the identity for L 1 × µ-almost every (t, x) ∈ [0, T ]× Rd and any ω ∈ U , i.e.

d+

dε
[φ(G(ε, ·)#µ)] =d−

dε
[φ(G(ε, ·)#µ)] , d

+

dε
[L(G(ε, ·)#µ, ω)] = d−

dε
[L(G(ε, ·)#µ, ω)]

d+

dε
[v[G(ε, ·)#µ](t, x)] = d−

dε
[v[G(ε, ·)#µ](t, x)]

whenever (G(ε, ·))(−ε̄,ε̄) is a Lipschitz family of continuous and bounded maps, differentiable at
ε = 0 and such that G(0, ·) = Id.

Then, there exist a constant R > 0 depending on µ0, T , U , v[·](·, ·), ϕ(·), L(·, ·) and a curve ν∗(·) ∈
Lip([0, T ],P(B2d(0, R)) Lipschitzian with respect to the W1-metric satisfying the following conditions :

(i) It solves the forward-backward system of continuity equations
∂tν
∗(t) +∇(x,r) ·

(
J2d∇̃νHc(t, ν∗(t), u∗(t))ν∗(t)

)
= 0 in [0, T ]× R2d,

π1
#ν
∗(0) = µ0,

π2
#ν
∗(T ) = (−γ̄◦ϕ)#µ

∗(T ),
(2)

where γ̄◦ϕ(·) is the barycenter of the minimal selection ∂◦ϕ(µ∗(T )) of the final cost ϕ(·) at

µ∗(T ) and J2d =
(

0 Id
−Id 0

)
is the symplectic matrix in R2d.

The compactified Hamiltonian of the system Hc(·, ·, ·) is defined by

Hc : (t, ν, ω) ∈ [0, T ]×Pc(R2d)× U 7→
{
H(t, ν, ω) if ν ∈P(B2d(0, R)),
+∞ otherwise,

(3)

where

H : (t, ν, ω) ∈ [0, T ]×Pc(R2d)× U 7→
∫
R2d
〈r, v[π1

#ν](t, x) + ω(x)〉dν(x, r)− L(π1
#ν, ω) (4)

is the infinite dimensional Hamiltonian of the system.
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The vector field ∇̃νHc(t, ν∗(t), u∗(t))(·, ·) is defined by

∇̃νHc(t, ν∗(t), u∗(t)) :(x, r) ∈ supp(ν∗(t)) 7→(
Dxu

∗(t, x)>r + Dxv[π1
#ν
∗(t)](t, x)>r + lΓ. ◦v[ν∗(t)](t, x)− γ̄◦L(t, x)

v[π1
#ν
∗(t)](t, x) + u∗(t, x)

)
where t ∈ [0, T ] 7→ γ̄◦L(t, ·) is a measurable selection of the barycenters of ∂◦µL(µ∗(t), u∗(t)).
The map lΓ. ◦v[ν∗(t)](·, ·) is defined by

lΓ. ◦v[ν∗(t)] : (t, x) ∈ [0, T ]× π1(B(0, R)) 7→
∫
R2d

(
lΓ. ◦(t,y)(x)

)>
p dν∗(t)(y, p)

where for L 1 × π1
#ν
∗(·)-almost every (t, y) ∈ [0, T ] × π1(B(0, R)) we define lΓ. ◦(t,y) : x ∈

supp(µ∗(t)) 7→ (γ̄i,◦(t,y)(x))1≤i≤d as the matrix-valued map made of the barycenters of the min-
imal selections ∂◦µvi[µ∗(t)](t, y) in the extended subdifferentials of the components (vi) of the
non-local velocity field.

(ii) It satisfies the Pontryagin maximization condition

Hc(t, ν∗(t), u∗(t)) = max
ω∈U

[Hc(t, ν∗(t), ω)] for L 1-almost every t ∈ [0, T ]. (5)

The general hypotheses (H) can sometimes be hard to verify. Nevertheless, they are implied by
simpler hypotheses that are easier to check. Similarly, the dynamics (2) has some simpler expressions in
several interesting cases. We discuss such examples in Section 1.1.

Remark 1. Observe that in our formulation of the PMP, the vector field ∇̃νHc(t, ν∗(t), u∗(t)) is not the
Wasserstein gradient of the compactified Hamiltonian Hc(ν∗(t), u∗(t)), since in general the barycenter of
a minimal selection is not in the classical subdifferential. However, in any context where the minimal
selections are induced by plans, which will automatically be their barycenters, or when they are strong
subdifferentials, it can be shown by standard methods that ∇̃νHc(t, ν∗(t), u∗(t)) is in fact the Wasserstein
gradient of the compactified Hamiltonian at (t, ν∗(t), u∗(t)) for L 1-almost every t ∈ [0, T ].

The structure of the article is the following : in Section 1.1 we list some relevant examples of classical
functionals satisfying assumptions (H) and recall their Wasserstein subdifferential. In Section 2 we
recall useful results of analysis in Wasserstein spaces, PDEs with non-local velocities and subdifferential
calculus in (P2(Rd),W2). We also prove in Theorem 5 an existence and characterization result for
directional derivatives along measure curves for non-local flows. In Section 3 we prove the Pontryagin
Maximum Principle in the Wasserstein Space : we first introduce in Section 3.1 the main steps of our
proof on a simpler instance (P1) of problem (P) - and in particular the concept of needle like variation
-, and then prove our main result in Section 3.2.

1.1 Corollaries of the Pontryagin Maximum Principle
The aim of the general result stated in Theorem 1 is to provide first-order necessary optimality conditions
that are adapted to a wide range of functionals. We give in the following Propositions some examples of
minimal selections as well as common functionals that are encompassed in hypotheses (H).

Proposition 2 (Subdifferential of a smooth integral functional). Let V ∈ C1(Rd,R) and K ⊂ Rd be
a compact set and define V : µ ∈ P(K) 7→

∫
Rd V (x)dµ(x). Then the functional V (·) is regular at

any µ ∈P(K) in the sense of Definition 19 below, Lipschitz in the W1-metric. Moreover, the minimal
selection ∂◦V (µ) in its extended subdifferential at µ is a classical strong subdifferential induced by a map
and given explicitly by ∂◦V (µ) = (Id ×∇V )#µ.

Proof. See e.g. [5, Proposition 10.4.2].

Remark 3. Taking any power α > 0 of V (·) yields the same results provided that the functional x 7→ xα

is differentiable at V (µ). In which case, the minimal selection in the extended subdifferential is induced
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by the map
∇µ(V α)(µ) : x ∈ supp(µ) 7→ αV (µ)α−1∇V (x). (6)

Proposition 4 (Subdifferential of the variance functional). Let K ⊂ Rd be a compact set and define the
variance functional by

Var : µ ∈P(K) 7→ 1
2

∫
Rd
|x− µ̄|2dµ(x) = 1

2

∫
Rd
|x|2dµ(x)− 1

2 |µ̄|
2

where µ̄ =
∫
Rd x dµ(x) denotes the mean of the measure µ.

Then, the functional Var(·) is regular at any µ ∈P(K), Lipschitz in the W1-metric and the minimal
selection ∂◦Var(µ) in its extended subdifferential is a classical strong subdifferential induced by the map
∇µVar(µ) : x ∈ supp(µ) 7→ x− µ̄.
Proof. It is clear by definition of the variance functional that it is bounded from below over P(K).
Moreover, an application of the Kantorovich-Rubinstein duality formula (9) yields the Lipschitzianity in
the W1-metric. The regularity in the sense of Definition 19 can be verified by observing that the variance
functional is convex along Wasserstein geodesics; this implies regularity (see [5, Lemma 10.3.8]).

We now show that x 7→ x − µ̄ is in the classical strong subdifferential of the variance functional at
µ ∈P(K). For any ν ∈P(K) and lµ.. ∈ Γ(µ, ν), it holds that∫

R2d
〈x1 − µ̄, x2 − x1〉dlµ.. (x1, x2) =

∫
R2d
〈x1, x2〉dlµ.. (x1, x2)−

∫
Rd
|x1|2dµ(x1) + |µ̄|2 − 〈µ̄, ν̄〉,

≤ 1
2

∫
Rd
|x2|2dν(x2)− 1

2

∫
Rd
|x1|2dµ(x1) + |µ̄|2 − 〈µ̄, ν̄〉,

≤ Var(ν)−Var(µ) + 1
2 |µ̄− ν̄|

2.

Moreover, one can estimate the quantity |µ̄− ν̄|2 as follows:

|µ̄− ν̄|2 ≤
(∫

R2d
|x− y|dγ(x, y)

)2
= W 2

1 (µ, ν) ≤W 2
2 (µ, ν) ≤W 2

2,lµ.. (µ, ν) = o(W2,lµ.. (µ, ν)).

where the first inequality holds for any γ ∈ Γ(µ, ν) and the following equality is obtained by taking
γ ∈ Γo(µ, ν). The two remaining inequalities follow using the ordering of the Wasserstein metrics
between compactly supported measures given in Proposition 15 and the definition of W2,lµ.. (·, ·) given in
Definition 18 below.

Therefore, we conclude that for any ν ∈P(K) and any lµ.. ∈ Γ(µ, ν) it holds

Var(ν)−Var(µ) ≥
∫
R2d
〈x1 − µ̄, x2 − x1〉dlµ.. (x1, x2) + o(W2,lµ.. (µ, ν)).

which is equivalent to x ∈ supp(µ) 7→ x− µ̄ being a classical strong subdifferential at µ.
Now, take in particular ν ≡ νs = (Id + sξ)#µ for some small s > 0 and ξ ∈ C∞c (Rd) such that

supp(νs) ⊂P(K). It then holds

+∞ > lim
s↓0

[
Var((Id + sξ)#µ)−Var(µ)

s

]
≥
∫
Rd
〈x1 − µ̄, ξ(x1)〉dµ(x1).

Furthermore, one can check that it holds

lim
s↓0

[
Var((Id + sξ)#µ)−Var(µ)

s

]
≤ lim

s↓0

[
(Var((Id + sξ)#µ)−Var(µ))+

W2(µ, (Id + sξ)#µ)

]
lim
s↓0

[
W2(µ, (Id + sξ)#µ)

s

]
,

≤ |∂Var|(µ) ‖ξ‖L2(µ),

so that, for any ξ ∈ C∞c (Rd) with ‖ξ‖L2(µ)≤ 1, it holds∫
Rd
〈x1 − µ̄, ξ(x1)〉dµ(x1) ≤ |∂Var|(µ).

By applying a density argument for test functions in the space L2(Rd,Rd;µ) and using the dual
characterization of the L2-norm of a functional, it finally holds that ‖Id − µ̄‖L2(µ)≤ |∂Var|(µ), which
amounts to state by Theorem 3 that the strong subdifferential x ∈ supp(µ) 7→ x − µ̄ is the minimal
selection in the classical subdifferential ∂Var(µ) of the variance functional at µ.
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Remark 5 (Possible extensions). Adding to the functionals we exhibited a measurable dependence in
t ∈ [0, T ] would not alter our results. It would also be possible to consider integral functionals of the form

W k : µ ∈P(K) 7→
∫
Rd
W (x1, ..., xk)d(µ× ...× µ)(x1, ..., xk)

Vm : µ ∈P(K) 7→
∫
Rd
V
(
x,
∫
Rd m(y)dµ(y)

)
dµ(x)

for any k ≥ 1, W ∈ C1(Rd×k,R), V ∈ C2(Rd × Rn,R) and m ∈ C2(Rd,Rn) for some n ≥ 1 without
altering our results.

Proposition 6 (Subdifferential of a non-local vector field generated by a smooth interaction). Let
K ⊂ Rd be a compact set, H(·, ·) ∈ C1(R2d,Rd) be a function with sub-linear growth and consider the
non-local velocity field v[·](·) : (µ, x) ∈Pc(K)× Rd 7→

∫
Rd H(x, y)dµ(y).

Then, v[·](·, ·) satisfies (F), (B) and (D) and the first order variations x ∈ supp(µ) 7→ Dxv[µ](x)
and x ∈ supp(µ) 7→

∫
Rd lΓ. ◦(t,x)(y)dµ(y) can be computed explicitly as

Dxv[µ](x) =
∫
Rd

DxH(x, y)dµ(y),∫
Rd

lΓ. ◦x(y)dµ(y) =
∫
Rd

DyH(x, y)dµ(y).

where lΓ. ◦x(·) is the matrix-valued map made of the barycenters γ̄i,◦x (·) of the minimal selections ∂◦µvi[µ](x)
in the extended subdifferentials of the components (vi) of the non-local velocity field at x ∈ Rd.

