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Primates heavily rely on their visual system, which exploits signals of graded precision based
on the eccentricity of the target in the visual field. The interactions with the environment
involve actively selecting and focusing on visual targets or regions of interest, instead of con-
templating an omnidirectional visual flow. Eye-movements specifically allow foveating targets
and track their motion. Once a target is brought within the central visual field, eye-movements
are usually classified into catch-up saccades (jumping from one orientation or fixation to
another) and smooth pursuit (continuously tracking a target with low velocity). Building
on existing dynamic neural field equations, we introduce a novel model that incorporates
internal projections to better estimate the current target location (associated to a peak of
activity). Such estimate is then used to trigger an eye movement, leading to qualitatively
different behaviors depending on the dynamics of the whole oculomotor system: 1) fixational
eye-movements due to small variations in the weights of projections when the target is sta-
tionary, 2) interceptive and catch-up saccades when peaks build and relax on the neural field,
3) smooth pursuit when the peak stabilizes near the center of the field, the system reaching
a fixed point attractor. Learning is nevertheless required for tracking a rapidly moving tar-
get, and the proposed model thus replicates recent results in the monkey, in which repeated
exercise permits the maintenance of the target within in the central visual field at its current
(here-and-now) location, despite the delays involved in transmitting retinal signals to the
oculomotor neurons.

Keywords: saccades; smooth pursuit; active perception; dynamic neural field; sensorimotor
contingency

1. Introduction

Dating back to the ideomotor principle from James (1890) in Psychology, the idea that
perception and action are tightly intertwined is now widespread and integrated under
many different forms in many theories of behavioral and brain sciences. Not only per-
ception guides action, but action also orients perception, both developing and working
synergistically for the survival and the maintenance of autonomy of living beings (Baran-
diaran, 2016). To act adequately in a dynamic environment, as subjectively perceived
based on one’s own sensorimotor capabilities, either due to motion in the environment or
self-generated movement, synchrony must be maintained despite delays in the sensory,
motor and neural pathways of information (Buisson & Quinton, 2010). Anticipation may
thus be conceived as a key component to correctly interact with the environment and a
fundamental principle underlying the brain activity (Bubic, Von Cramon, & Schubotz,
2010).
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Yet, it may actually take on a variety of forms, on a continuum stretching from purely
implicit anticipations (relying on past experience to adjust the behavior to the current
and present situation) to explicit ones (with representations of predicted future states),
as proposed by Pezzulo (2008). While (more or less abstract) goals and intentions ex-
ert an influence down to motor primitives (Rosenbaum, Chapman, Weigelt, Weiss, &
van der Wel, 2012), it is not trivial to determine how explicit and under which form the
anticipatory components are represented. Especially, an internal model predicting the
future state of the environment or system may not be required, as interactions with the
environment provide the information needed to refine and adjust the course of action,
or using Brooks’ words (1995): the world is its own best model. The online and implicit
differentiation of the various interaction potentialities based on their internal outcomes
may be sufficient (Bickhard, 1999). Sensorimotor capabilities, as well as the regulari-
ties we learn through interactions, may thus well shape the way the world is perceived.
This again goes back to the notion of Umwelt from Uexküll (1909) and entails a relative
conception of space, where space is constructed by individuals and culture, as already
proposed by Poincaré (1914) or developed in Piagetian constructivism (Piaget, 1967).

1.1. Visual perception

Focusing on visual perception alone and considering primates (including humans), eye
movements can thus be generated to actively sample the external environment, and take
part in sensorimotor contingencies (O’Regan & Noë, 2001). Part of the complexity of the
relationship between an animal and its environment is thus shared between the sensory
and motor aspects of visual perception. Indeed, a non-homogeneous visual stimulation
where details are only accessible in the central region of the visual field is sufficient
to correctly interact with a natural environment, as long as it is complemented by eye
movements and coarse peripheral signals to inform about the outcomes of potential gaze
shifts. Furthermore, attention, roughly defined as the active selection and filtering of
information based on current skills, knowledge, and context, can be deployed at the
overt (e.g. eye movements) and covert (e.g. neural modulation) levels.

Adopting a division classically made when modeling attentional systems (Hopfinger,
Buonocore, & Mangun, 2000), this covert deployment of attention results from bottom-
up or exogenous factors (e.g. stimulus saliency) as well as top-down or endogenous
factors (e.g. stimulus relevance for the task at hand). For instance in (Bar, 2007),
the magnocellular pathway allows making top-down predictions about possible object
categories based on coarse information, which is then complemented by the detailed
information provided by the slower parvocellular pathway. Yet, in such a dynamical
model of visual perception, even when neglecting eye movements, the frontier between
the top-down and bottom-up streams is blurred, as the predictions of course depend
on expected and known objects, but also directly depend on the sensory stimulation.
Additionally, the projections from the prefrontal cortex (object guesses) are often
considered as future-oriented in the literature, but actually simply need to get integrated
and thus synchronized with the fine grained details when they reach the relevant areas.
Directly adding eye movements to the equation, Kietzmann, Geuter, and König (2011)
have experimentally demonstrated that simply manipulating the initial locus of visual
attention on ambiguous stimuli was sufficient to causally influence the patterns of
overt attentional selection, and the recognition of the object’s identity. Once again,
the differentiation between alternative percepts seems dynamical, rely on expectations
about the stimuli, and the sensorimotor interactions are in fact constitutive of visual
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perception. These three ingredients of visual perception (dynamics, sensorimotricity,
and anticipation) are the focus of the current paper, modeling both the covert and overt
deployment of visual attention.

Since the exact dynamics of eye movements can itself be quite complex, they have
been categorized in different types (see for instance Rolfs, 2009). When looking at static
scenes, and at the larger spatial and temporal scales, the eye trajectory is mainly com-
posed of saccades (rapid eye movements) separated by fixations. Nevertheless, these are
not independent, and are integrated over time for the coherent perception of extended
objects to occur, with possibly predictive aspects (Rolfs, 2015). When looking at the
spatio-temporal details, the eyes also continuously perform what is called fixational eye
movements, which are a combination of drifts, tremors, and micro-saccades. While the
role of saccades to explore the visual environment and foveate stimuli of interest has
been previously discussed, micro-saccades may similarly contribute to active vision at a
different scale (Hicheur, Zozor, Campagne, & Chauvin, 2013). The neural and functional
segregation of the different types of eye movements is debated, and it has been argued
that common neural mechanisms may underly saccades and micro-saccades generation
(Krauzlis, Goffart, & Hafed, 2017; Otero-Millan, Troncoso, Macknik, Serrano-Pedraza,
& Martinez-Conde, 2008).

Now returning to dynamic visual environments, eye-movements toward moving targets
are also differentiated, with the interceptive saccades (made first toward the target), the
catch-up saccades (made when the lag between the gaze and target directions increases),
and the slow pursuit eye movements. To unify the different types of eye-movements
with a dynamical perspective, the maintenance of a target within the central visual
field can be viewed as a dynamic equilibrium within parallel visuo-oculomotor streams
(Goffart, Hafed, & Krauzlis, 2012; Hafed, Goffart, & Krauzlis, 2009).When tracking a
moving target, the gaze attempts to synchronize its movement with the motion of the
target. The idea that an internal model of the target trajectory would guide the gaze
direction (e.g., Daye, Blohm, & Lefèvre, 2014) has recently been questioned (Quinet &
Goffart, 2015) because of the failure to define the notion of “trajectory” and the lack of
explanation how this notion might be represented in the brain activity.

1.2. Dynamic neural fields

Dynamic neural fields (DNF) are mathematical models based on differential equations,
which describe the spatiotemporal evolution of activity (e.g. mean firing rate or mem-
brane potential) in populations of neurons organized within maps. The context of their
original development imposed the analytical resolution of the dynamical system, itself
requiring strong assumptions on the initial conditions and stimuli characteristics (Amari,
1977; Wilson & Cowan, 1973). Yet, the increasing processing capabilities of computers
later allowed simulating the dynamics of such models (Taylor, 1999), at the same time
relaxing the constraints and allowing the study of their response to dynamic stimuli.

The core properties of most DNF models is their ability to detect and filter information
in the input signal. Targets are detected based on their assumed temporal stability in
the signal, as well as their spatial coherence with the lateral connectivity kernel (i.e.
the weights of connections between the constituting neurons) (Gepperth, 2014), even
in presence of a large amount of noise in the signal. This selection occurs when the
system converges to an attractor which encodes the stimulus of interest, under the form
of a localized peak of activity (population coding). The parameters and non-linearities
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in the equation allow implementing qualitatively different mechanisms, from memory
formation to sensorimotor coupling. Also, DNF models do not need to be directly
plugged on sensory inputs. Therefore, they are not in principle limited to the detection
of stimuli defined by a single lateral connectivity profile (for an instance of complex
preprocessing to abstract from raw input images, see Maggiani, Bourrasset, Quinton,
Berry, & Sérot, 2016). Also, complex transformations and projections can be consid-
ered, for instance using alog-polar representation of the visual field (Taouali, Goffart,
Alexandre, & Rougier, 2015) or relying on self-organizing maps (Lefort, Boniface, &
Girau, 2011). While Taouali et al. (2015) provide details on how the DNF approach can
account for the encoding of target location in the deep superior colliculus, Gandhi and
Katnani (2011) review the different plausible decoding mechanisms from a topologically
organized population of neurons, focusing on saccade generation. They compare the
“vector summation” and “vector averaging” approaches, the latter being preferred in
most of the DNF literature, as well as in the current paper. Regardless of their shared
characteristics, computational architectures of visual perception and visual attention
based on DNFs come in different flavors, based on the way attractors and transitions
between attractors are exploited.