Proof. The Lipschitz estimates and the regularity in the sense of Definition 19 can be derived using
Kantorovich duality and the results of Proposition 2. For the first order variations, apply a classical
differentiation under the integral sign result for the first one and Proposition 2 to the components
µ 7→

∫
Rd H

i(x, y)dµ(y) for any fixed x ∈ supp(µ) for the second one.

We summarize these results in the form of an overview of possible functions satisfying (H) in the
following corollaries.

Corollary 7 (Example of terminal costs satisfying the hypotheses of Theorem 1). If φ : P(K) 7→ R
is either a (suitable) power of a smooth integral functional or the variance functional, then it satisfies
hypotheses (C), (B) and (D).

Corollary 8 (Example of running costs satisfying the hypotheses of Theorem 1). Let l : (x, ω) ∈
×Rd × Rd× 7→ l(t, x, ω) ∈ R be a C1 function K ⊂ Rd be compact, and define the running cost L :
(µ, ω) ∈P(K)× U 7→ R by

L(µ, ω) =
∫
Rd
l(x, ω(x))dµ(x).

Then, L(·, ·) satisfies hypotheses (L), (B) and (D). Moreover, the barycenter of the minimal selection
in its extended subdifferential ∂◦µL(µ, ω) is determined at any µ ∈P(K) by

γ̄◦L ≡ ∇µL(µ, ω) : x ∈ supp(µ) 7→ ∇xl(x, ω(x)) + Dxω(x)>∇ul(x, ω(x)).

Proof. The proof only involves elementary Lipschitz-type estimates and the use of Proposition 2.

Notice again that it is possible to take any power α ≥ 1 of the previous cost and any power α > 0
provided that the functional does not vanish along the optimal pair control-trajectory (u∗(·), µ∗(·)) ∈
Lip([0, T ],Pc(Rd))× U .

The following result shows that functionals based on kernels are regular. They appear in several
mean-field models for interaction, see e.g. [7, 8, 14, 21, 26, 29, 31].

Corollary 9 (Example of non-local vector fields satisfying the hypotheses of Theorem 1). If v[·](·, ·) :
P(K)× [0, T ]×K → Rd is defined for any (µ, t, x) by

v[µ](t, x) = (H(t, ·) ? µ(t))(x) + vl(t, x),

for some sublinear interaction kernel H ∈ L∞([0, T ], C1(Rd,Rd)) and vector field vl(·, ·) measurable in t
as well as sublinear and Lipschitz in x, then it satisfies hypotheses (F), (B) and (C).
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When the compactified Hamiltonian of the system ω ∈ U 7→ Hc(t, ν∗(t), ω) is differentiable at u∗(t) for
L 1-almost every t ∈ [0, T ], the maximization condition can be rewritten as a usual first-order condition.

Corollary 10 (Differentiation of the Hamiltonian). Suppose that u∗(t) ∈ int(U) for L 1-almost every
t ∈ [0, T ] and that the compactified Hamiltonian ω ∈ U 7→ Hc(t, ν∗(t), ω) is Fréchet differentiable at u∗(t)
for L 1-almost every t ∈ [0, T ]. Then u∗(t) verifies:

DωHc(t, ν∗(t), u∗(t)) · v = 0 (7)

for all v ∈ U and for L 1-almost every t ∈ [0, T ].

2 Analysis in Wasserstein spaces
In this section, we recall several notions about analysis in the space of probability measures, opti-
mal transport theory, Wasserstein spaces, continuity equations and subdifferential calculus in the space
(P2(Rd),W2). We prove also a differentiation result for non-local flows of diffeomorphisms with respect
to their initial measure in Theorem 5.

2.1 The Optimal Transport problem and Wasserstein spaces
In this section, we introduce some classical notations and results of optimal transport and analysis in
Wasserstein spaces.

We denote by P(Rd) the space of Borel probability measures over Rd, and by Pp(Rd) for some p ≥ 1
the subset of P(Rd) of measures having finite p-th moment, i.e.

Pp(Rd) =
{
µ ∈P(Rd) s.t.

∫
Rd
|x|pdµ(x) < +∞

}
.

The support of a Borel probability measure µ ∈ P(Rd) is defined as the closed set supp(µ) =
{x ∈ Rd s.t. µ(N ) > 0 for any neighbourhood N of x}. We denote by Pc(Rd) the subset of P(Rd) of
measures which supports are compact.

We say that a sequence (µn) ⊂ P(Rd) of Borel probability measures converges narrowly towards
µ ∈P(Rd), denoted by µn ⇀ µ, provided that∫

Rd
φ(x)dµn(x) −→

n→+∞

∫
Rd
φ(x)dµ(x) for all φ ∈ C0

b (Rd) (8)

where C0
b (Rd) denotes the set of continuous and bounded functions from Rd into R.

We recall the definitions of pushforward of a Borel probability measure through a Borel map and
transport plan.

Definition 11 (Pushforward of a measure through a Borel map). Given a Borel probability measure
µ ∈P(Rd) and a Borel map f : Rd → Rd, the pushforward f#µ of µ through f is defined by f#µ(B) =
µ(f−1(B)) for any Borel set B ⊂ Rd.

Definition 12 (Transport plan). Given two probability measures µ and ν on Rd, we say that γ ∈
P(Rd×Rd) is a transport plan between µ and ν, denoted by γ ∈ Γ(µ, ν), provided that γ(A×Rd) = µ(A)
and γ(Rd×B) = ν(B) for any Borel subsets A,B ⊂ Rd. Equivalently, it satisfies π1

#γ = µ and π2
#γ = ν.

Given a probability measure γ ∈ R2d, we also denote by Γ(γ, ν) the set of plans lµ.. ∈ P(R3d) such
that π1,2

# lµ.. = γ and π3
#lµ.. = ν where π1,2 : (x, y, z) ∈ R3d 7→ (x, y) ∈ R2d.

We recall in the following Proposition three useful convergence results for sequences of probability
measures and functions (see e.g. [5, Chapter 5]).

Proposition 13 (Convergence results). Let (µn) ⊂ P(Rd) be a sequence narrowly converging to µ ∈
P(Rd), (fn) be a sequence of µ-measurable functions pointwisely converging to f and g ∈ C0(Rd).

(i) Suppose that x 7→ |g(x)| is uniformly integrable with respect to the family {µn}∞n=1, i.e
lim

k→+∞

∫
{|g(x)|≥k} |g(x)|dµn(x) = 0 for all n ≥ 1. Then, the sequence (

∫
Rd g(x)dµn(x)) ⊂ R con-

verges to
∫
Rd g(x)dµ(x) as n→ +∞.
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(ii) The sequence (g#µn) ⊂P(Rd) narrowly converges to g#µ as n→ +∞.

(iii) (Vitali convergence theorem) Suppose that the family x 7→ |fn(x)| is uniformly integrable with
respect to the measure µ, i.e. lim

k→+∞

∫
{|fn(x)|≥k} |fn(x)|dµ(x) = 0 for all n ≥ 1 and also assume

that |f(x)| < +∞ for µ-almost every x ∈ Rd. Then (fn) converges uniformly to f in L1(Rd;µ) as
n→ +∞.

In the 40’s, Kantorovich introduced the optimal mass transportation problem in its modern mathe-
matical formulation : given two probability measures µ, ν ∈P(Rd) and a cost function c : Rd×Rd → R,
find a transport plan γ ∈ Γ(µ, ν) such that∫

R2d
c(x, y)dγ(x, y) = min

{∫
R2d

c(x, y)dγ′(x, y) s.t. γ′ ∈ Γ(µ, ν)
}
.

This problem has been extensively studied in very broad contexts (see e.g. [5, 30]) with high levels
of generality on the underlying spaces and cost functions. In the particular case where c(x, y) = |x− y|p
for some real number p ≥ 1, the optimal transport problem can be used to define a distance over the
subspace Pp(Rd) of P(Rd).

Definition 14 (Wasserstein distance and Wasserstein spaces). Given two probability measures µ, ν ∈
Pp(Rd), the p-Wasserstein distance Wp between µ and ν is defined by

Wp(µ, ν) = min
{(∫

R2d
|x− y|pdγ(x, y)

)1/p
s.t. γ ∈ Γ(µ, ν)

}
.

The set of plans γ ∈ Γ(µ, ν) achieving this optimal value is denoted 1 by Γo(µ, ν) and referred to as
the set of optimal transport plans between µ and ν. The space (Pp(Rd),Wp) of probability measures with
finite p-th moment endowed with the p-th Wasserstein metric is called the Wasserstein space of order p.

We recall some of the interesting properties of these spaces in the following Proposition (see e.g. [5,
Chapter 7] or [30, Chapter 6]).

Proposition 15 (Properties of the Wasserstein distance). The topology induced in Pp(Rd) by the
Wasserstein metric Wp metrizes the weak topology of probability measures induced by the narrow conver-
gence (8), i.e.

Wp(µn, µ) −→
n→+∞

0 ⇐⇒ µn ⇀ µ and
∫
Rd
|x|pdµn(x) −→

∫
Rd
|x|pdµ(x)

For compactly supported measures µ, ν ∈ Pc(Rd), the Wasserstein distances are ordered, i.e. p1 ≤
p2 =⇒ Wp1(µ, ν) ≤Wp2(µ, ν).

When µ, ν ∈Pc(Rd) and p = 1, the following Kantorovich-Rubinstein duality formula holds :

W1(µ, ν) = sup
{∫

Rd
φ(x) d(µ− ν)(x) s.t. Lip(φ,Rd) ≤ 1

}
. (9)

In what follows, we shall mainly restrict our considerations to the Wasserstein spaces of order 1 and
2 built over Pc(Rd). We end this introductory paragraphs by recalling the concepts of disintegration
and barycenter in the context of optimal transport.

Definition 16 (Disintegration and barycenter). Let µ, ν ∈Pp(Rd) and γ ∈ Γ(µ, ν) be a transport plan
between µ and ν. We define the disintegration {γx}x∈Rd ⊂ Pp(Rd) on its first marginal µ, usually
denoted by γ =

∫
γxdµ(x), as the µ-almost uniquely determined Borel family of probability measures

such that ∫
R2d

φ(x, y)dγ(x, y) =
∫
Rd

∫
Rd
φ(x, y)dγx(y)dµ(x) for any φ ∈ Cb0(R2d).

The barycenter γ̄ ∈ Lp(Rd,Rd;µ) of the plan γ is then defined by

γ̄ : x ∈ supp(µ) 7→
∫
Rd
y dγx(y).

1We omit the dependence on p for clarity and conciseness.
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2.2 The continuity equation on Rd with non-local velocities
In this section, we introduce the continuity equations with non-local velocities in (Pc(Rd),W1). These
equations write

∂tµ(t) +∇ · (v[µ(t)](t, ·)µ(t)) = 0. (10)

where t 7→ µ(t) is a narrowly continuous family of probability measures on Rd and (t, x) 7→ v[µ](t, x) is
a Borel family of vector fields for any µ ∈Pc(Rd) satisfying the condition∫ T

0

∫
Rd
|v[µ(t)](t, x)|dµ(t)(x)dt < +∞. (11)

Equation (10) has to be understood in the sense of distributions, i.e.∫ T

0

∫
Rd

(∂tφ(t, x) + 〈∇xφ(t, x), v[µ(t)](t, x)〉) dµ(t)(x)dt = 0 for all φ ∈ C∞c ([0, T ]× Rd), (12)

or alternatively as

d

dt

∫
Rd
φ(x)dµ(t)(x) =

∫
Rd
〈∇φ(x), v[µ(t)](t, x)〉dµ(t)(x) for all φ ∈ C∞c (Rd), (13)

for L 1-almost every t ∈ [0, T ].
As already mentioned in the Introduction, these equations are interesting for a large number of

applications. It is important to notice that v[µ] depends on the whole measure µ and not only on its
values at some points as it is usually the case for hyperbolic PDEs.

We now recall a Theorem which was first derived in [4] providing existence, uniqueness and repre-
sentation formula for solutions of (10). We state here a version explored in [27, 28] that is more suited
to our control-theoretic framework.

Theorem 2 (Existence, uniqueness and representation of solutions for (10)). Consider a non-local
velocity field v[·](·, ·) defined as

v : µ ∈Pc(Rd) 7→ v[µ](·, ·) ∈ L∞(R, C1(Rd,Rd) ∩ L∞(Rd)), (14)

and satisfying the following assumptions

(H’)

� There exists positive constants L1 and M such that

|v[µ](t, x)− v[µ](t, y)| ≤ L1|x− y| and |v[µ](t, x)| ≤M(1 + |x|)

for every µ ∈Pc(Rd), t ∈ R and (x, y) ∈ Rd × Rd;

� There exists a positive constant L2 such that

‖v[µ](t, ·)− v[ν](t, ·)‖C0(Rd) ≤ L2W1(µ, ν)

for every µ, ν ∈Pc(Rd) and t ∈ R;

Then for every initial datum µ0 ∈Pc(Rd), the Cauchy problem{
∂tµ(t) +∇ · (v[µ(t)](t, ·)µ(t)) = 0
µ(0) = µ0,

(15)

admits a unique solution µ(·) in C0(R,Pc(Rd)). This solution is locally Lipschitz in t with respect to
the W1-metric. Besides, if µ0 is absolutely continuous with respect to the Lebesgue measure, then µ(t) is
also absolutely continuous for all times t ≥ 0.
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Furthermore for every T > 0 and every µ0, ν0 ∈ Pc(Rd), there exists RT > 0 depending on supp(µ0)
and CT > 0 such that

supp(µ(t)) ⊂ B(0, RT ) and W1(µ(t), ν(t)) ≤ CTW1(µ0, ν0),

for all times t ∈ [0, T ] and any solutions µ(·), ν(·) of (15).
Moreover, let (Φv(0,t)[µ0](·))t≥0 be the family of flows of diffeomorphisms generated by the non-local

vector field v[µ(t)](t, ·), defined as the unique solution of

∂tΦv(0,t)[µ0](x) = v[µ(t)]
(
t,Φv(0,t)[µ0](x)

)
,
(

Φv(0,t)[µ0](x)
)
|t=0

= x for all x in Rd. (16)

Then, the unique solution of the Cauchy problem (15) is expressed at time t as µ(t) = Φv(0,t)[µ0](·)#µ
0.

We recall below a standard result of the theory of finite dimensional ODEs, which links the differential
of the flow of diffeomorphisms of an ODE at time t to the solution of a corresponding linearised Cauchy
problem (see e.g. [10]).

Proposition 17 (Differential of a flow). Let (t, x) 7→ v(t, x) be measurable in t as well as sublinear and
C1 in x. Define the family of C1-flows (Φvt (·))t≥0 associated to v(·, ·) by (16) in the case where v(·, ·) is
independent from µ(·).

Then, it holds that the differential DxΦv(s,t)(x) · h of the flow between times s and t, evaluated at x
and applied to some vector h ∈ Rd is the unique solution w(·, x) of the linearised Cauchy problem

∂tw(t, x) = Dxv(t,Φv(s,t)(x)) · w(t, x) , w(s, x) = h.

This characterization is essential for proving the Pontryagin Maximum Principle in the usual finite
dimensional setting using the needle-like variations approach. We shall prove in Theorem 5 a general-
ization of this result in the non-local case where the initial measure is perturbed by a Lipschitz family
of continuous and bounded maps. Such a result is crucial to study the first order perturbation induced
by a needle-like variation on a measure curve in the non-local setting.

2.3 Subdifferential calculus in (P2(Rd), W2)
In this section, we recall some elements of subdifferential calculus in the Wasserstein space (P2(Rd),W2).
For a thorough introduction, see [5, Chapters 9-11] where the full theory is developed and applied to the
study of gradient flows.

Throughout this section, we denote by φ : P2(Rd) → (−∞,+∞] a proper, lower-semicontinuous
functional. We denote the effective domain D(φ) of φ(·) as the set of points where it is finite, i.e.

D(φ) = {µ ∈P2(Rd) s.t. φ(µ) < +∞}.

We further assume that for τ∗ > 0 small enough, the Moreau-Yosida relaxation of φ(·) defined by

ΦM(µ, τ ; ·) : ν 7→ 1
2τ W

2
2 (µ, ν) + φ(ν) (17)

attains a minimum at some µτ ∈ D(φ) for any τ ∈ (0, τ∗). This technical assumption is satisfied whenever
φ(·) is bounded from below and at least lower-semicontinuous and is crucial for proving the main results
of the theory developed in [5, Chapter 10].

We start by introducing the concept of extended subdifferentials for a functional defined over the
Wasserstein space (P2(Rd),W2).

Definition 18 (Extended subdifferential). Let µ1 ∈ D(φ). We say that a transport plan γ ∈P2(Rd×Rd)
belongs to the extended (Fréchet) subdifferential ∂φ(µ1) of φ at µ1 provided that

(i) π1
#γ = µ1,

(ii) ∀µ3 ∈P2(Rd) , φ(µ3)− φ(µ1) ≥ inf
lµ.. ∈Γ1,3

o (γ,µ3)

[∫
R3d
〈x2, x3 − x1〉dlµ..

]
+ o(W2(µ1, µ3)).

where Γ1,3
o (γ, µ3) = {lµ.. ∈ Γ(γ, µ3) s.t. π1,3

# lµ.. ∈ Γo(µ1, µ3)}. Moreover, we say that an extended subdif-
ferential γ is induced by a plan if there exists ξ ∈ L2(Rd,Rd;µ1) such that γ = (Id × ξ)#µ

1. In which
case, ξ(·) belongs to the classical subdifferential ∂φ(µ) of φ(·) at µ.
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We say that a transport plan γ ∈P2(Rd×Rd) belongs to the strong extended subdifferential ∂Sφ(µ1)
of φ(·) at µ1 if the following stronger condition holds

∀µ3 ∈P2(Rd) , ∀lµ.. ∈ Γ(γ, µ3) , φ(µ3)− φ(µ1) ≥
∫
R3d
〈x2, x3 − x1〉dlµ.. + o(W2,lµ.. (µ1, µ3)). (18)

where for lµ.. ∈P(R3d) the quantity W2,lµ.. (µ1, µ3) is defined by

W2,lµ.. (µ1, µ3) =
(∫

R2d
|x1 − x3|2dlµ.. (x1, x2, x3)

)1/2
.

We introduce in the next definition two technical notions that will prove useful in order to characterize
the fact that an extended subdifferential is empty or not.

Definition 19 (Regular functionals over (P2(Rd),W2) and metric slope). A proper and lower semicon-
tinuous functional φ(·) is said to be regular provided that whenever (µn) ⊂P2(Rd) and (γn) ⊂P2(R2d)
are taken such that

µn
W2−→ µ in P2(Rd) , φ(µn) −→ φ̃ in R , γn ∈ ∂Sφ(µn) ∀n ≥ 1 , γn

W2−→ γ in P2(R2d),

it implies that γ ∈ ∂φ(µ) and φ̃ = φ(µ).
Furthermore, we define the metric slope |∂φ|(µ) of the functional φ(·) at µ ∈ D(φ) as

|∂φ|(µ) = limsup
ν→µ

[
(φ(µ)− φ(ν))+

W2(µ, ν)

]
.

where (•)+ denotes the positive part.

We presented several examples of regular functionals in Section 1.1. We are now ready to state a
general condition for the extended subdifferential of a lower-semicontinuous, proper and regular functional
to be non-empty. The proof can be found in [5, Theorem 10.3.10].

Theorem 3 (Link between extended subdifferentials and metric slopes). Let φ(·) be a proper, lower-
semicontinuous, bounded from below and regular functional over P2(Rd). Then, the extended subdif-
ferential ∂φ(µ) of φ(·) at some µ ∈ D(φ) is non-empty if and only if its metric slope |∂φ|(µ) at µ is
finite.

In which case, there exists a unique minimal selection in ∂φ(µ), denoted by ∂◦φ(µ), satisfying(∫
R2d
|r|2d(∂◦φ(µ))(x, r)

)1/2
= min

{(∫
R2d
|r|2dγ(x, r)

)1/2
s.t. γ ∈ ∂φ(µ)

}
= |∂φ|(µ).

This minimal selection can be explicitly characterized as follows : let µτ be the minimizer of the Moreau-
Yosida functional (17) for some τ ∈ (0, τ∗). Then there exists a family of strong subdifferentials (γτ ) ⊂
(∂Sφ(µτ )) which converges towards ∂◦φ(µ) in the W2-metric along any vanishing sequence τn ↓ 0.

Definition 20 (Wasserstein gradient). Whenever the minimal selection ∂◦φ(µ) is induced by a map, it
is called the Wasserstein gradient of φ(·). It is denoted by ∇µφ(µ) ∈ L2(Rd,Rd;µ) and it coincides with
the barycenter of the minimal selection.

The main interest of subdifferential calculus in the space (P2(Rd),W2) is to compute derivatives of
functionals along measure curves. However, the general chain rule described in [5, Proposition 10.3.18]
only applies to the case of a curve ε 7→ µ(ε) = G(ε, ·)#µ generated by smooth functions G(ε, ·) when one
restricts himself to strong subdifferentials. Yet, there is no reason in general for the strong subdifferential
of a functional to be non-empty. In Proposition 21, we condense some well known results of [5, Chapter
10] in order to provide a chain rule that allows to compute derivatives along smooth vector fields using
the minimal selection ∂◦φ(µ). For simplicity, we state this result in the framework of the Wasserstein
space Pc(Rd).

Proposition 21 (Minimal selection and chain rule along smooth vector fields). Let µ ∈ Pc(Rd) and
K = ∪x∈supp(µ)B(x, 1). Let φ : P(K)→ (−∞,+∞] be a functional satisfying hypotheses (C) and (D)
of Theorem 1. Define G ∈ Lip((−ε̄, ε̄), C0(Rd,Rd)) a family of continuous functions with G(0, ·) = Id,
supp(G(ε, ·)#µ) ⊂ K for all ε ∈ (−ε̄, ε̄) and F : x 7→ d

dε [G(ε, x)]ε=0 being C0 as well.
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Then it holds that
d

dε
[φ(G(ε, ·)#µ)]ε=0 =

∫
R2d
〈γ̄◦(x),F(x)〉dµ(x),

where γ̄◦ ∈ L2(Rd,Rd;µ) is the barycenter of ∂◦φ(µ).

Proof. First remark that it holds for any ν ∈P(K)

(φ(µ)− φ(ν))+ ≤ Lip(φ,P(K))W2(µ, ν)

where Lip(φ,P(K)) is the Lipschitz constant of φ(·) on P(K). Hence, |∂φ|(µ) is uniformly bounded
by Lip(φ,P(K)). Moreover, the assumption that φ(·) is bounded from below and Lipschitz on sets
of uniformly compactly supported measures implies that for τ∗ > 0 small enough, the Moreau-Yosida
functional ΦM(µ, τ ; ·) defined in (17) attains a minimum point µτ ∈ D(φ) ⊂ P(K) for any τ ∈ (0, τ∗).
Thus, by Theorem 3, ∂φ(µ) is non-empty and contains at least the minimal selection ∂◦φ(µ) at any
µ ∈P(K).

Consider a sequence (τn) ⊂ (0, τ∗) converging to 0 and the corresponding sequence of strong sub-
differentials (γτn) ⊂ (∂Sφ(µτn)) converging towards ∂◦φ(µ) in the W2-metric. Pick ε ∈ (0, ε̄) small
enough and choose lµ.. τnε = (π1, π2,G(ε, ·) ◦ π1)#γτn ∈ Γ(γτn ,G(ε, ·)#µτn). By the definition of strong
subdifferentials given in (18), it holds that

φ(G(ε, ·)#µτn)− φ(µτn)
ε

≥
∫
R2d
〈r, G(ε, x)− x

ε
〉dγτn(x, r) + o(1). (19)

since
o(W2,lµ.. (G(ε, ·)#µτn , µτn)) = o

(
‖G(ε, ·)− Id‖L2(Rd;µτn )

)
= o(ε) for all n ≥ 1.

Remark that the left hand side of (19) is bounded over P(K) uniformly with respect to n ≥ 1 and
ε ∈ (0, ε̄) by Lipschitzianity of φ(·).