On the one hand, the equation can be tuned to switch between different stable attrac-
tors when specific conditions are met. For instance, Sandamirskaya (2014) distinguishes
detection and selection instabilities (leading to the selection of one or several targets),
working memory instabilities (maintenance of a peak even when the target disappears
from the input signal), or reverse detection instability (relaxation of the peak of activ-
ity). The rationale and biological inspiration is synthetized in Schöner (2008), and this
approach has been successfully applied to model behavior and to build a wide range
of vision and robotic systems (Schöner & Spencer, 2015). This approach is particularly
well suited to model discrete behavioral sequences, where specific conditions must be
met before turning to the next step (Sandamirskaya & Schöner, 2010). The same ap-
plies for sequences of fixations in static environments, with DNF models of the “what”
and “where” components of visual perception (Schneegans, Spencer, Schöner, Hwang, &
Hollingworth, 2014), and of the overt and covert deployment of visual attention (Fix,
Rougier, & Alexandre, 2010). However, the delays required to build and relax the peaks
makes the modeling of tracking eye movements more complicated.

On the other hand, the robustness of the DNF equations in presence of dynamic
input can be directly exploited. For slow target motions (projected within the spatial
limits of the neural field), the peak drifts and lags behind the target (Rougier & Vitay,
2006). Nevertheless, the system is able to adapt and converge on a limit cycle attractor,
tracking the target. The equation can be modified to further improve the tracking
accuracy by biasing the peak dynamics in a given direction, either by making the
lateral connectivity kernel asymmetric (Cerda & Girau, 2010), or by adding internal
projections of activity to the stimulation (Quinton & Girau, 2011). The latter is chosen
and extended in this paper, as we model the tracking of rapidly moving stimuli, as well
as the dynamic transitions between the different types of eye-movements.

In section 2, we start by presenting the original DNF model and its extension for track-
ing a target moving along a continuous trajectory (PNF). Then, we extend the system and
its dynamics, and introduce the novel ANF model, which incorporates eye-movements to
account for the fixation and tracking of targets crossing the visual field. We finally add
learning capabilities to the system, to extend its adaptability to trajectories of unknown
characteristics. In section 3, we again incrementally test the different components of the
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Figure 1. Different neural field models used to detect and track a moving target. The original DNF equation

may converge on a limit cycle attractor in presence of the target, yet lagging behind it. On the contrary, the
projections of the PNF version allows to converge and synchronize with the target motion. If the target crosses

the visual field, only the ANF version is able to smoothly track the target, thus mimicking the dynamics of the

brain-body-environment system through visuomotor interactions.

full ANF model, studying the attractors of the associated complex dynamical systems,
and evaluating the systems capability to generate different types of eye movements. We
then introduce and replicate empirical observations made in monkeys learning to track a
target moving along rectilinear trajectories, with dynamic transitions and combinations
of saccades and slow pursuit eye movements. We finally close the paper with a short
discussion and perspectives.

2. Computational model

In order to progressively introduce the components of the ANF model, this section starts
from the dynamic neural fields initially proposed by Wilson and Cowan (1973), devel-
oped by Amari (1977), and later applied to visual attention directed to moving targets
(Rougier & Vitay, 2006). We then introduce the PNF model with a single projection
that can bias the dynamics of the neural fields (Quinton & Girau, 2011), then with many
projections (Quinton & Girau, 2012), before including eye movements. The increase in
model complexity goes hand in hand with extended attentional capabilities, from the
detection of fixed targets in the visual field to the generation of tracking eye movements
toward a moving target. This progression is illustrated in Fig.1.

2.1. Dynamic Neural Field (DNF)

Inspired by neurophysiological studies, including early studies in the visual cortex (Hubel
& Wiesel, 1962), dynamic neural fields are mean-field models of the neural activity when
it is observed at the mesoscopic scale. The membrane potential reflects the averaged
activity of a large number of topologically organized neurons in response to an input
stimulus and its local excitability. Formally, the neural field is represented as a 2D man-
ifold (X) in bijection with [−0.5, 0.5]2, and described by a distribution of potential u.
The potential at location x and time t is written as u(x, t), and the stimulation as
s(x, t). Adopting the single-layer field equation of lateral inhibition type (Amari, 1977),
the dynamics of the potential is described by:

τ
∂u(x, t)

∂t
= −u(x, t) + c(x, t) + s(x, t) + h (1)
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where τ is the time constant, h the resting potential and c(x, t) the component resulting
from lateral interactions over the neural field, defined by:

c(x, t) =

∫
x′∈X

w(x′ − x)f(u(x′, t))dx′ (2)

where f is the activation function (in this paper we opted for a rectified linear unit
function), while w(x,x′) is the lateral connection weight function satisfying Eq. 3.

w(∆x) = A+e
− ‖∆x‖2

σ+
2 −A−e

− ‖∆x‖2

σ−2 (3)

In a few words, the equation is composed by a relaxation term (driving the local
potential to return to its resting level in the absence of stimulation), a lateral interaction
term (leading to the selection of one target), and the external stimulation (input driving
the neural field dynamics). With adequate stimuli, the resulting selection of a target is
proven to occur when the difference of Gaussians in Eq. 3 is further constrained to a
Mexican hat profile, so that the amplitudes and standard deviations satisfy A+ > A−
and σ+ < σ− (Taylor, 1999). In such a case, localized peaks of activity grow on the
neural field where stimuli best match the kernel constraints (most often roughly, as for
instance with circular visual targets when Gaussian based kernels are used). Additional
constraints can be imposed on the parameters such that one single peak can grow and
maintain at a given time, especially through the use of global inhibition with a large
sigma− value (see Table 1 for the values adopted throughout this paper). The peak
location on the neural field (itself supposedly an estimate of a target location) can be
estimated as the center of mass xu of the field activity u (see Eq.4).

xu =

∫
x∈X u(x)xdx∫
x∈X u(x)dx

(4)

Eq.1 can be simplified by relying on a map based notation for the different components,
thus assimilating u(x, t) to a X → [0, 1] map written as u, thus leading to the following
equation:

τ
∂u(t)

∂t
= −u(t) + c(t) + s(t) + h (5)

Turning to the computational implementation, we rely on an explicit Euler schema to
simulate the dynamics. Time is thus discretized with an interval dt between 2 estimations,
and a square regular lattice discretization is used for space (allowing a matrix-based
implementation). The continuous version in Eq. 5 becomes:

u(t) =

(
1− dt

τ

)
u(t− dt) +

dt

τ
(w ∗ f(u(t− dt)) + s(t)) (6)

with u, s and w being the matrix equivalents for variables and functions u, s and w.
To the exception of a few lines of work (e.g. Cerda & Girau, 2010), the kernel function
w is usually isotropic (as in Eq. 3). The absence of x in this formulation reflects the
fact that a peak of maximal amplitude only grows in presence of a stationary localized
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stimulus, and aligns with it. In response to a stimulus which is not aligned with the peak
of activity, the properties of the DNF equation and lateral connectivity kernel lead to
an averaging of the stimulus projection, and thus its location, at time t (with weight
dt
τ ) with the reentrant feedback of the neural field, with a peak that emerged up to

t − dt (with weight 1 − dt
τ ). When combining different sources of activity to drive the

field dynamics, this averaging property has been widely exploited in the literature, for
instance to model saccadic motor planning (Kopecz & Schöner, 1995) in the context
of active vision, or multimodal integration models able to replicate the McGurk effect
(Lefort et al., 2011). Yet in the context of tracking a moving target, this property implies
that the peak necessarily lags behind the input stimulus with the standard equation. The
amount of lag depends on the dt and τ parameters, as well as on the stimulus dynamics
(e.g. the stimulus instantaneous velocity, that is noted vs in the rest of the paper).
Nevertheless, this lag cannot be fully canceled with an isotropic kernel (as illustrated in
the DNF part of Fig. 1). Additionally, increasing the dt

τ ratio enhances the reactivity of
the neural field, yet simultaneously reduces its relaxation time and filtering efficiency,
two key components of computational models of attention.

2.2. Predictive Neural Field (PNF)

To synchronize the peak of activity with the input stimulus, as in presence of a rapidly
moving target, the reactivity of the field can be enhanced at the cost of robustness to
sensory noise (by adjusting the equation parameters). Yet, to reduce the tracking lag
without relying on the trade-off between reactivity and stability, the original equation
can be modified in two ways: by using asymmetric kernels, or by turning the stimulation
term into a combination of both the sensory signal and an internal model (corresponding
roughly to a memory trace) of the stimulus dynamics. Asymmetric kernels have been
used in Cerda and Girau (2010) with different motions requiring different kernels (wk).
To discriminate between complex motions, the kernels become location dependent, and
iterations over many time steps are required. A set of independent neural fields have
been previously used to cover the range of expected motions, but kernels could also be
dynamically weighted and combined to reflect the probability of the expected motions
(model) to fit the actual dynamics (observation). Here, in order to facilitate transitions
between trajectories, and to permit their combination into novel trajectories with which
the system can synchronize, we rather proceeded on the decomposition of the stimulation
term (Quinton & Girau, 2011, 2012). From a neural perspective, these approaches may
all break down to adjusting synaptic weights on the long term (to adapt to new forms
of motion), and synaptic gating on the short term (to exploit the repertoire of expected
motion). Yet, the modularity and the precise dynamics of these approaches differ because
of the way the information is distributed and injected in the equations. In this paper,
the term s(t) in Eq. 5 is thus replaced by ŝ(t), defined as:

ŝ(t) = αp(t) + (1− α)s(t) (7)

where α weights the external stimulation s(t) and an internal projection p(t). This
projection corresponds to the activity required to cancel the lag of the neural field for
a specific hypothetically observed trajectory, by exciting the field in the direction of the
motion, ahead of the current peak location, and inhibiting the field behind the peak.
While it may seem counter-intuitive to make such a substitution, incoming signals for
both components may arrive from distal neural areas, only with some of them more
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directly connected to the actual physical stimulus (in terms of temporality or similarity).
Their origin cannot be accessed in the current model, and due to their symmetrical roles
in the equation, they cannot be differentiated at the level of the neural field. Alternatively,
adopting a division classically made when modeling attentional systems (Hopfinger et
al., 2000), these components may respectively be described as bottom-up and top-down,
while the voluntary nature of such influences is beyond the scope of the current paper.
The component p(t) is further decomposed in Eq. 8, but in this paper, it is exclusively
computed from the field potential u(t). A null α restores the original dynamics, while an
α of 1 leads to a closed-loop dynamics disconnected from the external stimulation. An α
in ]0, .5] guarantees that the dynamics is not driven by the internal projections, but by
the actual external dynamics.

p(t) =

∑
k wk(t)pk(t)∑

k wk(t)
(8)

The term p is expressed as a combination of individual projections {pk}, which cor-
respond to distinct dynamics observed in different contexts (e.g. different trajectories
adopted by different targets). The set {pk} might as well define a basis of projections,
learned from the statistics of observed trajectories, and which can be combined, endow-
ing the system with the ability to adapt to more complex dynamics. Any complex and
extended trajectory can for instance be approximated by a smooth interpolation over a
sequence of projections, each projection corresponding to a simpler local target motion
(temporal weighting). Each unique local projection can also result from a combination
of a limited set of projections (spatial weighting), corresponding to target motions with
specific directions and speeds. These population coding properties within the neural
field have been described elsewhere (for independent projections see Quinton and Girau
(2011); for combinations within a set of projections see the supplemental material from
Quinton and Girau (2012)). The weight wk of each projection changes with time; it is
not to be confused with the fixed connection weights w in the original DNF equation.
While the former reflects the adequacy of projection pk with the currently observed dy-
namics and thus translates the competition between projections in mathematical terms,
the latter guarantees the competition between possible locations for the peak growth (as
introduced in section 2.1). Although the details on the updating of the weight wk are not
required at this point, it can simply be considered as a similarity measure between the
actual neural field activity u and the expected activity (approximated by p). Basically,
the associated dissimilarity may be a norm based on point to point differences at the
map level, continuously updated during the simulation.