We recall that γτn
W2−→ ∂◦φ(µ) in P2(Rd × Rd). Notice that the whole sequence (µτn) is in P(K),

thus for all ε ∈ (0, ε̄) the maps x 7→ |(G(ε, x)−x)/ε|2 are uniformly integrable with respect to {π1
#γτn}

+∞
n=1.

Hence, the maps (x, r) 7→ |〈r, (G(ε, x)− x)/ε〉| are uniformly integrable with respect to {γn}+∞n=1 and the
application of Proposition 13-(i) implies that for all ε ∈ (0, ε̄),∫

R2d
〈r, G(ε, x)− x

ε
〉dγτn(x, r) −→

τn↓0

∫
R2d
〈r, G(ε, x)− x

ε
〉d(∂◦φ(µ))(x, r) =

∫
Rd
〈γ̄◦(x), G(ε, x)− x

ε
〉dµ(x)

(20)
using the notion of barycenter of a plan introduced in Definition 16.

Moreover, the Lipschitz regularity in the W1-metric of φ(·) over P(K) together with Proposition
13-(ii) imply that

φ(G(ε, ·)#µτn) −→ φ(G(ε, ·)#µ). (21)

Thus, merging (19),(20) and (21), we prove that for any ε ∈ (0, ε̄) with ε̄ > 0 small enough, it holds

φ(G(ε, ·)#µ)− φ(µ)
ε

≥
∫
Rd
〈γ̄◦(x), G(ε, x)− x

ε
〉dµ(x) + o(1).

Invoking similar arguments, the family of maps (|〈γ̄◦(·), (G(ε, ·)− Id)/ε〉|)ε∈(0,ε̄) is uniformly inte-
grable with respect to µ and it holds that |〈γ̄◦(·),F(·)〉| < +∞ µ-almost everywhere. Therefore, letting
ε ↓ 0 and invoking Proposition 13-(iii), we recover that

lim
ε↓0

[
φ(G(ε, ·)#µ)− φ(µ)

ε

]
≥
∫
Rd
〈γ̄◦(x),F(x)〉dµ(x),

Following the same steps with ε ∈ (−ε̄, 0), we obtain the converse inequality for ε ↑ 0. Since we
assumed that ε 7→ φ(G(ε, ·)#µ) is differentiable at ε = 0 by (D), these limits coincide and it holds

d

dε
[φ(G(ε, ·)#µ)]ε=0 =

∫
Rd
〈γ̄◦(x),F(x)〉dµ(x),

which proves our claim.
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Remark 22 (The case ∂Sφ(µ) 6= ∅). When ∂Sφ(µ) is non-empty, the previous chain rule can be applied
with any strong subdifferential and for more general classes of vector fields, see e.g. [5, Remark 10.3.2].

The interest of proving this kind of result for the minimal selection is twofold. First, as recalled in
Theorem 3, a minimal selection always exists when the extended subdifferential is non-empty. Second,
minimal selections can be computed explicitly even in very general settings for a wide range of functionals
(see e.g. [5, Chapter 10.4] or Section 1.1). In such cases, it is usually induced by its barycenter, yielding
the existence of a Wasserstein gradient for the functional.

2.4 Directional derivatives of non-local flows
In this section, we prove the existence of directional derivatives along measure curves generated by
suitable Lipschitz families of continuous and bounded maps for non-local flows. Such derivatives are
characterized as the only solution of a linearised Cauchy problem. This result can be seen as a gener-
alization to the Wasserstein setting of Proposition 17 and will be useful in the proof of Theorem 1 in
Section 3.2.

Before stating our result, we recall the classical Banach Fixed Point Theorem with parameter (see
e.g. [10, Theorem A.2.1]).

Theorem 4 (Banach fixed point theorem with parameter). Let X be a Banach space, S be a metric
space and Λ : X × S → X be a continuous mapping such that, for some κ < 1,

‖Λ(x, s)− Λ(y, s)‖X ≤ κ‖x− y‖X for all x, y ∈ X and s ∈ S.

Then for each s ∈ S, there exists a unique fixed point x(s) ∈ X of Λ(·, s). Moreover, the map s 7→ x(s)
is continuous for any s ∈ S and y ∈ X it holds

‖y − x(s)‖X ≤
1

1− κ‖y − Λ(s, y)‖X . (22)

Theorem 5 (Directional derivative of a non-local flow with respect to the initial data). Let µ ∈Pc(Rd),
ε̄ > 0 be a small parameter, G(·, ·) ∈ Lip((−ε̄, ε̄), C0(Rd,Rd)) be a family of bounded maps with G(0, ·) =
Id and F : x ∈ supp(µ) 7→ d

dε [G(ε, x)]ε=0 be continuous as well.
Let v[·](·, ·) be a non-local vector field satisfying hypotheses (F),(B),(D), Φv(0,·)[·](·) be the correspond-

ing family of non-local flows as defined in Theorem 2 and µ(·) be the unique solution of the corresponding
Cauchy problem (15) starting from µ.

Then, the map ε ∈ (−ε̄, ε̄) 7→ Φv(0,t)[G(ε, ·)#µ](x) admits a derivative at ε = 0 for all (t, x) ∈ [0, T ]×
B(0, RT ) that we denote by wΦ(t, x). It can be characterised as the unique solution to the Cauchy problem

∂tw(t, x) = Dxv[µ(t)]
(
t,Φv(0,t)[µ](x)

)
w(t, x)

+
∫
Rd

lΓ. ◦(t,Φv(0,t)[µ](x)
) (Φv(0,t)[µ](y)

)
·
[
DxΦ(0,t)[µ](y)F(y) + w(t, y)

]
dµ(y),

w(0, x) = 0

(23)

where for all (t, z), lΓ. ◦(t,z)(·) is the matrix-valued map made of the barycenters of the minimal selections
∂◦µv

i[µ∗(t)](t, z) in the extended subdifferential of the components of µ 7→ vi[µ](t, z) at µ∗(t).

Proof. We follow a classical scheme of proof used in the finite dimensional setting to show that flows of
diffeomorphims admit directional derivatives characterized as the unique solution of a linearised Cauchy
problem (see e.g. [10, Theorem 2.3.1].

First, we define Ω = B(0, RT ) and we introduce the operator ΛΦ : w ∈ C0([0, T ]×Ω,Rd) 7→ ΛΦ(w) ∈
C0([0, T ]× Ω,Rd) defined for all (t, x) ∈ [0, T ]× Ω by

ΛΦ(w)(t, x) = x+
∫ t

0
Dxv[µ(s)]

(
s,Φv(0,s)[µ](x)

)
w(s, x)ds

+
∫ t

0

∫
Rd

lΓ. ◦(s,Φv(0,s)[µ](x)
) (Φv(0,s)[µ](y)

)
·
[
DxΦ(0,s)[µ](y)F(y) + w(s, y)

]
dµ(y)ds.

We want to show that this operator admits a unique fixed point. Afterwards, we prove that it
coincides with the map which to every (t, x) associates the derivative at ε = 0 of the family of non-local
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flows ε 7→ Φv(0,t)[G(ε, ·)#µ](x). With this goal, we introduce a parameter α > 0 that will be chosen so
that ΛΦ(·) is contractive with respect to the equivalent norm

‖w‖αC0([0,T ]×Ω) = sup
(t,x)∈[0,T ]×Ω

[
e−2αt|w(t, x)|

]
. (24)

Remark that for any w1, w2 ∈ C0([0, T ]× Ω,Rd) and any (t, x) ∈ [0, T ]× Ω, it holds

|ΛΦ(w2)(t, x)− ΛΦ(w1)(t, x)| ≤
∫ t

0

∣∣∣Dxv[µ(s)]
(
s,Φv(0,s)[µ](x)

)
· (w2(s, x)− w1(s, x))

∣∣∣ds
+
∫ t

0

∫
Rd

∣∣∣∣lΓ. ◦(s,Φv(0,s)[µ](x)
) (Φv(0,s)[µ](y)

)
· (w2(s, y)− w1(s, y))

∣∣∣∣dµ(y)ds

≤
∫ t

0

(
L1|w2(s, x)− w1(s, x)|+ L2 ‖w2(s, ·)− w1(s, ·)‖L1(µ)

)
ds

≤
∫ t

0
(L1 + L2) ‖w2(s, ·)− w1(s, ·)‖C0(Ω) ds

≤
∫ t

0
e2αs(L1 + L2) ‖w2(·, ·)− w1(·, ·)‖αC0([0,T ]×Ω) ds

≤ e2αt − 1
2α (L1 + L2) ‖w2(·, ·)− w1(·, ·)‖αC0([0,T ]×Ω) .

since µ(Ω) = 1. Here, we choose

L1 =
∥∥∥Dxv[µ(·)](·,Φv(0,·)[µ](·))

∥∥∥
C0([0,T ]×Ω)

and L2 =
∥∥∥∥lΓ. ◦(·,Φv(0,·)[µ](·)

)(·)∥∥∥∥
C0([0,T ]×Ω)

,

which exists by hypotheses (F) and (B). Multiplying both sides of the inequality by e−2αt and taking
the supremum over (t, x) in the left-hand side yields the desired contractivity with a constant equal to
1/2 provided that α ≥ (L1 + L2). It is then possible to apply Theorem 4 to obtain the existence of a
unique fixed point wΦ(·, ·) ∈ C0([0, T ]× Ω,Rd) of ΛΦ(·).

Define for ε ∈ (−ε̄, ε̄) the parametrized family of operators Ψε(·) : f ∈ C0([0, T ]× Ω,Rd) 7→ Ψε(f) ∈
C0([0, T ]× Ω,Rd) defined by

Ψε(f)(t, x) = x+
∫ t

0
v[f(s, ·)#(G(ε, ·)#µ)](s, f(s, x))ds. (25)

for all (t, x) ∈ [0, T ]×Ω. Up to defining again the equivalent norm ‖·‖αC0([0,T ]×Ω) as in (24) with a suitable
α > 0, it can be shown that this operator is contractive independently from ε as a direct consequence of
the Lipschitzianity hypotheses given in (F). We can thus invoke again Theorem 4 to obtain the existence
of a unique fixed point of Ψε(·) for each ε ∈ (−ε̄, ε̄). Notice that by definition, this family of fixed points
is precisely the parametrized family of non-local flows (t, x) 7→ Φv(0,t)[G(ε, ·)#µ](x).

We now define the map Φ̂v,ε(0,·)[µ](·) by

Φ̂v,ε(0,·)[µ](·) : (t, x) 7→ Φv(0,t)[µ](x) + εwΦ(t, x).

To conclude, we then need to show that

lim
ε7→0

∥∥∥∥1
ε

(
Φ̂v,ε(0,·)[µ](·)− Φv(0,·)[G(ε, ·)#µ](·)

)∥∥∥∥
C0([0,T ]×Ω)

= 0,

which will directly yield the existence and the characterization of the directional derivative of the flow
along (−ε̄, ε̄) 7→ G(ε, ·). By (22) in Theorem 4 and the equivalence of the C0-norms we introduced, there
exists a constant C > 0 independent from ε such that it holds

1
|ε|

∥∥∥Φ̂v,ε(0,·)[µ](·)− Φv(0,·)[G(ε, ·)#µ](·)
∥∥∥
C0
≤ 2C
|ε|

∥∥∥Φ̂v,ε(0,·)[µ](·)−Ψε(Φ̂v,ε(0,·)[µ](·))(·, ·)
∥∥∥
C0
.

Take now (s, x) ∈ [0, T ]× Ω. One has by definition of Φ̂v,ε(0,·)[µ](·) that

Φ̂v,ε(0,s)[µ](G(ε, x)) =Φv(0,s)[µ](G(ε, x)) + εwΦ(s,G(ε, x))

=Φv(0,s)[µ](x) + ε
(

DxΦv(0,s)[µ](x)F(x) + wΦ(s, x)
)

+ o(ε),
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by continuity of wΦ(s, ·) for all s ∈ [0, T ]
By assumptions (F), (B) and (D), we can apply the chain rule of Proposition 21 component-wise

on the vi to obtain that

v
[
Φ̂v,ε(0,s)[µ](·) ◦ G(ε, ·)#µ

]
(s, z) = v[Φv(0,s)[µ](·)#µ](s, z)

+ ε

∫
Rd

lΓ. ◦(s,z)
(

Φv(0,s)[µ](y)
) [

DxΦv(0,s)[µ](y)F(y) + wΦ(s, y)
]

dµ(y) + o(ε)
(26)

where for all (s, z) the map y 7→ lΓ. ◦(s,z)(y) = (γ̄i,◦(s,z)(y))1≤i≤d ∈ Rd×d is made of the barycenters of the
minimal selections in the extended subdifferentials of the vi’s.

Performing a Taylor expansion in the space variable for the non-local velocity field, it also holds that

v
[
Φv(0,s)[µ](·)#µ

] (
s,Φv(0,s)[µ](x) + εwΦ(s, x)

)
=v[Φv(0,s)[µ](·)#µ]

(
s,Φv(0,s)[µ](x)

)
+εDxv[Φv(0,s)[µ](·)#µ]

(
s,Φv(0,s)[µ](x)

)
· wΦ(s, x) + o(ε),

(27)
as well as

lΓ. ◦(s,Φv(0,s)[µ](x)+εwΦ(s,x)
) (Φv(0,s)[µ](y)

)
= lΓ. ◦(s,Φv(0,s)[µ](x)

) (Φv(0,s)[µ](y)
)

+ o(1) (28)

thanks to assumption (B) in which we state that z 7→ lΓ. ◦(t,z)(x) is continuous for all (s, x) ∈ [0, T ]×Rd .
Merging (25), (26) and (27), (28) and recalling the definition of wΦ(·, ·), it holds

Ψε
(

Φ̂v,ε(0,·)[µ](·)
)

(t, x) = x+
∫ t

0
v[Φv(0,s)[µ](·)#µ](s,Φv(0,s)[µ](x))ds

+ ε

∫ t

0
Dxv[Φv(0,s)[µ](·)#µ](s,Φv(0,s)[µ](x)) · wΦ(s, x)ds

+ ε

∫ t

0

∫
Rd

lΓ. ◦(s,Φv(0,s)[µ](x)
) (Φv(0,s)[µ](y)

) [
DxΦv(0,s)[µ](y)F(y) + wΦ(s, y)

]
dµ(y)ds+ o(ε)

= Φv(0,t)[µ](x) + εwΦ(t, x) + o(ε).

Therefore, we finally recover that

1
|ε|

∣∣∣Ψε(Φ̂ε(0,·)[µ](·))(t, x)− Φ̂ε(0,t)[µ](x)
∣∣∣ ≤ o(1) as ε→ 0 for all (t, x) ∈ [0, T ],

and conclude that

lim
ε→0

[∥∥∥∥1
ε

(
Φ(0,·)[G(ε, ·)#µ](·)− Φ̂ε(0,·)[µ](·)

)∥∥∥∥
C0([0,T ]×Ω)

]
= 0.

We thus proved that the derivative of ε ∈ (−ε̄, ε̄) 7→ Φv(0,t)[G(ε, ·)#µ](x) at ε = 0 exists for any (t, x)
and that it is the only solution of equation (23).

3 The Pontryagin Maximum Principle
In this section, we prove the main result of our article, that is the Pontryagin Maximum Principle in the
Wasserstein space. We first describe the proof for a simplified problem (P1) with no interaction field
v[·](·, ·) and no running cost L(·, ·) in Section 3.1. We then proceed to prove the PMP for the more
general problem (P) in Section 3.2. In what follows, we shall restrict our attention to the Wasserstein
space Pc(Rd) endowed with the W2-metric.
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3.1 The Pontryagin Maximum Principle with no interaction field and no
running cost

We start by proving the Pontryagin Maximum Principle for a simplified version of the optimal control
problem (P) presented in the Introduction. We consider the following optimal control problem in the
space of probability measures

(P1)


min
u∈U

[ϕ(µ(T ))] ,

s.t.
{
∂tµ(t) +∇ · (u(t)µ(t)) = 0,
µ(0) = µ0 ∈Pc(Rd),

(29)

and show the Pontryagin-type optimality conditions provided in the following theorem.

Theorem 6 (Pontryagin Maximum Principle for (P1)). Let (u∗(·), µ∗(·)) ∈ U × Lip([0, T ],Pc(Rd)) be
an optimal pair control-trajectory for (P1) and assume that hypotheses (U),(C),(B) hold. Then, there
exists a constant R > 0 and a curve ν∗(·) ∈ Lip([0, T ],P(B2d(0, R))) satisfying the following statements
:

(i) It solves the forward-backward system of continuity equations
∂tν
∗(t) +∇(x,r) · (J2d∇νHc(ν∗(t), u∗(t))ν∗(t)) = 0, in [0, T ]× R2d

π1
#ν
∗(0) = µ0,

π2
#ν
∗(T ) = (−γ̄◦ϕ)#µ

∗(T ),
(30)

where J2d is the symplectic matrix of R2d.
The compactified Hamiltonian Hc(·, ·) of the system is defined by

Hc : (ν, ω) ∈Pc(R2d)× U 7→
{
H(ν, ω) if ν ∈P(B2d(0, R))
+∞ otherwise

, (31)

where
H : (ν, ω) ∈Pc(R2d)× U 7→

∫
R2d
〈r, ω(x)〉dν(x, r) (32)

is the infinite dimensional Hamiltonian of the system.
The vector field (x, r) 7→ ∇νHc(ν∗(t), u∗(t))(x, r) = (Dxu

∗(t, x)>r, u∗(t, x)) is the Wasserstein
gradient of the compactified Hamiltonian for L 1-almost every t ∈ [0, T ], i.e. ∂◦νHc(ν∗(t), u∗(t)) =
(Id ×∇νHc(ν∗(t), u∗(t))(·, ·))#ν

∗(t).

(ii) It satisfies the Pontryagin maximization condition

Hc(ν∗(t), u∗(t)) = max
ω∈U

[Hc(ν∗(t), ω)] holds for almost every t ∈ [0, T ]. (33)

We split the proof of this result into several steps. In Step 1, we introduce the concept of needle-like
variation and compute explicitly the corresponding family of perturbed measures. In Step 2 we study
the first order perturbation of the final cost induced by the needle-like variation. We introduce in Step
3 a suitable costate propagating this information backward to the base point of the needle-variation. In
Step 4, we show that the curve introduced in Step 3 satisfies the conditions (i) and (ii) of the PMP.

Step 1 : Needle-like variations

We start by considering an optimal pair control-trajectory (u∗(·), µ∗(·)) ∈ U × Lip([0, T ],Pc(Rd))
along with the constant RT > 0 such that supp(µ(t)) ⊂ B(0, RT ) for all times t ∈ [0, T ]. Fix a control
ω ∈ U , a Lebesgue point τ ∈ [0, T ] of t 7→ u∗(t) ∈ C1(Rd,Rd) in the Bochner sense (see, e.g. [16]) and a
parameter ε ∈ [0, ε̄) with ε̄ > 0 small. We define the needle-like variation of parameters (ω, τ, ε) of u∗ as
follows

ũω,τε ≡ ũε : t 7→
{
ω if t ∈ [τ − ε, τ ],
u∗(t) otherwise.

(34)
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µ0

µ∗(τ − ε) µ∗(τ)

µ∗(T )

ω − u∗(τ)

Fω,τT ◦ Φu∗

(T,τ)(·)

µ̃τ (ε)

µ̃T (ε) = Gω,τT (ε, ·)#µ
∗(T )

Figure 1: Illustration of the effect of a needle-like variation on a measure curve.

We denote by t 7→ µ̃t(ε) the corresponding solution of the continuity equation starting from µ0 at
time t = 0. Notice that ũε(·) ∈ L1([0, T ], C1(Rd,Rd) ∩ L∞(Rd,Rd)), thus the corresponding continuity
equation is still well-posed.

The link between the perturbed measure µ̃T (ε) and the optimal measure µ∗(T ) at time T is given in
the following Lemma.

Lemma 23. There exists a family of functions Gω,τT (·, ·) ∈ Lip((−ε̄, ε̄), C0(Rd,Rd)) such that they are
C1-diffeomorphisms over B(0, RT ) for all ε ≥ 0 and it holds

µ̃T (ε) = Gω,τT (ε, ·)#µ
∗(T ). (35)

Moreover, there exists a constant RΦ
T > 0 depending on RT , LU and Lip(Φvt (·), B(0, RT )) such that for

all ε ∈ (−ε̄, ε̄) it holds supp(Gω,τT (ε, ·)#µ
∗(T )) ⊂ B(0, RΦ

T ).
This family of maps satisfies the following Taylor expansion with respect to the L2(Rd,Rd;µ∗(T ))-

norm
Gω,τT (ε, ·) = Id + εFω,τ

T ◦ Φu
∗

(T,τ)(·) + o(ε),

where
Fω,τ
T : x ∈ supp(µ∗(τ)) 7→ DxΦu

∗

(τ,T )(x) · [ω(x)− u∗(τ, x)] (36)

is a C0 mapping.

Proof. By definition of ũε(·, ·) in (34), it holds that

µ̃T (ε) = Φu
∗

(τ,T ) ◦ Φω(τ−ε,τ) ◦ Φu
∗

(τ,τ−ε) ◦ Φu
∗

(T,τ)(·)#µ
∗(T ) for all ε ∈ [0, ε̄).

Thus, by choosing Gω,τT (ε, ·) = Φu∗

(τ,T ) ◦ Φω(τ−ε,τ) ◦ Φu∗

τ−ε ◦ Φu∗

(T,τ)(·), formula (35) holds true for ε ∈ [0, ε̄).
Moreover, since the definition of ε 7→ Gω,τT (ε, ·) only involves functions that are continuous and uniformly
bounded over B(0, RT ), the perturbed measures µ̃T (·) are compactly supported in some bigger ball
B(0, R′T ) for all ε ∈ [0, ε̄) as well.

Recalling the definition of the flow x 7→ Φv(0,t)(x), one has by Lebesgue’s Differentiation Theorem (see
e.g. [18, Chapter 1.7]) :

Φu
∗

(τ,τ−ε)(x) = x−
∫ τ

τ−ε
u∗
(
t,Φu

∗

(τ,t)(x)
)

dt = x− εu∗(τ, x) + o(ε)

Φω(τ−ε,τ)(x) = x+
∫ τ

τ−ε
ω
(

Φω(τ−ε,t)(x)
)

dt = x+ εω(x) + o(ε)

since t 7→ Φu∗

τ−ε,t(x) and t 7→ Φu∗

t,τ (x) are C0 for any x and τ is a Lebesgue point of t 7→ u∗(t) ∈ C1(Rd,Rd)
in the Bochner sense. Chaining these two expansions and recalling that ω(·) and Φu∗

(τ,T )(·) are C1-smooth
yields

Φu
∗

(τ,T ) ◦ Φω(τ−ε,τ) ◦ Φu
∗

(τ,τ−ε)(x) = Φu
∗

(τ,T )(x) + εDxΦu
∗

(τ,T )(x) · [ω(x)− u∗(τ, x)] + o(ε).

Thus
Gω,τT (ε, x) = x+ εFω,τ

T ◦ Φu
∗

(T,τ)(x) + o(ε) for any x ∈ supp(µ∗(T )),
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where we choose
Fω,τ
T : x 7→ DxΦu

∗

(τ,T )(x) · [ω(x)− u∗(τ, x)] .

We can now extend Gω,τT (·, ·) from [0, ε̄) to (−ε̄, ε̄) in such a way that the left and right derivatives at
ε = 0 coincide, by defining e.g.

Gω,τT (ε, ·) ≡ Id + εFω,τ
T ◦ Φu

∗

(T,τ)(·)

whenever ε ∈ (−ε̄, 0]. Notice that since Fω,τ
T ◦ Φu∗

(T,τ)(·) is C0, both x ∈ B(0, RT ) 7→ Gω,τT (ε, x) and
x ∈ B(0, RT ) 7→ d

dε [Gω,τT (ε, x)]ε=0 define C0 mappings for all ε ∈ (−ε̄, ε̄). Moreover, the continuity
and uniform boundedness of DxΦu∗

(τ,T )(·) over B(0, RT ) along with hypothesis (U) imply that Fω,τ
T (·)

is bounded. Hence, there exists a constant RΦ
T > 0 such that supp(Gω,τT (ε, ·)#µ

∗(T )) ⊂ B(0, RΦ
T ) for all

ε ∈ (−ε̄, ε̄). Moreover, the fact that G(ε, ·) and Fω,τ
T (·) are continuous and bounded yields that they

are uniformly integrable with respect to the compactly supported measure µ∗(T ). An application of
Proposition 13−(iii) allows to conclude that this expansion holds in L2(Rd,Rd;µ∗(T )), which achieves
the proof.