Again, the normalization in Eq.8 guarantees the influence of the overall internal
projection of activity on the neural field will not have primacy over the input, since
the number of projections on which it is based may vary (e.g. due to learning effects
of repeated exercise and the variability of observed trajectories, therefore not reducible
to a single projection). Simultaneously high weights for two projections should reflect
their similarity, with the neural field averaging their activity. On the contrary, two
equally active yet clearly distinct projections will not both lead to a large similarity
with the neural field activity (where at most a single peak is present), and a bifurcation
will necessarily occur in their weights. Although other aggregation functions could
be considered in replacement of the simple linear combination of the projections
(Eq. 8), the neural field dynamics attenuates or nullifies the influence of projections
with relatively small weights through lateral interactions. In these three instances, we
indirectly exploit the usual selection (for distant stimuli), averaging (for nearby target
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stimuli and their overlapping field activations) and robustness (for distributed noisy
stimulations) properties of the dynamic neural fields.

As previously introduced, projections may be defined for any type of target trajectory,
but in this paper, we will limit their scope to rectilinear motions with a constant speed.
Stimuli adopting such trajectories will be used in the evaluation section to test the
robustness of the model and replicate experimental data. Also, and as any trajectory
can be approximated with an arbitrary precision by a set of local linear motions, the
aforementioned restriction should be of no consequence for the expressive power of the
model. Each projection can be defined as a geometric transformation of the field potential
u(t), a transformation that may itself depend upon time, but will be limited here to a
fixed translation (which may be combined to approximate more complex trajectories).
We thus define:

pk(x, t) = u(x−∆x, t−∆t) (9)

which corresponds to a shift of ∆x performed in ∆t. From a neural perspective, we do
not want to consider delay differential equations, in which the continuous propagation
of activity over the neural field would lead to infinitesimal shifts when considering
decreasing periods of time. If we consider the internal projections to be the result of
back-and-forth projections between neural fields or neural areas, there will be a minimal
delay ∆t � 0 before any signal generated from the neural field activity returns to
it. Then, for any fixed “projection velocity” vk, the equivalent shift must be set, or
adjusted, so that ∆x = vk∆t. The delay ∆t may of course depend on the connectivity,
thus also on the location within the neural field, but will be considered constant in the
current paper with any loss in expressiveness. Also, and to return the mathematics of
the system, a large enough delay is required to discriminate between projections and
allow bifurcations in the system (through weights wk), since differences will become
negligible when the delay approaches zero (in terms of signal-to-noise ratio). Reversely,
a too large delay leads to projections no more interacting with a pre-existing peak of
activity (through the connectivity kernel of limited excitatory width), and thus has
a reduced impact on the neural field dynamics. Practically, there is no need for such
projection to be defined for any x ∈ X, as they simply need to sufficiently cover the
neural field, which embeds continuity and smooth out irregularities (with increased
weights wk possibly compensating for the reduction of effect due to sparsity). Instead
of considering projections as transformations of the entire neural field activity, we can
indeed decompose projections as local stimulations, responding to distant and past
activity on the field. For each location targeted by a projection, we can define an input
receptive field on the neural field, reacting to the presence of a peak of activity. Such local
projections then define a set of tuning curves (Zhang & Sejnowski, 1999) and the system
dynamics will remain roughly the same, as long as the receptive fields overlap sufficiently.

When turning to the computational implementation of Eq. 9, we want to respect both
the spatial and temporal discretization of the neural field. We therefore synchronize the
updates with ∆t = n×dt (n ∈ N∗). Additionally, as long as both dt and n are neither too
small (with birfurcation issues) nor too large (with lateral interaction issues), n remains
a free parameter of the system. It is here arbitrarily set to 1, which gives the following
equation when also introducing a second term to facilitate the relaxation of activity at
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the previous (peak) location:

pk(x, t) = u(x− vkdt, t− dt)− u(x, t− dt) (10)

With this equation, a peak centered on x at time t − dt should move to the location
x+vsdt at time t. At this stage, the reader might wonder about the relationship between
the peak velocity vu (derivative of xu), the projection velocity vk and the instantaneous
velocity of the tracked stimulus vs (of course unknown and not explicitly computed within
the neural field model). If all velocities are expressed in the same coordinate system, we
should expect the peak to move at speed vu = vs, ideally in perfect synchrony with the
stimulus (i.e. with no lag). The naive approach is to consider that a single projection
pk0

from Eq. 8 should be active (i.e. wk 6= 0 ⇐⇒ k = k0), or that projections should
combine into a single equivalent projection pk associated with vk = vs. However, the
dynamics of the peak (including its location and shape) makes the picture a bit more
complicated. For instance, the projection only contributes to the updated activity with
coefficient αdtτ , so that we need to choose vk = γvs with γ > 1 in order to compensate for
the peak inertia (which is a direct consequence of the original equation). A reformulation
and approximation of the problem would thus lead to the following definition to optimally
synchronize with the target motion:

pk(x, t) = u(x− γvsdt, t− dt)− u(x, t− dt) (11)

Further details and demonstration on this speed overestimation are provided in
Quinton and Girau (2011), and are illustrated in the PNF (fast) part of Fig. 2. In
practice, a simple model as expressed in Eq.11 cannot account for the complex dynamics
of the neural field, and learning is required to correctly estimate the map between u
and p for any fixed target velocity vs. It is unrealistic to assume targets should follow
a trajectory with stable characteristics on a sufficiently large time window [0, T ], so
that a projection pk could be independently learned to synchronize the peak and target
dynamics. In practice, the set of weights wk should be also learned as functions of the
neural field state, testing if the projection facilitates the synchronization with the target,
for which the actual location, velocity, or even presence are unknown. While a form of
predictive coding could be considered, the crucial problem remains that the projection
velocity vk and the peak velocity used to test the prediction are different, and related
by a complicated function that also depends on most of the neural field parameters.
When combining all these factors, the problem is far from being trivial to solve through
unsupervised learning. These difficulties will not be directly addressed in this paper,
and are simply highlighted as they will partly be dissolved when turning to the ANF
model in the next section. We will therefore rely on Eq. 10 in the rest of the paper.

With target motions remaining within the limits of the visual field, the aim of the PNF
model is to extend the covert attentional capabilities of classical DNFs. As described in
Quinton and Girau (2011), the field potential u may converge to a limit cycle in presence
of a periodic target trajectory, even when the stimulus speed is increased, and without
the alternation of decaying and building peaks observed with the original equation. That
is, the peak velocity vu on the neural field will be equal to the stimulus velocity vs. Also,
robustness to noise and distractors is increased, since the target is now characterized
by its spatiotemporal dynamics and not only by its shape compatibility with the kernel
profile. Thus, and contrary to Rougier and Vitay (2006) for instance, distractors can
have the exact same spatial characteristics and be visible during the entire simulation,
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Figure 2. Illustration of the neural field model dynamics and equation components. For each model, stimulation

at time t − dt (light blue) and t (blue), field activity from t − dt (light orange) and resulting at t (orange), as

well as the competition component (green), are represented. Internainputl projections corresponding to expected
trajectories are also shown for the PNF and ANF models. With a moving stimulus, the DNF model is not able to

converge to a stable peak of maximal activity, the peak lagging behind the target and/or decaying. The projection

of activity in the PNF model simply compensates for the inertia of the equation and synchronizes with the target
trajectory (if the implicit expectation and observation match). The ANF model additionally includes a projection

due to the eye movement, thus canceling the drifting effect of the projection when the target image is kept within

the central visual field.

but simply adopt a non-expected trajectory. It is therefore possible to discriminate and
interpolate between trajectories in a nonlinear fashion, thanks to the feedback loop of
projections validity (wk) in the PNF equation (Quinton & Girau, 2012). Finally and as
a consequence, the system becomes also robust to the temporary disappearance of the
target (e.g. due to occlusion). In such a case, the peak decays in absence of stimulation,
but initially keeps tracking the stimulus at its current (here and now) location. Indeed, the
inertia induced by the original equation remains effective, with the peak and projection
positively exciting each other (a high wk leading to a larger peak amplitude and vice
versa). Nevertheless, this behavior is short-lived (a few hundred milliseconds with current
parameters) since the input and thus the weight of other projections rapidly regain a
significant impact (because of α < .5 in Eq.7).