We end this first step by a Lemma which is a direct consequence of Proposition 17.

Lemma 24. For any x ∈ supp(µ∗(τ)), the trajectory t 7→ Fω,τ
t (x) is the unique solution of the Cauchy

problem
∂tFω,τ

t (x) = Dxu
∗
(
t,Φu

∗

(τ,t)(x)
)
Fω,τ
t (x) , Fω,τ

τ (x) = ω(x)− u∗(τ, x). (37)

Proof. It is sufficient to apply Proposition 17 and to remark that here v(·) ≡ u∗(·).

Step 2 : First-order optimality condition

Thanks to the optimality of u∗(·), for each ε ∈ (0, ε̄) it holds

ϕ(µ̃T (ε))− ϕ(µ∗(T ))
ε

≥ 0, (38)

where ε ∈ (0, ε̄) 7→ µ̃T (ε) = Gω,τT (ε, ·)#µ
∗(T ).

Recalling that the measures ε 7→ µ̃T (ε) are uniformly compactly supported, that ϕ(·) satisfies hy-
potheses (C) and that the map ε ∈ (−ε̄, ε̄) 7→ ϕ(µ̃T (ε)) is differentiable at ε = 0 by hypothesis (D), we
can apply the chainrule given in Proposition 21 to the endpoint cost :

0 ≤ lim
ε↓0

[
ϕ(µ̃T (ε))− ϕ(µ∗(T ))

ε

]
=
∫
Rd
〈γ̄◦ϕ(x),Fω,τ

T ◦ Φu
∗

(T,τ)(x)〉dµ∗(T )(x), (39)

where γ̄◦ϕ ∈ L2(Rd,Rd;µ∗(T )) is the barycenter of the minimal selection ∂◦ϕ(µ∗(T )) in the extended
subdifferential of ϕ(·) at µ∗(T ).

We recover a formula similar to the classical finite dimensional case. The next step is to introduce a
suitable costate along with its backward dynamics that will propagate this first-order information to the
base-point τ of the needle-like variation while generating a Hamiltonian-like dynamical structure.

Step 3 : Backward dynamics and Pontryagin maximization condition

Equation (39) provides us with a first-order optimality condition which involves all the needle pa-
rameters (ω, τ) ∈ U × [0, T ]. We will show that it implies, along with the choice of a suitable costate,
the maximization condition (33).

To this aim, we build a curve ν∗(·) ∈ Lip([0, T ],Pc(R2d)) solution of the forward-backward system
of continuity equations 

∂tν
∗(t) +∇ · (V∗(t, ·, ·))ν∗(t)) = 0 in [0, T ]× R2d,

π1
#ν
∗(t) = µ∗(t) for all t ∈ [0, T ],

ν∗(T ) = (Id × (−γ̄◦ϕ))#µ
∗(T ),

(40)

associated to the vector field

V∗ : (t, x, r) ∈ [0, T ]× R2d 7→ (u∗(t, x),−Dxu
∗(t, x)>r). (41)
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Notice that, contrarily to system (30), we impose the more restrictive product structure on the terminal
datum.

This system is peculiar in the sense that the driving vector field V∗(·, ·, ·) does not satisfy verbatim
the hypotheses (H’) of Theorem 2. However, it exhibits a cascade structure, in the sense that one can
first determine uniquely µ∗(·) and then build ν∗(·) by disintegration. This fact is underlined by the
condition π1

#ν
∗(t) = µ∗(t) for all times t ∈ [0, T ]. We make this statement precise in the next Lemma.

Lemma 25 (Definition and well-posedness of solutions of (40)). Let µ∗(·) be the optimal trajectory for
(P1) generated by the optimal control u∗(·) ∈ U . For µ∗(T )-almost every x ∈ Rd, we consider the family
of flows of diffeomorphisms (ΦB,x(T,t)(·))t≤T associated to the Cauchy problem

∂twx(t, r) = −Du∗(t,Φu
∗

(T,t)(x))wx(t, r) , wx(T, r) = −γ̄◦ϕ(x), (42)

and define the curves of measures σ∗x : t 7→ ΦB,x(T,t)(·)#µ
∗(T ).

Define ν∗ : t 7→ (Φu∗

(T,t)(·), Id)#ν
∗
T (t) where2 ν∗T (t) =

∫
σ∗x(t)dµ∗(T )(x) ∈ Pc(R2d) for all times

t ∈ [0, T ]. Then, ν∗(·) is the unique solution of (40). Moreover, there exists two constants R′T , L′T > 0
such that

supp(ν∗(t)) ⊂ B2d(0, R′T ) and W1(ν∗(t), ν∗(s)) ≤ L′T |t− s| for all s, t ∈ [0, T ].

Proof. We recall that by hypothesis (U), the elements of U are uniformly sublinear and Lipschitz in
space for L 1-almost every times t ∈ [0, T ]. We recall that by Theorem 2, this implies the existence of a
constant RT > 0 depending on supp(µ0), T and LU such that supp(µ∗(·)) ⊂ B(0, RT ).

For µ∗(T )-almost every x ∈ Rd, the Cauchy problem (42) has a unique solution and the corresponding
curves t 7→ σ∗x(t) are uniquely determined. Moreover, the uniform Lipschitzianity of the elements of U
implies that these curves are uniformly compactly supported and Lipschitz in the W1-metric uniformly
with respect to x ∈ supp(µ∗(T )) with constants R̃T , L̃T depending on LU , T and ϕ(·).

We now define the curve ν∗(·) as in the statement of Lemma 25 above and show that it is a uniformly
compactly supported and Lipschitz solution of the forward-backward system (40). The fact that there
exists RT > 0 depending on RT and R̃T such that ν∗(·) is uniformly compactly supported in B2d(0, RT )
is a direct consequence of its definition. The Lipschitzianity results from the following computations.
For any ξ ∈ Lip(R2d,R) with Lip(ξ,R2d) ≤ 1, it holds∫

R2d
ξ(x, r)d(ν∗(t)− ν∗(s))(x, r) =

∫
Rd

∫
Rd
ξ(Φu

∗

(T,t)(x), r)d(σ∗x(t)− σ∗x(s))(r)dµ∗(T )(x)

≤
∫
Rd
|Φu

∗

(T,t)(x)− Φu
∗

(T,s)(x)|dµ∗(T )(x)

+
∫
Rd

Lip(Φu
∗

(T,s),R
d)W1(σ∗x(s), σ∗x(t))dµ∗(T )(x) ≤ L′T |t− s|

where L′T > 0 is a uniform constant depending on the time and space Lipschitz constants of the flows
of diffeomorphims (Φu∗

(T,t)(·))t∈[0,T ] and on LU . Taking the supremum over all the 1-Lipschitz functions
ξ(·, ·) and using the Kantorovich-Rubinstein duality (9) allows to conclude.

Finally, remark that for any ξ ∈ C∞c (R2d,R) it holds

d

dt

[∫
R2d

ξ(x, r)dν∗(t)(x, r)
]

= d

dt

[∫
Rd

∫
Rd
ξ(Φu

∗

(T,t)(x), r)dσ∗x(t)(r)dµ∗(T )(x)
]

=
∫
Rd

∫
Rd
〈∇xξ(Φu

∗

(T,t)(x), r), u∗(t,Φu
∗

(T,t)(x)〉dσ∗x(t)(r)dµ∗(T )(x)

+
∫
Rd

∫
Rd
〈∇rξ(Φu

∗

(T,t)(x), r),−Dxu
∗(t,Φu

∗

(T,t)(x))>r〉dσ∗x(t)(r)dµ∗(T )(x)

=
∫
R2d

〈
∇(x,r)ξ(x, r),

(
u∗(t, x)

−Dxu
∗(t, x)>r

)〉
dν∗(t)(x, r)

which along with the fact that ν∗(T ) = ν∗T (T ) = (Id × (−γ̄◦ϕ(·)))#µ
∗(T ) achieves the proof.

2Namely, ν∗
T (t) is defined as the µ∗(T )-almost uniquely determined measure which has µ∗(T ) as its first marginal and

which disintegration is given by {σ∗
x(t)}x (see Definition 16).
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We now show that the curve of measures ν∗(·) defined in Lemma 25 is such that the map Kω,τ (·)
defined by

Kω,τ : t ∈ [τ, T ] 7→
∫
R2d
〈r,Fω,τ

t ◦ Φu
∗

(t,τ)(x)〉dν∗(t)(x, r), (43)

is constant over [τ, T ]. We shall see in Step 4 that this is equivalent to the Pontryagin maximization
condition (33).

Lemma 26. The map t 7→ Kω,τ (t) defined in (43) is constant over [τ, T ] for any couple of needle
parameters (ω, τ).

Proof. Notice that by definition of ν∗(·), the map Kω,τ (·) rewrites

Kω,τ (t) =
∫
Rd

∫
Rd
〈r,Fω,τ

t ◦ Φu
∗

(T,τ)(x)〉dσ∗x(t)(r)dµ∗(T )(x) for all t ∈ [τ, T ]. (44)

The maps t ∈ [τ, T ] 7→ Fω,τ
t ◦ Φu∗

(T,τ)(x) and t ∈ [τ, T ] 7→ σ∗x(t) are Lipschitz, uniformly with respect to
x ∈ supp(µ∗(T )). The integrand (x, r) 7→ 〈r,Fω,τ

t ◦Φu∗

(T,τ)(x)〉 is bounded with respect to x and Lipschitz
with respect to r, uniformly with respect to t ∈ [τ, T ]. Hence, t 7→ Kω,τ (t) is Lipschitz as well. It will
therefore be constant provided that its derivative - which exists L 1-almost everywhere - is equal to zero.

Observe that, using formula (13) and the definition of V∗ in (25), it holds

d

dt
Kω,τ (t) =

∫
Rd

∫
Rd
〈r, ∂tFω,τ

t ◦ Φu
∗

(T,τ)(x)〉dσ∗x(t)(r)dµ∗(T )(x)

+
∫
Rd

∫
Rd
〈−Dxu

∗(t,Φu
∗

(T,t)(x))>r,Fω,τ
t ◦ Φu

∗

(T,τ)(x)〉dσ∗x(t)(r)dµ∗(T )(x).
(45)

We recall the characterization of ∂tFω,τ
t (·) given in (37) and plug it into (45). This implies that

d
dtKω,τ (t) = 0 for L 1-almost every times t ∈ [τ, T ], and thus that Kω,τ (·) is constant over [τ, T ].

Step 4 : Proof of the Pontryagin Maximum Principle for (P1)

We proved in Lemma 25 the existence of a constant R ≡ R′T > 0 such that the solution ν∗(·)
to (40) satisfies supp(ν∗(·)) ⊂ B2d(0, R). We accordingly define the infinite dimensional Hamiltonian
H : (ν, ω) ∈Pc(R2d)×U 7→

∫
R2d〈r, ω(x)〉dν(x, r) of the system and the compactified Hamiltonian Hc(·, ·)

by (31).
In Lemma 26 we showed that, with this choice of forward-backward system (40), the map Kω,τ (·)

defined in (43) is constant over [τ, T ] for any choice of ω ∈ U and τ ∈ [0, T ] Lebesgue point of u∗(·).
This implies in particular that Kω,τ (τ) = Kω,τ (T ). Since we proved in (39) that it holds

0 ≤
∫
Rd
〈γ̄◦ϕ(x),Fω,τ

T ◦ Φu
∗

(T,τ)(x)〉dµ∗(T )(x) = −Kω,τ (T ),

we deduce that

Kω,τ (τ) =
∫
R2d
〈r, ω(x)− u∗(τ, x)〉dν∗(τ)(x, r) ≤ 0 for all ω ∈ U and τ ∈ [0, T ] Lebesgue point of u∗(·).

Recalling that L 1-almost τ ∈ [0, T ] is a Lebesgue point for an L1 function defined over the real
line in the Bochner sense (see e.g. [16, Chapter 2, Theorem 9]), we recover the infinite dimensional
maximization condition (33) :

Hc(ν∗(t), u∗(t)) = max
ω∈U

[Hc(ν∗(t), ω)] for L 1-almost every t ∈ [0, T ].