In the context of this paper, the most striking feature of the PNF model is that the
projection of activity pk on the neural field is actually not a prediction of the present state
u(t). Prediction usually supposes a projection into the future, and while the projection
pk is indeed built based on the state of the field activity at time t−∆t (and thus oriented
toward the future), it only influences the dynamics and effectively gets projected onto
the field at time t (thus in the present, if we consider the external world to be setting the
time reference). More importantly, while the field potential u(t −∆t) can be conceived
as the input to generate an internal expected or experienced trajectory, the projection
pk generated in return is a form of internal action on the neural field, which alters
its dynamics. The projection term thus is not required to be in direct relation with
the external stimulation s, but simply allows maximizing the synchrony between the
system and stimulus dynamics, i.e. minimizing the distance between xs (actual stimulus
location) and xu (estimated location). In other words, we should not expect the weight wk
(somehow the confidence in the projection ability to facilitate synchrony) to be correctly
estimated based on the difference between the projection pk and the present field state
u(t) or stimulation s(t). Even though they end up being combined in the neural field
space X, they correspond to qualitatively different concepts; if u(t−∆t) provides part of
the context, pk is the action, and u(t) the outcome. At this point, two limitations lead to
the development of the ANF model: 1) Such projections require to learn or approximate
the relation between vs, vu and vk for any location on the field. 2) The model is limited
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to covert attention (with the absence of eye movements), as a target leaving the visual
field will be lost.

While a heterogeneous field of view (e.g. characterizing the retina with a central macula
and fovea) could be viewed as a complicating factor for the above issues, it is actually a
solution to the problem when one considers the generation of eye movements. Foveating
a target indeed facilitates its pursuit by increasing the neural resources for processing
the motion signals, and at the same time hinder and make unnecessary the learning of
stimuli dynamics for all locations of the visual field. Learning to foveate the target and
keep it in the central visual field will reduce the problem to processing the motion signals
and characterize the dynamics of the input stimulus. Also pointing in such direction, a
model of target position encoding in the superior colliculus has been recently proposed
in Taouali et al. (2015), demonstrating that apparently complex foveation performance
can be accounted for by dynamical properties of neural field and retinotopic stimulation
(using a log-polar representation of the visual field).

2.3. Active Neural Field (ANF)

The new Active Neural Field model proposed in this paper extends the previous models
by introducing eye movements, complementing the covert attentional deployment
(Quinton & Girau, 2011), with overt shifts of attention. The system thus aims at
reaching a fixed point attractor when a target is stabilized in the visual field, while
performing eye movements synchronized with the motion of the target. Action is now
not only performed through projections to the neural field, but also through a physical
movement of the simulated eyes. To simplify the model, we will here rely on a Cartesian
coordinate system and a homogeneous resolution over the visual field, although some
advantages of turning to a more realistic retinal model will be developed in the final
discussion. While such increments to the model may seem limited in terms of equations,
they drastically extend the capabilities of the system, change the characterization of
the attractors of the associated dynamical system, as well as the dimensionality and
structure of the learning space. The following sections therefore focus on these aspects.

Physical actions are initiated once an activity threshold ua is reached on the neural
field, reflecting the detection of a target. With a sufficiently high value for ua, the
maximal activity of the neural field (‖u‖max) should indeed correspond to the center of
an existing or forming peak, and the field activity can be directly exploited to orient the
simulated eye toward the estimated target location. An alternative way to achieve the
same result, often adopted in the DNF literature, is to adjust the resting level h from the
original DNF equation, while setting ua = 0. A peak maintained above the threshold will
continuously feed the movement generators, but such a peak can hardly be maintained
away from the neural field center (details will be provided with the analysis of the system
dynamics in the result section). This threshold reflects a kind of “cost” for moving
the eyes (energy, time, blur), since its absence would lead to continuous movements of
possibly large amplitude. Indeed, in absence of an already high peak, the estimated
(peak) location (following Eq. 4) can be subject to quick variations, simply because
of small variations of the potential u induced by noise in the input signal. The activ-
ity threshold ua is set to .4 in this paper, but is dependent on the neural field parameters.

All actions in this system are aimed at bringing the target within the central visual
field (generating an associated peak at the center of the neural field), consequently

12



April 14, 2017 Connection Science pnf˙saccade

limiting the parameter space to explore for learning. Actions can thus be represented as
a map a from the field activity to the motor system. In turn, the action a leads to an
apparent movement on the field of view −xa, which is approximately equal to −xu (thus
the movement simply zeroes out the eccentricity of the target at its current estimated
location). In experimental data, both smooth pursuit and saccadic eye movements
correspond to continuous movements, but with qualitatively different speed profiles.
Although testing the fit between the generated saccade profiles and those observed
in experimental settings is meaningless here, due to the simplistic implementation of
oculomotor control, the apparent discontinuity of the movement in the model is merely
due to the temporal discretization of the differential equations. As a proof of concept
model and for simplicity and explanatory purpose, saccades will always be performed
over one time step in the current model, regardless of their amplitude. As a consequence,
and for such movements to remain biologically plausible, a lower limit to dt is imposed
for the simulation (this is already guaranteed when considering the projection delay ∆t,
as described in previous section).

To refine the previous notations for a controllable field of view, let xf be the center
of the field of view in the world reference frame. Assuming Cartesian coordinates, and
applying the adequate action a(u(t)) to center the currently focused target should lead
to the following changes at t+ dt:

xf (t+ dt) = xf (t) + xa(a(u(t)) = xf (t) + xu(t) + η (12a)

xs(t+ dt) = xs(t)− xa(a(u(t)) = xs(t)− xu(t)− η (12b)

where η is an error term that is minimized through learning to allow perfectly centered
fixations of targets. While the action map a and the sensory consequence xa of perform-
ing the action can both be easily given here (starting from Eq.4 for the extraction of
the peak location), such transformations can be learned in DNF models. For instance,
Bell, Storck, and Sandamirskaya (2014) focus on saccade generation and learning of the
coupling between target location encoding and motor commands. Even with the simple
Cartesian coordinate systems used here, the world and visual field reference frames must
be clearly distinguished, or equivalently the apparent location xs of the stimulus from
its physical location in the world reference frame, defined by x̂s = xf + xs. With the
emergence of a peak in response to a static target, we get xu(t) ≈ xs(t) before the
saccade is initiated, and thus xs(t + dt) ≈ 0. The learning of eye movements can be
made independent to that of the projections dealing with observed movements, as the
structure of the visual space can be acquired when looking at or away from static targets
(or those adopting slow movements for which the original DNF dynamics is sufficient).
Because of the inertia in the original equation, projections can also be associated to eye
movements, facilitating the relaxation of the eccentric peak and the emergence of a new
(theoretically central) peak of activity. The associated projection of activity can thus be
defined by:

pa(x, t) = u(x− xa(a(u(t− dt))), t− dt)− u(x, t− dt) (13)

The entire neural field architecture for the ANF model is represented on Fig. 3. When
a peak of activity grows on the neural field in response to a target, saccades, once
performed, systematically induce stimulations near the center of the visual field. For the
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Figure 3. Architecture of the Active Neural Field (ANF) model. The model first includes the lateral interaction

(c) and integration of input stimulation (s) from the DNF model. It also integrates the projections (pk with

weight wk) from the PNF model, themselves evaluated based on their ability to predict the current (here-and-
now) location of the target (p̂k). In addition, the model also controls eye movements (a), and thus can predict

the associated transformations on the visual field to be facilitated by a projection of activity (pa) on the neural

field. At each simulation time step, all components are combined with the neural field potential u(t) to produce
u(t+ dt).

previously introduced PNFs, the prediction p̂k and projection pk in Eq. 10 and 11 will
not be correct or at least optimal anymore, as they are designed for target motions with
constant velocities. Yet, if a moving target leads to a peak away from the center, the
projection associated with the expected motion (pk) will not be compatible with the
post-saccadic central stimulation, while both the inhibitory component from the pk and
pa components will facilitate the relaxation of the earlier peak and thus a refocus on
new apparent location of the target. If the peak appears near the center of the visual
field, with the target moving away from the center (i.e. with the eye movement lagging
behind the target), projections pa and pk will have opposite effects on the dynamics.
For a projection in adequation with the stimulus velocity, pa and pk will cancel out
and stabilize the peak when the continuous eye movements (induced motion xa at each
iteration) match the target motion (as illustrated on the ANF part of Fig. 2).

This attractor results from the combined effect of both pa and pk projections, as
well as the stimulation, when they are symmetrical near the position vsdt in the neural
field reference frame. The peak may thus only be stabilized in the direction of the
target motion and slightly away from the neural field center. Despite the resulting
small lag, this allows at the same time to continuously test the validity of different
projections, while limiting the need to learn regularities in the entire visual field.
An accurate alignment between the gaze and target directions would be possible
by directly associating the eye movements with projections, and by simultaneously
estimating the similarity between the performed and proposed movement, as well as
drifts in the peak location (reflecting a mismatch between the expected and actual

14



April 14, 2017 Connection Science pnf˙saccade

target motion). Such an approach based on sensorimotor contingencies in the context
of active vision has been used in Quinton, Catenacci, Barca, and Pezzulo (2014) and
Catenacci, Quinton, and Pezzulo (2014), but the subsequent increase of dimensionality
of the learning space is better suited to well-structured stimuli. Here on the contrary, a
small lag behind the target (at least momentarily) makes the decoupling of the target
foveation and the oculomotor behavior possible, since the validity of the associated
projections can be estimated when the peak grows or shifts slightly away from the
center of the neural field. As a consequence, pk and pa can be acquired separately,
and as the peak is expected to converge to a fixed location in the visual field, the
problem of estimating the effect of pk on the peak movement in the PNF model dissolves.

To conclude this section, adopting an active vision approach by coupling eye movements
with the neural field dynamics yields two main positive consequences: 1) learning the
regularities becomes simpler, as only the central part of the visual field becomes critical
for the accurate tracking of a target (a process which would in fact be facilitated by a
non-homogeneous visual stimulation), 2) inertia in the equation still allows to filter out
noise and distractors, but the constraint on target speed is reduced, as physical motor
actions now replace peak movements (the system converges to a sensorimotor fixed point
attractor, instead of a limit cycle in the visual space alone).

2.4. Simulation parameters and performance metrics

Before turning to the results, and to facilitate their reproducibility, we here specify
the model parameters and exact simulation scenarios. As the ANF model is equivalent
to the PNF model in the absence of eye movements and associated projections, and
the PNF model to a DNF model by only considering projections with vk = 0 (instead
of setting α = 0 as previously described), we used the exact same parameter values
for all simulations. The description, symbol and value (or range of values) for all
parameters from the DNF, PNF and ANF equations are reported in Table 1. Although
the number of parameters may seem elevated, they are not independent for a given
objective behavior (such as tracking a target). For instance, increasing the time constant
τ facilitates noise filtering, but for the system to remain sufficiently reactive to track a
rapidly moving target, the kernel usually needs to be simultaneously adjusted. For any
given parameters, increasing the speed of the moving target, the number of distractors
or the level of noise in the signals sooner or later breaks the expected performance of
the system. Parameters have here initially been optimized using genetic algorithms for
maximizing the tracking performance of the DNF model (Quinton, 2010). This way, and
by not retuning the parameters for the PNF and ANF models, we opt for the worst case
conditions, where performance improvement due to the model extensions are minimized
and can be hardly be explained by confounding factors.

As the objectives of this paper deal with detecting and tracking a moving target
through different types of eye movements, we do not include distractors in the stim-
ulation, and thus simply present a single noisy stimulus defined by:

s(x, t) = f̂

(
Ase

− ‖xs−x‖2

σs2 + ε

)
(14)

with ε being a white noise component sampled in N (0, σε), while f̂ is a saturation
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Table 1. Parameters and variables of the neural field model.

Group of parameters Description Symbol Value/Space

Visual field
Visual field space X [−0.5, 0.5]2

Coordinates within the field x ∈X
Field coordinates (world reference frame) xf ∈ R2

Neural field equation / potential u X → [0, 1]
Time constant τ 0.2
Resting potential h 0
Firing / activation function (ReLU) f R→ R+

Stimulation / projection coefficient α 0.5
Focus coordinates (peak center) xu ∈X

Lateral connectivity kernel w X → [−1, 1]
Excitatory amplitude A+ 0.06
Excitatory range (sd) σ+ 0.1
Inhibitory amplitude A− 0.03
Excitatory range (sd) σ− 1.0

Gaussian stimulus s X → [0, 1]
Stimulation amplitude As ∈ {0, 1}
Stimulation range (sd) σs 0.1
Stimulus noise (white) ε X → R
Noise amplitude (sd) σε 0.2
Stimulus velocity vs ∈ [−3, 3]2

Stimulus location (field reference frame) xs ∈X
Stimulus location (world reference frame) x̂s ∈ R2

Projection(s) pk X → [−1, 1]
Projection weight (validity) wk ∈ [0, 1]
Projection “velocity” vk ∈ [−5, 5]2

Eye movement
Motor space A [−1, 1]2

Motor command a A
Induced spatial displacement xa [−1, 1]2

Associated projection pa X → [−1, 1]
Activation threshold ua 0.4

Discretization / dynamics
Time t ∈ R
Time step dt 0.05
Spatial resolution n 51

function of unity slope (rectified linear unit), simply guaranteeing the stimulation
values remain within [0, 1]. xs is the center of the Gaussian target profile, as used for
instance in 12b, whose trajectory varies between results subsections. The dispersion of
the stimulus distribution σs could in theory be a free parameter, but should nevertheless
be constrained by initial visual preprocessing steps for the tracking system to perform
efficiently. As stated in Gepperth (2014), DNFs “contain a data model which is encoded
in their lateral connections, and which describes typical properties of afferent inputs.
This allows infering the most likely interpretation of inputs, robustly expressed through
the position of the attractor state”. Therefore, σs is here taken equal to σ+ to converge
on near Bayesian optimal decisions.

To characterize the performance of the computational system, we rely on two comple-
mentary measures. First, an error signal estimates the distance de between the center
of the field of view xf and the actual target location xs. Since one cannot expect the
system to focus on the target before it has been presented, the time variable is adjusted
to guarantee that the target should be visible for any t ∈ [0, T ], with T corresponding
either to the disappearance of the target, or the end of the simulation. Thus, we can
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estimate the mean error distance de as:

de =
1

T

∫ T

0
‖xf − xs‖ dt (15)

Assuming that the target location varies during the entire simulation (either contin-
uously when tracking a single moving target, or with discontinuities when switching
between static targets), this error increases drastically when the target his lost (since xf
will be no more matching xs). Also, it is inflated when the peak lags behind the target
(positive ‖xf − xs‖ distance) or if the peak relaxes before focusing at a new position
(with a maximal distance just before a new saccade is performed).

The characterization of saccadic movements usually relies on a shift in signal frequency.
In the case of experimental data on eye movements, they usually correspond to stereo-
typed profiles with speeds reaching up to 1000◦/s (in humans and monkeys) and lasting
only a few milliseconds (< 200ms). Most eye-tracking hardware or analysis software rely
on delay or speed thresholds to classify movements into saccades and fixations. Because of
the temporal discretization of the system used in the simulations, the movement speed is
at best estimated over a single time step (dt). The saccade, catch-up saccade and smooth
pursuit movement distinction thus qualitatively depends on the instantaneous speed of
the movement. Although small movements can be generated at each time step as long
as the activity over the field remains high enough (over the action threshold), large am-
plitude movements (of high speed, and thus saccadic) cannot be sustained over several
time steps. The same dynamical system thus generates: 1) continuous movements with
an adaptive instantaneous speed defined as the derivative between successive locations,
2) saccadic movements, which induce a large change in field stimulation, and thus re-
quire the field to relax over several time steps (through lateral inhibition) before another
movement can be generated (once the activity reaches again the action threshold).

To more accurately describe the performance of the system, we want to differentiate
intervals during which smooth pursuit movements are made with a small lag, from series
of small amplitude saccades. Following the previous paragraph, and from the dynamical
system perspective adopted in this paper, the fundamental difference comes from the non-
linearity introduced by the action threshold, with smooth tracking simply corresponding
to a maximal field potential maintained above ua over several time steps. Relying on
the temporal discretization of the equations, we thus define a saccade-like movement to
occur whenever asaccade = 1, following Eq.16.

asaccade(t) =

{
1, if ‖u(t)‖max ≥ ua and ‖u(t− dt)‖max < ua

0, otherwise
(16)

For the purpose of differentiating smooth pursuit and saccadic eye movements when
they hold the same error statistics de, we introduce a second measure as the number of
saccades performed during the entire simulation. Numerically, this is computed as the
sum of asaccade(t) for t ∈ [0, T ]. The time period is set to be consistent with Eq.15, but
no saccade should be performed outside this time window when no target is presented.
Combining the two measures is therefore necessary, as losing a target only increases de,
since no saccade is performed afterwards, thus lowering the relative number of saccades
performed as time passes when compared to an accurate tracking behavior. The proto-
typical combinations of the tracking statistics and their interpretation are synthesized in
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Table 2. Tracking statistics and their interpretation based on the type of target dynamics

Tracking error Nb of saccades Behavior

Target dynamics de
∑
t asaccade(t) interpretation

(all) High High Random saccades (depending on noise/parameters)
Saltatory movement Low Low Stable fixation on target
— Low High Micro-saccades around target
— High Low Continuous drift away from target
Smooth movement Low Low A few catch-up saccades followed by smooth pursuit
— Low High Catch-up saccades during the entire simulation
— Medium Medium Alternation of fixations and saccades
— High Low Target lost during the simulation

Table 2.

3. Results

The ANF model will be tested on different scenarios, to demonstrate its performance,
analyze its fine-grained dynamics, and facilitate an incremental understanding of its
behavior. The following section thus cover targets with fixed positions over an extended
period of time (thus reflecting how the visual system focuses on different features by
alternating saccades and fixations), and targets moving along a continuous trajectory
(thus testing the generation of catch-up saccades and smooth pursuit).

3.1. Fixational eye-movements

To evaluate the performance of the ANF model, we start by exploring the fine-grained
characteristics of the simulated oculomotor dynamics on series of fixations. Using Eq. 14
to generate the sensory stimulation, xs is now sampled in the uniform distribution
U(−.5 + σs, .5 − σs), thus guaranteeing that a well-defined peak of activity grows
within the limits of the neural field, in response to a target present in the visual field.
This avoids the need for a log-polar representation of the visual field (favoring the
emergence of central peaks) or the use of a toric manifold (which is often adopted in
computational studies to escape the boundary problems from the differential equation,
e.g. discussed in Rougier & Vitay, 2006). The location of the input stimulus remains the
same for periods of 1 second, before jumping to a new random position (sampled from
the same distribution). Although an adaptation mechanism responsible for perceptual
fading, an inhibition of return mechanism, or top-down modulations of activity should
be implemented to reflect realistic dynamics of saccades and fixations, as well as to
replicate the usual frequency of saccades (e.g. during free viewing or cognitive tasks),
this is not the focus in the current paper and has been explored elsewhere (Quinton et
al., 2014). The current system dynamics nevertheless parallels computational models of
visual attention based on saliency maps (Itti & Koch, 2001), where the target selection
is based on lateral inhibition in recurrent neural networks in the original models (Itti,
Koch, Niebur, et al., 1998).

The resulting sequence of fixations generated by the ANF model can be observed in
Fig. 4(a), which is a projection of the visual field center along the horizontal axis (i.e.
first component of the xf vector) as a function of time. The complete trajectory of the
target may cover a large part of the environment, captured by a succession of saccades
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Figure 4. Representative trajectory of the Cartesian visual field coordinates in the environment, when focusing
on targets adopting a new random position every second. The left figure reflects the relative complexity of the

trajectory, with a sequence of saccades and fixations matching the stimulus dynamics, but also random fluctuations
and micro-saccades. The right figure displays the power spectrum of the movements along the x-axis, with a

decreasing

whose amplitude yet never exceeds half the size of the visual field (due to the constraints
introduced in the previous paragraph). The uniform distribution used to sample the
target location leads to a random-walk behavior, with 10 fixations visible in Fig. 4(a).