Invoking the C1 regularity of the elements of U , it can be seen using Proposition 2 that the minimal
selection ∂◦νHc(ν∗(t), u∗(t)) in the extended subdifferential of Hc(·, u∗(t)) exists at ν∗(t) ∈P(B2d(0, R))
for L 1-almost every t ∈ [0, T ] and that it is induced by the map

∇νHc(ν∗(t), u∗(t)) : (x, r) ∈ supp(ν∗(t)) 7→
(

Dxu
∗(t, x)>r
u∗(t, x)

)
.

Therefore, we recognize the Wasserstein Hamiltonian structure V∗(t, ·, ·) = J2d∇νHc(ν∗(t), u∗(t))(·, ·) for
L 1-almost every t ∈ [0, T ] where J2d is the symplectic matrix in R2d. This ends our proof of Theorem 6.
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3.2 The general Pontryagin Maximum Principle
After having exhibited the main mechanisms of our proof for the Pontryagin Maximum Principle for
the simplified problem (P1), we are ready to tackle the general case proposed in (P). Problem (P) is
a generalization of (P1) in the sense that we add a general running cost L(·, ·) and a general non-local
interaction vector field v[·](·, ·).

Step 1 : Needle-like variations in the non-local case

As in Section 3.1, let us consider an optimal pair control-trajectory (u∗(·), µ∗(·)), a Lebesgue point
τ ∈ [0, T ] of u∗(·) and an element ω ∈ U . We introduce again the needle-like variation ũω,τε (·) of u∗(·)
with parameters (ω, τ, ε) for ε ∈ [0, ε̄), as defined in (34). Notice that this time, τ is a Lebesgue point for
t 7→ v[µ∗(t)](t, ·) + u∗(t, ·).

In keeping with the notations introduced in (16) for flows associated to transport PDEs with non-
local velocities, the family of perturbed measures ε ∈ [0, ε̄) 7→ µ̃t(ε) are defined for all times t ∈ [τ, T ]
by

µ̃t(ε) = Φv,u
∗

(τ,t)[µ̃τ (ε)] ◦ Φv,ω(τ−ε,τ)[µ
∗(τ − ε)] ◦ Φv,u

∗

(t,τ−ε)[µ
∗(t)](·)#µ

∗(t).

One can readily check that under the sub-linearity and regularity hypotheses imposed in (U) and (F),
there exists again a constant R̃T > 0 such that supp(µ̃t(ε)) ⊂ B(0, R̃T ) for all (t, ε) ∈ [0, T ]× [0, ε̄).

We now derive in Lemma 27 the perturbation stemming from the needle-like variation. We prove
therein a result akin to Lemma 24 giving a precise ODE-type characterization of this perturbation. To do
so, we use the results of Theorem 5 concerning the directional derivatives of the non-local flow combined
to the classical result stated in Lemma 24 and the definition of needle-like variation.

Lemma 27 (Perturbation induced by a needle-like variation in the non-local case). Let (u∗(·), µ∗(·)) be
an optimal pair control-trajectory for problem (P) and ũε(·) be the needle-like perturbation of u∗(·) as
introduced in (34).

Then, there exists for all times t ∈ [τ, T ] a family of functions Gω,τt (·, ·) ∈ Lip((−ε̄, ε̄), C0(Rd,Rd))
such that they are C1-diffeomorphisms over B(0, RT ) for all ε ≥ 0 and it holds

µ̃t(ε) = Gω,τt (ε, ·)#µ
∗(t).

Besides, there exists a constant RΦ
T > 0 depending on RT , LU and v[·](·, ·) such that for all (t, ε) ∈

[τ, T ]× (−ε̄, ε̄) it holds supp(Gω,τt (ε, ·)#µ
∗(t)) ⊂ B(0, RΦ

T ).
This family of maps satisfies the following Taylor expansion for all t ∈ [τ, T ] with respect to the

L2(Rd,Rd;µ∗(t)) norm :

Gω,τt (ε, ·) = Id + εFω,τ
t ◦ Φv,u

∗

(t,τ)[µ
∗(t)](·) + o(ε),

with
Fω,τ
t : x ∈ supp(µ∗(τ)) 7→ DxΦv,u

∗

(τ,t)[µ
∗(τ)](x) · [ω(x)− u∗(τ, x)] + wω,τΦ (t, x)

where wω,τΦ (t, x) is the derivative at ε = 0 of the map ε ∈ (−ε̄, ε̄) 7→ Φv,u
∗

(τ,t)[µ̃τ (ε)](x) as described in
Theorem 5.

Moreover, the map (t, x) ∈ [τ, T ] × supp(µ∗(τ)) 7→ Fω,τ
t (x) is the unique solution of the Cauchy

problem 
∂tFω,τ

t (x) =
[
Dxu

∗
(
t,Φv,u

∗

(τ,t)[µ
∗(τ)](x)

)
+ Dxv[µ∗(t)]

(
t,Φv,u

∗

(τ,t)[µ
∗(τ)](x)

)]
· Fω,τ

t (x)

+
∫
Rd

lΓ. ◦(t,Φv,u∗
(τ,t) [µ∗(τ)](x)

) (Φv,u
∗

(τ,t)[µ
∗(τ)](y)

)
· Fω,τ

t (y)dµ∗(τ)(y)

Fω,τ
τ (x) = ω(x)− u∗(τ, x).

(46)

Proof. We start by computing the measures µ̃τ (ε) as a function of µ∗(τ) for all ε ∈ [0, ε̄). By definition
of the needle-like variation, it holds

µ̃τ (ε) = Φv,ω(τ−ε,τ)[µ
∗(τ − ε)] ◦ Φv,u

∗

(τ,τ−ε)[µ
∗(τ)](·)#µ

∗(τ)
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Using Lebesgue’s Differentiation Theorem, we obtain the following expansions at the first order with
respect to ε :

Φv,ω(τ−ε,τ)[µ
∗(τ − ε)](y) = y +

∫ τ

τ−ε

[
v[µ̃t(ε)]

(
t,Φv,ω(τ−ε,t)[µ

∗(τ − ε)](y)
)

+ ω
(

Φv,ω(τ−ε,t)[µ
∗(τ − ε)](y)

)]
dt,

= y + ε (v[µ∗(τ)](τ, y) + ω(y)) + o(ε),

as well as

Φv,u
∗

(τ,τ−ε)[µ
∗(τ)](y) = y −

∫ τ

τ−ε

[
v[µ∗(t)]

(
t,Φv,u

∗

(t,τ−ε)[µ
∗(τ)](y)

)
+ u∗

(
t,Φv,u

∗

(t,τ−ε)[µ
∗(τ)](y)

)]
dt,

= y − ε (v[µ∗(τ)](τ, y) + u∗(τ, y)) + o(ε).

Chaining these two expressions together and recalling that ω(·) and v[µ∗(τ)](τ, ·) are C1-smooth, it
holds

Φv,ω(τ−ε,τ)[µ
∗(τ − ε)] ◦ Φv,u

∗

(τ,τ−ε)[µ
∗(τ)](y) = y + ε [ω(y)− u∗(τ, y)] + o(ε)

and we deduce the expression that will prove useful in the sequel

µ̃τ (ε) = (Id + ε [ω(·)− u∗(τ, ·)] + o(ε))# µ∗(τ). (47)

We now want to obtain a similar expression but at some time t ∈ [τ, T ]. First, recall that µ̃t(ε) =
Gω,τt (ε, ·)#µ

∗(t) where

Gω,τt (ε, ·) : x ∈ supp(µ∗(t)) 7→ Φv,u
∗

(τ,t)[µ̃τ (ε)] ◦ Φv,ω(τ−ε,τ)[µ
∗(τ − ε)] ◦ Φv,u

∗

(τ,τ−ε)[µ
∗(τ)] ◦ Φv,u

∗

(t,τ)[µ
∗(t)](x). (48)

By our previous computation, one has the following pointwise expansion

Φv,u
∗

(τ,t)[µ̃τ (ε)] ◦ Φv,ω(τ−ε,τ)[µ
∗(τ − ε)] ◦ Φv,u

∗

(τ,τ−ε)[µ
∗(τ)] ◦ Φv,u

∗

(t,τ)[µ
∗(t)](·)

= Φv,u
∗

(τ,t)[µ̃τ (ε)] ◦
(

Φv,u
∗

(t,τ)[µ
∗(τ)](·) + ε

[
ω
(

Φv,u
∗

(t,τ)[µ
∗(τ)](·)

)
− u∗

(
τ,Φv,u

∗

(t,τ)[µ
∗(τ)](·)

)]
+ o(ε)

)
= Φv,u

∗

(τ,t)[µ̃τ (ε)]
(

Φv,u
∗

(t,τ)[µ
∗(τ)](·)

)
+ εDxΦv,u

∗

(τ,t)[µ
∗(τ)]

(
Φv,u

∗

(t,τ)[µ
∗(τ)](·)

) [
ω
(

Φv,u
∗

(t,τ)[µ
∗(τ)](·)

)
− u∗

(
τ,Φv,u

∗

(t,τ)[µ
∗(τ)](·)

)]
+ o(ε).

(49)

since µ̃τ (ε) W1−→
ε↓0

µ∗(τ) and we are only interested in a Taylor expansion at the first order in ε.

It then remains to compute the O(ε) term in (49). Due to Theorem 5, the derivative of the non-
local flow along directions induced by Lipschitz families of continuous and bounded maps exists. It can
moreover be characterized explicitly through (23). Recalling (47), this condition translates into

Φv,u
∗

(τ,t)[µ̃τ (ε)](y) = Φv,u
∗

(τ,t)[µ
∗(τ)](y) + εwω,τΦ (t, y) + o(ε),

where wω,τΦ (t, y) is defined through (23) is the case where the non-local velocity field is given by (t, x) 7→
v[µ∗(t)](t, x) + u∗(t, x).

Thus, we proved the pointwise Taylor expansion at the first order with ε :

Gω,τt (ε, x) = x+ εFω,τ
t ◦ Φu

∗,v
(t,τ)[µ

∗(t)](x) + o(ε) for µ∗(t)-almost every x ∈ Rd,

where
Fω,τ
t : x ∈ supp(µ∗(τ)) 7→ DxΦv,u

∗

(τ,t)[µ
∗(τ)](x) · [ω(x)− u∗(τ, x)] + wω,τΦ (t, x) (50)

A standard application of Proposition 13-(iii) shows that this expansion holds in L2(Rd,Rd;µ∗(t)).
One can then extend Gω,τt (·, ·) to (−ε̄, ε̄) while preserving this expansion around ε = 0 by defining e.g.

Gω,τt (ε, ·) ≡ Id + εFω,τ
t ◦ Φv,u

∗

(τ,t)[µ
∗(τ)](·) for ε ∈ (−ε̄, 0].

The existence of a constant RΦ
T depending on RT , LU and v[·](·, ·) such that supp(Gω,τt (ε, ·)#µ

∗(t)) ⊂
B(0, RΦ

T ) follows from hypotheses (F) and (B), which ensure the continuity and boundedness of the
perturbation functions over B(0, R̃T ).
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We finally prove the counterpart of Lemma 24 providing an ODE-type characterization for the
perturbation induced by the needle-like variation in the non-local case. Recalling the definition of
(t, x) 7→ Fω,τ

t (x) given in (50) and summing the ODE-type characterization of t 7→ wω,τΦ (t, ·) and
DxΦv,u

∗

(τ,·) [µ∗(τ)](t) · [ω(·)− u∗(τ, ·)], we recover
∂tFω,τ

t (x) =
[
Dxu

∗
(
t,Φv,u

∗

(τ,t)[µ
∗(τ)](x)

)
+ Dxv[µ∗(t)]

(
t,Φv,u

∗

(τ,t)[µ
∗(τ)](x)

)]
· Fω,τ

t (x)

+
∫
Rd

lΓ. ◦(t,Φv,u∗
(τ,t) [µ∗(τ)](x)

) (Φv,u
∗

(τ,t)[µ
∗(τ)](y)

)
· Fω,τ

t (y)dµ∗(τ)(y)

Fω,τ
τ (x) = ω(x)− u∗(τ, x).

This concludes our proof.

In the development of Steps 2, 3 and 4, we do not need to take into account the explicit dependence
of the flow with respect to its starting measure. We shall henceforth write Φv,u

∗

(·,·) (·) ≡ Φv,u
∗

(·,·) [µ∗(·)](·) for
clarity and conciseness.