The oscillations visible in Fig. 4(b) are in part due to the temporal discretization of
the differential equation combined with the choice of bandwidth resolution for the Welch
power spectral density estimate, but also reflect the closed-loop interactions between
the projections and neural field for a fixed target location. Nevertheless, and despite the
stochasticity of the simulation, a decreasing power as frequency increases is systematically
found. As stated by Astefanoaei, Creanga, Pretegiani, Optican, and Rufa (2014), “using
a log-linear scale the visualization of the power spectrum of either random or chaotic
data may be a broad spectrum but only chaotic signals are expected to emphasize a
coherent decrease of the square amplitude with the frequency increase”. Following the
methodology they used when studying how human execute saccadic and fixational eye
movements in response to red spots visual stimuli, we qualitatively replicate human
behavior (Fig. 2 and 4 of their paper respectively corresponding to the trajectory and
power spectrum on the horizontal axis, i.e. Fig. 4(a) and Fig. 4(b) here). Studying the
movements separately for each fixation, the power spectral density demonstrates the
same decreasing trend. Also, adopting the same statistics to characterize the temporal
dependency in the eye trajectory, we found high values for the Hurst exponent (M = .70,
SD = .03). Combined, these results demonstrate that the micro-movements performed
by the system during fixations are neither purely oscillatory (where peaks should be
observed on the power spectrum) nor purely fully driven by the stimulation noise (since
we should find H ≈ .5 for Brownian motion).

Although such descriptive statistics based on frequency distributions do not account
for all characteristics of fixational eye movements, they are compatible with the frequency
shift approach generally used to characterize the different types of eye movements (as
introduced in previous section). Without a more refined model of eye movements, we
cannot expect the current system to correctly approximate more than the frequency
distribution of fixational eye movements (e.g. their spatial distribution). Indeed, motion
is only induced by eye movements in this evaluation scenario, and projections are thus
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defined by Eq.13. In absence of other projections that may distort space locally, and in
presence of white noise in the external stimulation, the projected activity is also statisti-
cally anisotropic (the robustness of neural fields to such perturbations being one of their
strength). Variability in the stimulation thus influences the estimation of target location,
but do not introduce the asymmetries that are found in real visual environments and
that would be amplified by the activation of context dependent projections (see next
sections). As a consequence, and for static targets, the same pattern is observed for each
fixation, and would be for any arbitrary projection direction (x-axis on Fig. 4). With
this model in mind, we can argue that fixations are the result of a balanced activity
between opposing commands and associated projections. The equilibrium might not
be perfect at all time, thus leading to fluctuations around the target location, but the
dynamics of the system implies that the target will define a fixed point attractor. Thus,
visual fixation can be conceived as a dynamic equilibrium in the visuo-oculomotor sys-
tem, as proposed by neurophysiological studies (Goffart et al., 2012; Krauzlis et al., 2017).

In addition to the frequency distribution, we can also look at the movements generated
by the system once the initial oscillations driven by the non-linear dynamics have set-
tled, i.e. when the fixation conceived as an ideally fixed attractor has been reached. Such
movements mainly appear a few hundred milliseconds after a peak has grown in the new
central position, since the strong lateral inhibition of the current model prevents several
peaks to be maintained near the action threshold (ua). This naturally replicates the delay
observed in humans from fixation offset to micro-saccades production, rather indepen-
dently of the task performed (Otero-Millan et al., 2008). Even though micro-movements
performed by the system during fixations (i.e. when the theoretical target location is
stable) are partly driven by the sensory noise, the system responds through a coherent
behavior, with fluctuations in projection weights influencing the neural dynamics and
generated eye movements. Although these movements are only the by-product of a tar-
get centering oculomotor behavior yielded by fluctuating signals, they also contribute
to locate the target within the visual field, increasing potentially the robustness of the
gaze-related signals which guide the movements of e.g., the hand. More careful testing
would be required to conclude on this part, but they may also contribute to increase the
acuity of the system (see Ko, Poletti, and Rucci (2010) for related human experiments;
Franceschini, Chagneux, Kirschfeldand, and Mcke (1991) for early experiments in the fly;
Viollet (2014) for a review of visual sensors hyperacuity based on micro-eye movements).
They may also contribute to cognitive demands at end (Hicheur et al., 2013) through the
activation of task-dependent projections. Generalizing to other movements and equilib-
riums, a connection can be made with the slight and chaotic movements performed by
the human body for keeping balance (Milton, Insperger, & Stepan, 2015).

3.2. Attractor dynamics on a moving target

In this section, we turn to stimuli crossing the visual field with a constant velocity. For
the system to detect and track the moving target, we generated targets which followed
rectilinear trajectories defined by:

x̂s = xf + xs = vst (17)

where x̂s is the target location in the world coordinate system, which differs from the
target position within the visual field coordinate system as it depends on xf . Starting
the simulation at a negative time t � −0.5/vs (but for vs = 0) and setting the initial
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Figure 5. Distance between the visual field center and actual target coordinates (de) as a function of time, for a

system with a null projected velocity (vk = 0) and targets moving along a rectilinear trajectory at various speeds
(‖vs‖ ∈ {0, .5, 1, 1.5, 2, 2.5}). This allows testing the behavior of the original DNF model endowed with the ability

to generate of eye movements. All stimuli are designed to reach the center of the visual field at t = 0 in absence of

eye movements. Dotted lines correspond to the extrapolated target trajectories in the field reference frame, where
no eye movement would be performed. For small increasing speeds, the target is detected and tracked with an

increasing lag. For larger amplitudes, the target is captured and tracked through sequences of catch-up saccades.

For extreme increasing speeds, the target gets lost sooner, or not even detected (for ‖vk‖ = 2.5). Values increasing
beyond .5 betray a loss of target (i.e. target exiting the visual field that cannot be captured again).

visual field position at xf = 0, the position of the target at t = 0 should be xs = 0 (i.e.
the center of the visual field). This equation thus guarantees the trajectory crosses over
the visual field and passes through its center, as long as no eye movements away from
the initial position are produced by the system before the target enters the visual field.
Although more complex trajectories could be used, they would be of no consequence for
the explanatory power of the model. Also, this section additionally serves the purpose
of introducing the results from the following section, in which we replicate empirical
observations made in monkeys tracking a target adopting similar trajectories.

In this section, the system includes an additional projection corresponding to a con-
stant velocity (vk in previous sections), thus related to Eq. 10. As previously, we also
consider a correct map has been learned for the eye movements (associated with pa
from Eq. 13) to center any target located anywhere in the visual field. Fig. 5 illustrates
a few representative dynamics by plotting the distance between the visual field center
and the actual target location (metrics de) as a function of simulation time, running
5 seconds simulations. They represent particular instances in the target speed contin-
uum (‖vs‖ ∈ [0,+∞)) with a projection corresponding to a static target (vk = 0). This
configuration allows evaluating the behavior of the original DNF model endowed with
the generation of eye movements. With the specific delay parameter chosen, we indeed
obtain pk = u(t − dt), so that the dynamics of the original equation is maintained, yet
slightly altered depending on the value of α in Eq. 7. The dynamics on the figure can be
classified as follows:

• For a static stimulus (vs = 0), a peak grows at the center of the field after 200ms (since
xs(t) = 0, ∀t), followed by small and slow movements in part driven by stimulation
noise (leading to a very small yet non-zero distance).

• For stimulus speed values in [.5, 1], the target is detected before it reaches the field
center, generating an interceptive saccade to it (drop in error distance around t =
−750ms for ‖vs‖ = .5, and -400ms for ‖vs‖ = 1).
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Figure 6. Distance between the visual field center and actual target coordinates (de) as a function of time, for

a system presented with targets moving along a rectilinear trajectory with a constant speed (‖vs‖ = 2), but
with different projected velocities, all matching the motion direction of the target, but with different amplitudes

(‖vk‖ ∈ {0, .5, 1.5, 2.5}). All stimuli are designed to reach the center of the visual field at t = 0 in absence of eye

movements. As the projected speed gets closer to its optimal value¸ , fewer catch-up saccades are performed, and
the target is tracked with a diminishing lag. As discussed in the main text and in order to correctly estimate the

validity of projections, the lag is never fully canceled.

• For stimulus speed values in [1.5, 2], the target passes through the field and is captured
before exiting at t ≈ 200ms, the initial saccade being followed by an alternation of
drifts and catch-up saccades, before the target is lost at t ≈ 3300ms for vs = 1.5 and
t ≈ 1900ms for vs = 2.

• For extreme speed values (vs ≥ 2.5), the target just crosses the field in less than
500ms, so that no peak emerges and the target has not been detected in any of the
simulations.

Fig. 6 illustrates complementary dynamics, when stimulus speed is fixed at ‖vs‖ =
2 and the projection speed increases, again for a system with a single projection for
expected (observed) movements. For a projection corresponding to a target expected to
be static (vk = 0), the behavior observed on Fig. 5 for ‖vs‖ = 2 is roughly reproduced.
Yet, the fact that the target is now tracked during the entire simulation (instead of
being lost at t ≈ 3300ms) reflects the chaotic nature of the system. The precise time
of interception and the number of catch-up saccades also vary. Thus, the boundaries
between the categories drawn previously must be considered as fuzzy and dependent
upon the exact stimulation dynamics.

For projection speed values in [.5, 2.5], the target is intercepted earlier, centered
through a smaller number of catch-up saccades, and then tracked with a decreasing
lag when the projection speed gets closer to the actual target speed. The direct
comparison of the projection and target speed is made possible by the simple coordinate
transformations involved here, yet optimal tracking never occurs for perfectly matching
speeds. Small oscillations still appear, reflecting that the relaxation of a slightly lagging
peak facilitates its movement, then leading to its maximal activity building up again
(see Quinton & Girau, 2011, for additional details in the context of the PNF model).
The system thus performs the expected behavior of classical DNFs when presented with
static targets, by converging to a stable attractor in the visual space, yet performing eye
movements to correctly compensate the target elevated speed.