Step 2 : First-order optimality condition

In the framework of Problem (P), the optimality of u∗(·) writes

ϕ(µ̃T (ε))− ϕ(µ∗(T ))
ε

+1
ε

∫ τ

τ−ε
[L(µ̃t(ε), ω)− L(µ∗(t), u∗(t))] dt

+1
ε

∫ T

τ

[L(µ̃t(ε), u∗(t))− L(µ∗(t), u∗(t))] dt ≥ 0 for all ε ∈ [0, ε̄).
(51)

The first order perturbation corresponding to the final cost ϕ(·) has already been treated in (38)-(39),
Section 3.1. We study the integral terms arising from the running cost. Remark first that it holds

lim
ε↓0

[
1
ε

∫ τ

τ−ε
[L(µ̃t(ε), ω)− L(µ∗(t), u∗(t))] dt

]
= L(µ∗(τ), ω)− L(µ∗(τ), u∗(τ)),

by the Lebesgue Differentiation Theorem, since µ̃t(ε)
W1−→ µ∗(t) as ε ↓ 0 for all t ∈ [0, T ] and since τ is a

Lebesgue point of u∗(·).
Equivalently to the proof of the PMP for Problem (P1), the perturbed measures are uniformly

supported in a compact set. Thus, under hypotheses (L) and recalling that the function ε ∈ (−ε̄, ε̄) 7→
L(µ̃t(ε), u∗(t)) is differentiable at ε = 0 for L 1-almost every t ∈ [τ, T ] by hypothesis (D), the chain rule
of Proposition 21 can be applied to the running cost to obtain

lim
ε↓0

[
1
ε

[L(µ̃t(ε), u∗(t))− L(µ∗(t), u∗(t))]
]

=
∫
R2d
〈γ̄◦L(t, x),Fω,τ

t ◦ Φv,u
∗

(t,τ)(x)〉dµ∗(t)(x), (52)

where γ̄◦L(t, ·) ∈ L2(Rd,Rd;µ∗(t)) is the barycenter of ∂◦µL(µ∗(t), u∗(t)) for L 1-almost every t ∈ [0, T ].
Moreover, the uniform compactness of the supports of the perturbed measures and hypothesis (L)

imply that the left hand side in (52) is uniformly bounded by a function in L1([0, T ],R+) for any ε ∈ (0, ε̄).
Therefore, by an application of Lebesgue Dominated Convergence Theorem, it holds

lim
ε↓0

[
1
ε

∫ T

τ

[L(µ̃t(ε), u∗(t))− L(µ∗(t), u∗(t))] dt
]

=
∫ T

τ

∫
R2d
〈γ̄◦L(t, x),Fω,τ

t ◦ Φv,u
∗

(t,τ)(x)〉dµ∗(t)(x)dt.

Thus, the optimality of (u∗(·), µ∗(·)) translates into the first-order condition∫
R2d
〈γ̄◦ϕ(x),Fω,τ

T ◦ Φv,u
∗

(T,τ)(x)〉dµ∗(T )(x) + [L(µ∗(τ), ω)− L(µ∗(τ), u∗(τ))]

+
∫ T

τ

∫
R2d
〈γ̄◦L(t, x),Fω,τ

t ◦ Φv,u
∗

(t,τ)(x)〉dµ∗(t)(x)dt ≥ 0,
(53)

for any couple of needle parameters (ω, τ).

Step 3 : Backward dynamics and Pontryagin maximization condition
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We now build a solution ν∗(·) ∈ Lip([0, T ],Pc(R2d)) to the system of continuity equations
∂tν
∗(t) +∇ · (V∗[ν∗(t)](t, ·, ·)ν∗(t)) = 0 in [0, T ]× R2d,

π1
#ν
∗(t) = µ∗(t) for all t ∈ [0, T ],

ν∗(T ) = (Id × (−γ̄◦ϕ))#µ
∗(T ),

(54)

associated to the non-local vector field V∗[ν∗(t)] : (t, x, r) 7→ (v[π1
#ν
∗(t)](t, x) + u∗(t, x) , γ̄◦L(t, x) −

lΓ. ◦v[ν∗(t)](t, x)−Dxu
∗(t, x)>r −Dxv[µ∗(t)](t, x)>r) where lΓ. ◦v[·](·, ·) is defined by

lΓ. ◦v[·](·, ·) : (ν, t, x) ∈Pc(Rd)× [0, T ]× supp(π1
#ν) 7→

∫
R2d

(
lΓ. ◦(t,y)(x)

)>
p dν(y, p) (55)

with lΓ. ◦(·,·)(·) defined as in Theorem 1.
As in Lemma 25 of Section 3.1, we build a solution of (54) by making use of the cascade structure.

We then show that this solution ν∗(·) is such that the map Kω,τ (·) defined in this context by

Kω,τ : t ∈ [τ, T ] 7→
∫
R2d
〈r,Fω,τ

t ◦ Φv,u
∗

(t,τ)(x)〉dν∗(t)(x, r) + [L(µ∗(τ), u∗(τ))− L(µ∗(τ), ω)]

−
∫ t

τ

∫
R2d
〈γ̄◦L(t, x),Fω,τ

s ◦ Φv,u
∗

(s,τ)(x)〉dµ∗(s)(x)ds
(56)

is constant over [τ, T ].

Lemma 28 (Well-posedness of solutions of (54)). Let µ∗(·) be the optimal trajectory for (P) generated
by the optimal control u∗(·) ∈ U . For µ∗(T )-almost every x ∈ Rd, we consider the family of flows of
diffeomorphisms (ΦB,x(T,t)(·))t≤T associated to the Cauchy problems

∂twx(t, r) = γ̄◦L(t,Φv,u
∗

(T,t)(x))−Dxv[µ∗(t)](t,Φv,u
∗

(T,t)(x))>wx(t, r)−Du∗(t,Φv,u
∗

(T,t)(x))>wx(t, r)

−
∫
R2d

lΓ. ◦(t,Φv,u∗
(T,t)(y)

) (Φv,u
∗

(T,t)(x)
)>

wy(t, p) d(Id × (−γ̄◦ϕ)))#µ
∗(T )(y, p),

wx(T, r) = −γ̄◦ϕ(x).

(57)

We define the curves of measures σ∗x : t 7→ ΦB,x(T,t)(·)#µ
∗(T ) and denote by V∗x [ν∗T (·)](·, ·) the corresponding

non-local vector fields describing their evolution.
Define ν∗ : t 7→ (Φu∗

(T,t)(·), Id)#ν
∗
T (t) where ν∗T (t) =

∫
σ∗x(t)dµ∗(T )(x). Then, ν∗(·) solves (54).

Moreover, there exists two constants R′T , L′T > 0 such that

supp(ν∗(t)) ⊂ B2d(0, R′T ) and W1(ν∗(t), ν∗(s)) ≤ L′T |t− s| for all s, t ∈ [0, T ].

Proof. We start by proving that the non-local velocity in the right hand side of (57) satisfies hypotheses
(H’). The uniform Lipschitzianity imposed in hypotheses (U) and (F) on the controls and the non-local
vector field v[·](·, ·) along with the requirement in (B) that t 7→ γ̄◦L(t, ·) be uniformly bounded give the
Lipschitzianity and the sub-linearity in space. The Lipschitzianity in the W1-metric of the non-local part
of the vector field follows from Kantorovich-Rubinstein duality and the fact that we are integrating the
product of a bounded term and of a linear term.

The proof that the curve ν∗(·) is uniformly compactly supported in a ball of radius RT , Lipschitz in
the W1-metric with a constant L′T and that it solves (54) is completely analogous to Lemma 25

Lemma 29. The map t 7→ Kω,τ (t) defined in (56) is constant over [τ, T ] for any couple of needle
parameters (ω, τ).

Proof. This proof follows the same steps as in the proof of Lemma 26, the difference lying in the fact that
the flows (Φv,u

∗

(0,t)(·))t∈[0,T ] are associated to the non-local PDE. It can be verified again that t 7→ Kω,τ (t)
is Lipschitz in this context. We compute d

dtKω,τ (·) using (13) as in (45) while plugging in the expressions
for Fω,τ

t (·) and its time-derivative provided by Lemma 27.
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d

dt
Kω,τ (t) =

∫
Rd

∫
Rd

〈
r, ∂tFω,τ

t ◦ Φv,u
∗

(T,τ)(x)
〉

dσ∗x(t)(r)dµ∗(T )(x)

+
∫
Rd

∫
Rd

〈
V∗x [ν∗T (t)](t, r),Fω,τ

t ◦ Φv,u
∗

(T,τ)(x)
〉

dσ∗x(t)(r)dµ∗(T )(x)

−
∫
R2d
〈γ̄◦L(t,Φv,u

∗

(T,t)(x)),Fω,τ
t ◦ Φv,u

∗

(T,τ)(x)〉dµ∗(T )(x)

=
∫
R2d

〈
r,

∫
Rd

lΓ. ◦(t,Φv,u∗
(T,t)(x)

) (Φv,u
∗

(T,t)(y)
)
Fω,τ
t ◦ Φv,u

∗

(T,τ)(x)dµ∗(T )(y)
〉

dν∗T (t)(x, r)

−
∫
R2d

〈∫
R2d

lΓ. ◦(t,Φv,u∗
(T,t)(y)

) (Φv,u
∗

(T,t)(x)
)>

p dν∗T (t)(y, p),Fω,τ
t ◦ Φv,u

∗

(T,τ)(x)
〉

dν∗T (t)(x, r)

= 0

by plugging in the expressions of ∂tFω,τ
t (·) and V∗x [ν∗T (t)](t, ·). The two quantities are shown to be

equal due to the uniform boundedness of the integrands given by (B) and Fubini-Tonelli theorem. This
altogether leads to d

dtKω,τ (·) = 0 and thus to Kω,τ (·) being constant over [τ, T ].

Step 4 : Proof of the Pontryagin Maximum Principle for (P)

We proved in Lemma 28 that there exists a curve ν∗ ∈ Lip([0, T ],Pc(R2d)) solution of (54) along with
a constant R ≡ R′T > 0 such that supp(ν∗(·)) ⊂ B2d(0, R). The non-local velocity field V∗[ν∗(·)](·, ·, ·)
is defined for L 1 × ν∗(·)-almost every (t, x, r) ∈ [0, T ]×B2d(0, R) by

V∗[ν∗(t)](t, x, r)
(
γ̄◦L(t, x)−Dxu

∗(t, x)>r −Dxv[π1
#ν
∗(t)](t, x)>r − lΓ. ◦v[π1

#ν
∗(t)](t, x)

v[π1
#ν
∗(t)](t, x) + u∗(t, x)

)
.

We define the infinite dimensional Hamiltonian H(·, ·, ·) of the system by

H : (t, ν, ω) ∈ [0, T ]×Pc(R2d)× U 7→
∫
R2d
〈r, ω(x)〉dν(x, r)− L(π1

#ν, ω).

along with its compactification Hc(·, ·, ·) given by (3).
Furthermore, we proved in Lemma 29 that the solution ν∗(·) that we built is such that the map

Kω,τ (·) defined in (56) is constant over [τ, T ] for any couple of needle parameters (ω, τ). Hence, it
holds in particular that Kω,τ (τ) = Kω,τ (T ) which is a non-positive quantity by the first-order optimality
condition (53). This fact implies that∫

R2d
〈r, ω(x)− u∗(τ, x)〉dν∗(τ)(x, r)− [L(µ∗(t), ω)− L(µ∗(t), u∗(t))] ≤ 0,

for all ω ∈ U and τ ∈ [0, T ] Lebesgue point of v[µ∗(·)](·, ·) + u∗(·). This inequality rewrites as the
Pontryagin Maximization condition (5) :

Hc(t, ν∗(t), u∗(t)) = max
ω∈U

[Hc(t, ν∗(t), ω] for L 1-almost every t ∈ [0, T ].

Moreover, one recognizes the pseudo-Hamiltonian structure V∗[ν∗(t)](t, x, r) = J2d∇̃νHc(t, ν∗(t), u∗(t))
for L 1 × ν∗(·)-almost every (t, x, r) ∈ [0, T ] × B2d(0, R) where the map ∇̃νHc(t, ν∗(t), u∗(t))(·, ·) is
precisely the non-local velocity field V∗[ν∗](t, ·, ·) for L 1-almost every t ∈ [0, T ]. This concludes our
proof of the Pontryagin Maximum Principle for (P).
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