To get a broader view of the dynamics, and to be able to obtain statistically mean-
ingful results, repeated simulations have been performed to average out the stochastic

22



April 14, 2017 Connection Science pnf˙saccade

X projection speed component

Y
 p

ro
je

ct
io

n 
sp

ee
d 

co
m

po
ne

nt

 

 

0.1

0.1

0.2

0.1

0.1

0.2

0.1

0.2

0.2

0.3

0.3

0.3

0.3

0.3

0.1

0.1

0.1

0.2

0.1

0.2

0.4

0.2

0.2

0.2

0.1

0.1

0.2

0.2

0.2

0.2

0.5

0.8

0.8

1.6

0.9

0.9

0.3

0.3

0.4

0.1

0.2

0.4

0.5

0.7

0.8

0.7

0.8

0.7

0.8

0.6

0.4

0.4

0.2

0.1

0.4

0.4

0.6

0.7

0.7

0.8

0.7

0.8

0.6

0.4

0.5

0.2

0.2

0.5

0.5

0.8

1.0

1.0

1.0

1.0

0.9

0.8

0.6

0.6

0.3

0.3

0.6

0.7

1.1

1.3

1.2

1.5

1.2

1.3

1.3

0.7

0.9

0.3

0.4

0.9

0.6

1.0

1.4

1.3

1.3

1.2

1.3

1.2

0.8

0.9

0.3

0.3

0.8

0.8

1.2

1.9

1.6

1.7

1.6

1.8

1.6

0.8

0.9

0.3

0.3

0.6

0.9

1.5

1.6

1.6

1.8

2.0

1.7

1.5

0.9

0.9

0.3

0.2

0.6

0.7

1.4

2.2

1.9

2.2

2.0

2.0

1.7

0.7

0.5

0.2

0.6

0.5

1.2

1.8

1.7

2.2

1.9

1.7

1.2

0.4

0.3

0.2

0.1

0.5

0.5

1.1

1.8

2.2

2.0

2.1

1.7

0.8

0.5

0.4

0.2

0.1

0.2

0.2

0.7

1.1

0.9

1.5

1.3

1.1

0.7

0.1

0.2

0.1

0.3

0.4

0.5

0.6

0.5

0.6

0.3

0.1

0.1

0.1

0.1

0.3

0.4

0.5

0.8

0.5

0.5

0.3

0.1

0.1

0.2

0.2

0.3

0.3

0.2

0.2

0.2

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−1.5

−1

−0.5

0

0.5

1

1.5 1

1.5

2

2.5

3

3.5

4

Figure 7. Mean distance between the simulated eye and real target coordinates after t = 0 (color gradient) and

average number of saccades per trial (figures), for a target moving at ‖vs‖ = 2 units/second along the horizontal
axis (1 unit = visual field width). Each cell corresponds to 200 simulations of the system running with a single

projection, with the corresponding projection velocity components indicated along the axes. A bell-shaped profile

appears around the target speed coordinates (with low error, and less than 2 catch-up saccades to capture the
target), reflecting the discrimination capabilities of the projections.

components of the equations. We can then characterize the conditions under which the
system is able to detect and track the target, using both the error distance (de) and
number of saccades (

∑
asaccade), varying both vs and vk. 200 runs of 5 seconds have

been executed for each combination of vs and vk (fixed throughout each simulation).
Fig. 7 represents the performance of the system when the stimulus adopts a horizontal
velocity set at vs = (2, 0), and the projection speed vk varies in [−2, 2]× [−1.5, 1.5]. The
gradient (both in color for error distance and figures for the number of saccades) reflects
the optimality of performance for projection speed close to the target actual speed and
the very progressive loss of performance when parameters deviate. Yet, in accordance
with earlier PNF results and due to the neural dynamics, the optimal configuration does
not correspond to vk = (2, 0) but to vk ≈ (1.5, 0), with less than two (interceptive and
catch-up) saccades to definitely capture (foveate) the target. Indeed, the dispersion in
both metrics is very low for near optimal configurations. The number of saccades here
never reaches high values due to the excessive speed of the target, rapidly lost without
the proper projection (please refer to Table 2 as a guide for the combined color and
figure interpretation). The variability and decimals in the average number of saccades
performed reflect the stochastic nature of the process. Values of 0.1 may for instance
correspond to targets which have been intercepted in 5% of the simulations (10/200),
but where immediately lost.

To test the performance of the system on slow targets (i.e. checking that the perfor-
mance does not degrade under weaker constraints), and to test the limits of the system
with targets adopting extreme speed values, the synthesis of complementary simulations
is shown on Fig. 8. While both target and projection velocity this time adopt the same
direction, their amplitude both vary, with ‖vs‖ ∈ [0, 3] and ‖vk‖ ∈ [−2, 5]. The behavior
can again be classified as follows:

• ‖vs‖ = 0 (first row with static stimulus): Even with extreme projection speeds, conver-
gence on target occurs within one or two saccades, and the tracking error remains low.
This demonstrates that the internal projection does not overcome the input stimulus.

• ‖vs‖ ∈ (0, 1.25] (low target speed): The projection hinders the correct tracking of
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Figure 8. Mean distance between the simulated eye and real target coordinates after t = 0 (color gradient) and

average number of saccades per trial (figures), for a target moving at different speeds and for various projection
speeds (both velocity vectors remaining collinear). Each cell corresponds to 200 simulations of the system running

with a single projection, with the target and projection speed values indicated along the axes.

the target if the projection velocity is opposed to the target motion. Even though
the system is still able to track the target with a relatively low error, the number
of catch-up saccades increases drastically when the target speed increases (up to 2.5
saccades/second), highlighting the need for correct projections when they become nec-
essary for capturing the target.

• ‖vs‖ ∈ (1.25, 2] (high target speed): The target is most often lost with incorrect pro-
jections, while performance improves with smaller lag and fewer catch-up saccades for
target and projection speeds which are compatible. Symmetrically, the target is lost
for excessive projection speeds. The results for ‖vs‖ = 2 statistically match those from
Fig. 7 for horizontal projection velocities (row with vertical component equal to 0).
The non-linearity of the system can be observed on the figure, as there the relation be-
tween the target speed and equivalent optimal projection on the neural field is clearly
nonlinear: vk ≈ 3 for vs = 1.5, thus facilitating the relaxation of a too stable peak,
while vk ≈ 1.5 for vs = 1.75, thus reinforcing a peak that already tends to disappear.

• ‖vs‖ ∈ (2,+∞) (extreme stimulus speed): The target is not efficiently tracked in any
of the simulations. At best, a few interceptive or catch-up saccades are performed
before the target is lost (leading to average numbers of saccades below 1, and very
high tracking error).

In all of these simulations, and for the selected tracking statistics, we find that the
ANF model outperforms the original DNF model endowed with the generation of eye
movements (see configuration vk = (0, 0) on Fig. 7 and ‖vk‖ = 0 on Fig. 8). Integrating
all previous results, the dynamics of the system as a function of the stimulation and
projections can be simplified as a graph represented on Fig. 9, where nodes correspond to
specific dynamics or attractors of the system, and transitions to changes (or maintenance)
in projection or target speed. The transitions can be described as follows:

(A) No spatiotemporally coherent stimulation is provided to the system, and the field
potential u remains close to its resting level (fluctuations being due to sensory noise).

(B) A target crosses the visual field, but is yet to be detected and intercepted by the
system.

(C) The target is detected (relatively) early due to its low to medium speed, or thanks
to the facilitatory effect of a compatible projection. Nevertheless, the peak always
builds with a small lag relatively to the actual target position.

24



April 14, 2017 Connection Science pnf˙saccade

u(t)

saccades & 

fixations

catch-up 

saccades

smooth 

pursuit

target 

lost

B

A

C
E

D F

G

H

I

J

K

Figure 9. Illustration of the ANF model dynamics in presence of a moving target following a rectilinear trajectory

with constant speed. Adopted states and transitions depend on the target dynamics and internal projection of

activity, and are thus implicitly represented here using arrows: low or compatible speeds with single-headed arrows,
high speeds and/or medium discrepancy with double-headed arrows, extreme speeds or high discrepancy with

triple-headed arrow. Apparent target position in the visual field is represented as a blue dashed circle while the

neural field peak is represented by a red spot whose intensity reflects the peak amplitude. Please refer to the main
text for the detailed description of the labeled transitions.

(D) As soon as a peak builds above the threshold for eye movement generation (ua) and
away from the center of the visual field, the movement brings the target to a closer
location from the center. As the target continues in the same direction, the peak is
either continuously reinforced or rapidly reaches the threshold again if it is slightly
relaxed, hence generating another catch-up saccade.

(E) If the peak progressively approaches the position where the projection matches the
target here-and-now location, the peak is maintained at a maximal level of activity,
and a stable fixed point attractor is reached.

(F) As the peak activity is maintained above the eye movement threshold, continuous
smooth pursuit movements are generated.

(G) If the target crosses the field at a higher speed (vs. (C) above), the peak will only
build later, just before the target leaves the visual field.

(H) An interceptive saccade of greater amplitude is generated. The peak will then imme-
diately decay below the threshold, since the target now stimulates the center of the
field while the decaying peak of course remains in its previous location.

(I) The relaxation of the peak (or at least its diminishing amplitude) allows a new peak
to emerge, when the target is again about to leave the visual field. This alternation
generates a sequence of saccades and fixations, which can simply be viewed as an
amplified dynamics compared to transition (D).

(J) If the target crosses the field at an extreme speed (at least relatively to the equation
time constant and to (C) and (G) above), no peak is fully formed, and the field
activity does not reach the eye movement threshold before the target leaves the
visual field. Similar transitions occur from several other states if the stimulus speed
increases or if random fluctuations are sufficient to destabilize the peak or delay
its formation. With a more general projection model, this should happen when the
target adopts an unexpected movement at a sufficiently high speed.

(K) Once the target is lost and any activity relaxes on the neural field, the system returns
to its initial idle state, since no active exploration of the environment is implemented
here.
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3.3. Learning with catch-up saccades and smooth pursuit

In all previously described results, we have assumed the projection was fixed so that
trials were totally independent. Here, we aim at replicating observations made by Bour-
relly, Quinet, and Goffart (2013) and Bourrelly, Quinet, Cavanagh, and Goffart (2016),
demonstrating in macaque monkeys that the ability to accurately pursue a moving target
is not spontaneous but must be learned. Over the course of several trials and training
sessions, the monkeys improve their ability to foveate the moving target with slow eye
movements of progressively increasing velocity while at the same time, the number of
catch-up saccades is reduced, as if the foveation system attempted to synchronize the
movement of the eyes with the current here-and-now location of the target. We also want
to test whether the model fits other empirical results obtained by Quinet and Goffart
(2015), showing how the monkey brain differently extrapolates transient target motions
depending upon the rate of change in speed.

As a consequence, we try here to qualitatively reproduce in silico the paradigm used
in these experiments. A fixed target is initially presented at xs = (0,−0.3) from t = −1s.
This artificial fixation point is removed before t = 0 (leaving 200ms for the peak to relax),
and replaced by a target moving horizontally with a constant velocity vs = (1.4, 0),
starting from xs = (0, 0). The speed amplitude of 1.4 is chosen in order to make it
possible for the system to track the target in the absence of correct projection, even
though this may often require several catch-up saccades, as the system demonstrates a
large variability in performance for this configuration (see Fig. 8). At t = 0.8s, the target
disappears, allowing to test the continued dynamics of the system without stimulation.
For every trial, the exact same stimulation dynamics is reproduced, except for the sensory
noise. During each trial, the eccentricity of the peak is estimated, reflecting the lag
of the system and providing a 2D gradient towards the optimal projection (and thus
predicted velocity). We thus again assume all mappings between the neural field activity
and eye movements and projections have been learned, reducing the dimensionality of
the problem without much changing its complexity and characteristics. Nevertheless,
convergence relies on the convexity of the 2D problem, which is illustrated on Fig. 7 with
the tracking error following a bell-shaped profile based on the 2D projection velocity.
The projection (associated to the projection velocity) is arbitrarily updated at the end
of each trial, in order to make the connection with previous sections simpler, and to
guarantee a correct estimation of the gradient over a sufficient period of time. Since we
have previously noted that the peak should grow at an eccentric location reflecting the
projection speed, we can directly update the estimate iteratively as follows:

vk = (1− β)× vk + β × xu
dt

(18)

which is a time discretized version of a differential equation with relaxation and input
from the current trial estimate. β is set to .05 in the following simulation, which
corresponds to a 40s integration time constant for trials of 2s. The estimate of the
average peak eccentricity xu is computed for t ∈ [0.8, T ], in order to let enough time
for the peak to emerge, and eliminate the influence of the static target presented at the
beginning of each trial. Of course, a more complete version of the model should learn to
predict the dynamics of the entire trial (e.g. exact timing at which the moving target
appears), but this would no more correspond to the simple case of linear movements
studied here.

Fig. 10(a) displays the evolution of vk components over the course of 1000 trials.

26



April 14, 2017 Connection Science pnf˙saccade

100 200 300 400 500 600 700 800 900 1000

0

0.5

1

1.5

Trial

P
ro

je
ct

io
n 

sp
ee

d

 

 

X axis
Y axis

(a) Convergence of the “projection speed”.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

Time (in seconds)

X
−

co
or

di
na

te

 

 

Trial 10
Trial 1000

(b) Trajectory samples before/after learning.

Figure 10. Illustration of the learning dynamics of the ANF system when updating the projection of activity on the
neural field after each trials, reproducing experimental data from Bourrelly et al. (2016). (a) The projection speed

components (blue for X, red for Y) rapidly converge to relatively stable values (dashed lines for the asymptotic
means), yet different from the target speed components (plain lines), due to the complex neural field dynamics. (b)

Representative trajectories for trials #10 and #1000. The behavior drastically changes, with an earlier capture of

the target, a reduction in the number of catch-up saccades, the dominance of smooth pursuit, and the continuing
tracking at the here-and-now position of the target even after its disappearance (red dashed line corresponding to

the target trajectory, and stopping at t = .8s).

Although convergence occurs rapidly, the continuing variations are due to the signal/noise
ratio in the model and the chaotic nature of the performance, limiting the precision of
the estimate with the current integration scheme from Eq. 18. Fig. 10(b) illustrates
the dynamics of the ANF system on two representative trials, at the beginning of the
simulated experiment (trial #10) and at the end (trial #1000). Table 3 also reproduces
the two statistics used throughout this paper for the previously mentioned trials, as well
as the peak eccentricity (translating the lag of the system in spatial terms). At the end
of the learning period, the mean tracking error is highly reduced much below the peak
dispersion σ+, which equals to .1 in this paper. The eccentricity of the peak for trial
#1000 is reaching the exact value for which ‖vs‖ = ‖xu‖ /dt (1.4 = 0.07/0.05), but
does not match the system projection speed for the same trial (vk = (1.23, 0.09)). Also,
the number of saccades drops to 2, with an interceptive saccade followed by a single
catch-up saccade. The eye movement is almost perfectly synchronized with the target
motion. This remains true for a few milliseconds after the target disappears and until
the relaxation of the peak at t ≈ 950ms, demonstrating the robustness and inertia of
the PNF equation, here transferred into the sensorimotor system of the ANF model. A
decrease in eye movement speed is observed in the empirical data once the target has
disappeared, but is not present in the current simulations. This is simply because a single
projection is considered in this part of the simulations; without competition between
projections corresponding to different hypotheses, and in absence of a spatiotemporally
coherent stimulus, the peak dynamics is only driven by the single active projection, at
least until the peak relaxes below the action threshold. We thus qualitatively replicate
the dynamics and evolution of visual tracking reported by Bourrelly et al. (2016, 2013),
while the system also statistically lags behind the target, thus also demonstrating that
no prediction of the future location of the target is needed for the system to track the
target at its current (here and now) location. For individual trials (like #10), there might
be a few exceptions, but these are due to noise, incorrect target location estimates, or
excessive overestimation of the target speed at the early stages of the learning process.
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Table 3. Performance statistics for representative
trials during learning

Run #10 #1000

Mean peak eccentricity (xu) 0.193 0.070

Mean tracking error (de) 0.085 0.027
Number of saccades (

∑
asaccade) 5 2

4. Conclusion and discussion

Using the formalism of dynamic neural fields theory, this paper brings a proof-of-concept
model which is able to replicate different types of eye movements (rapid saccade or slow
pursuit) that primates make in response to a visual target, static or moving. More impor-
tantly, the qualitatively distinct eye movements emerge as attractors in a sensorimotor
dynamical system, without altering the neural field parameters. Once the usual param-
eters are set, transitions between the two types of eye movements occur depending on
the target eccentricity and speed, the amount of noise, as well as the a priori knowledge
about the possible target trajectories. Slightly altering the neural dynamics through de-
layed projections of activity is indeed often sufficient to switch from one eye movement
type to the other, and to outperform the original DNF model endowed with the same
mechanism for eye movement generation. For instance, anticipating the target motion
may transform a limit cycle attractor (corresponding to series of saccades with an oscil-
lating peak on the neural field) into a fixed-point attractor in the sensorimotor system
(corresponding to a smooth pursuit tracking behavior), by reducing the peak lag and
eccentricity of the target in the visual field. Put differently, our results underline the role
of both embodiment and timing, since the very same sensorimotor dynamical system
leads to apparently distinct visuomotor behaviors, depending on the precise interactions
between the dynamics of the neural field, eye movements and target motion.

Although variations of the neural field parameters have not been tested in this paper,
most configurations allowing attentional properties to emerge in classically DNF models
can be exploited in the PNF and ANF contexts. Also, even though variations in the
parameters would alter the results, we also indirectly tested the additional flexibility
provided by the addition of projections and eye movements. By learning the optimal
projection the system should use to perfectly synchronize with rapidly moving targets,
we demonstrated how the system may compensate for an initial lack of performance and
for possible inter-individual differences in neural dynamics.

Relatively to the task at hand, parameters are usually adjusted by considering the
trade-off between the adaptability and stability of the system (e.g. by preventing or
facilitating the relaxation of the peak of activity). This imposes limitations on the level
of dynamics the system can cope with (e.g. target maximal speed), thus favoring the
modeling of behaviors which can be characterized by a convergence on fixed attractors
followed by instabilities, for instance with saccadic eye movements, by relying on
temporary inhibition of the neural field activity to switch from one attended location
to another. Of course, the intrinsic limitations of neurally plausible field dynamics
remain, e.g. by not artificially reducing the time constant in the original equation
while increasing the temporal resolution of the simulation. Yet, these limitations are
here transcended by the continuous coupling and mutual influence with the motor
components. Instead of relying on phase transitions between stables states driven by
predictions, observed or induced changes in the sensory flow, we turn to a unique
sensorimotor dynamical system in which stable states are not exclusive of movement.
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In the near future, the generalization of the results to more complex motions should be
tested, relying on the transition and interpolation between expected local trajectories.
Target trajectories with a wide range of shapes and dynamics can be computationally
studied, for instance aiming at replicating the empirical results on accelerating or deceler-
ating targets (Bourrelly, Quinet, & Goffart, 2014). Further developments are yet required
to better model and explain some key principles of the oculomotor dynamics. As briefly
discussed in previous sections, the integration of an adaptation mechanism responsible
for perceptual fading would allow reflecting realistic dynamics of saccades and fixations.
Also, the hypotheses about the functional role of fixational eye-movements (here induced
by noise or projections) could be explored by activating or deactivating various compo-
nents of the model. On a related note, this line or work could extend and bridge the gap
with systems which also rely on dynamical systems and dynamical neural fields to model
perceptual decision-making and fixation patterns on structured visual stimuli (Quinton
et al., 2014), as well as to detect and track objects of interest in presence of combined
target-motion and ego-motion (Maggiani et al., 2016).

Finally, a preference for orienting gaze shifts that bring the target near the center of
the visual field was here assumed. Explanatory reasons for favoring such saccades can be
computationally evaluated, for instance by adopting a retinotopic yet non-homogeneous
representation of the visual field (with a greater accuity in the fovea, at the center of the
retina), as developed in Taouali et al. (2015). In addition to limiting the extent of the
sensorimotor regularities to be learned, a saccade then also leads to the magnification
of the target image. This over-representation of the target in terms of neurons can also
be reversely seen as a local distortion of space-time, slowing down the apparent motion
of the target relatively to the neural dynamics. Such mechanism and those developed in
this paper are complementary, both facilitating the tracking of the target for given neural
field parameters. These mechanisms should be integrated and their relative contributions
evaluated in the future.
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