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We demonstrate evidences of electronic transport via topological Dirac surface states in a thin film of strained
HgTe. At high perpendicular magnetic fields, we show that the electron transport reaches the quantum Hall
regime with vanishing resistance. Furthermore, quantum Hall transport spectroscopy reveals energy splittings of
relativistic Landau levels specific to coupled Dirac surface states. This study provides insights in the quantum
Hall effect of topological insulator (TI) slabs, in the crossover regime between two- and three-dimensional TIs,
and in the relevance of thin TI films to explore circuit functionalities in spintronics and quantum nanoelectronics.

DOI: 10.1103/PhysRevB.96.245420

I. INTRODUCTION

Similar to the case of graphene, the charge carriers at
the surface of topological insulators are expected to be
massless Dirac fermions but with a real spin locked to the
momentum [1–3]. This has strong implications when the
electrons experience a large perpendicular magnetic field B

and enter the quantum Hall regime. Indeed, each surface
is then characterized by nondegenerate Landau levels (LLs)
and the associated Hall conductance is expressed as σxy =
(N + 1

2 ) e2

h
, where N is the LL index. In topological insulator

slabs, however, two surface states of extension w have to be
considered and are separated by a thickness t . When the wave
functions of the two surfaces do not overlap (t � w), they
are only connected at the boundaries of the sample [4] and
the transport properties are obtained by summing the distinct
contributions of each surface. The Hall conductance σxy =
(Ntop + Nbottom + 1) e2

h
= ν e2

h
is then expected where Ntop and

Nbottom are the LL index for the top and bottom surfaces,
respectively. In this regime, integer filling factors ν have been
observed in relatively thick strained HgTe [5–7] and Bi-based
[8,9] topological insulators. By decreasing t down to w, the two
surface states start to overlap giving rise to a non-negligible
hybridization energy � [10–12] and the transport then occurs
through states delocalized between the two coupled surfaces.
In this regime, degenerate Dirac LLs are expected to emerge at
high B with energies scaling as

√
NB. Moreover, additional

dispersive couplings between the two surfaces are expected
to lift the LL degeneracy with an energy splitting linear in
B [12,13]. While of orbital nature, this splitting reveals the
microscopic coupling of spin and orbital degrees of freedom in
the Dirac Landau levels. Therefore analyzing the energy gaps
of both odd and even filling factors and their B dependencies
provides a powerful tool to experimentally reveal the Dirac
surface states of a thin topological insulator slab. Decreasing
further t would result in the opening of a large gap in the
surface states and the emergence of the quantum spin Hall
phase [11–14].

In this paper, the magnetotransport properties of strained
HgTe thin films at high magnetic fields are investigated. We
study films with a thickness of about 15 nm, comparable
with surface-state wave function penetration length [15], thus
characterized by two tunnel-coupled surfaces where electronic
transport is solely mediated by surface charge carriers. The
quality of the material allows reaching the quantum Hall
regime with vanishing resistance for magnetic field larger than
1.5 T. At higher magnetic fields, nondegenerate Landau levels
are observed. By analyzing the temperature dependence of the
magnetoconductance, a clear difference of the energy gaps
corresponding to odd and even filling factors is noticed and is
consistent with a Landau-level energy spectrum characteristic
of two coupled Dirac surfaces.

II. EXPERIMENT

A. Sample and low magnetic field characterization

We investigate top-gated Hall bars [see Fig. 1(a)] fabricated
from a 15-nm-thick HgTe layer surrounded by two 30-nm-
thick Hg0.3Cd0.7Te barriers and grown on a (100) CdTe
substrate. Particular attention to lower the defects present in the
HgTe layer and to obtain sharp HgTe/Hg0.3Cd0.7Te interfaces
was paid during the structure growth [16] [see Fig. 1(b)]. Two
different structures with similar thickness were grown and gave
very similar results. The Hall bar is 40 μm long and 10 μm
wide. A top gate covering the Hall bar enables us to change
the carriers from holes to electrons as illustrated by the density
sign inversion in Fig. 1(c). It is worth noting that the ohmic
contacts to the surface states become highly resistive at high
magnetic fields, and as a consequence only magnetotransport
properties up to 3 T are reported.

In HgTe layers, the light-hole band �8,LH band is lying
0.3 eV above the �6. Such an inverted band structure at
the � point results in topological surface states, robust to
the presence of the heavy-hole band �8,HH [17]. At zero
magnetic field and close to the charge neutrality point, the
longitudinal resistance Rxx presents a peak at gate voltage VDP
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FIG. 1. (a) Optical image of the Hall bar sample realized after
nanofabrication of the structure. (b) Scanning transmission electron
microscopy (STEM) image in a high angle annular dark field
(HAADF) mode of a 15-nm-thick HgTe layer embedded between
two Hg0.3Cd0.7Te barriers. Inset: High-resolution STEM HAADF
image zooming on the HgTe layer. Low defect density and quality of
the interfaces are evidenced. (c) Evolution of the slope RH = dRxy

dB

at low perpendicular magnetic fields with the voltage Vgate applied
on the gate. In a one-carrier model, the density n is equal to

1
eRH

where e is the charge of an electron. Vgate adjusts n in the

range of order of 1011 cm−2. The red dashed line corresponds
to a fit, which allows us to extract the depleting factor of the
gate α equal to ∼5 × 1011 cm−2 V−1. Inset: Schematics of the
strained HgTe topological insulator structure used in the experiment.
(d) Longitudinal resistance Rxx as a function of Vgate at zero magnetic
field showing the Dirac point at Vgate = VDP ∼ −0.5 V.

[see Fig. 1(d)], whose amplitude depends on the size of the
sample and can be as low as 1 k� for Hall bars of 1 micrometer
[18]. We conclude that the structure has a metallic behavior as
expected for electron transport through surface states.

B. Demonstration of the quantum Hall effect

To probe the nature of the surface-state carriers, we analyze
the Hall bar magnetoconductance at high perpendicular mag-
netic fields and at a temperature of 100 mK. Shubnikov–de
Haas (SdH) oscillations on Rxx and quantized plateaus on the
Hall resistance Rxy are observed [see Figs. 2(a) and 2(b)] and
point at the emergence of LLs in the structure. Both B and the
top gate voltage Vgate allow controlling the filling of individual
LLs. Indeed, the carrier density n is directly related to B

and Vgate through n = αVgate = ν eB
h

where α is the depleting
factor of the gate [see Fig. 1(c)]. Derived from the extracted
electron density at low B, the expected positions of the Rxx

minima are represented by the black dashed lines in Fig. 2(a).
They are reproducing properly the minima of the fan diagram
considering only odd filling factors on the hole side (Vgate �
VDP) and both even and odd integers on the electron side
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FIG. 2. (a) Longitudinal resistance Rxx as a function of Vgate and
the perpendicular magnetic field B at 100 mK. The dashed lines
represent the expected position of the Rxx minima extracted from the
density evolution with Vgate [see Fig. 1(c)]. (b) Hall resistance Rxy (in

units of h2

e
) as a function of Vgate and B.

(Vgate � VDP), in agreement with the corresponding quantized
plateaus on the Rxy mapping on Fig. 2(b).

At B = ±3 T, the quantum Hall regime is achieved on the
electron side with vanishing resistance and Hall conductance
plateaus corresponding to integer filling factors (see Fig. 3).
Such observations are strong signatures that there is no extra
bulk contribution to the transport in the electron regime,
contrary to what is observed in thicker samples [5–7]. On the
hole side, σxy plateaus corresponding to odd filling factors are
observed with σxx no longer completely vanishing. Moreover,
it is worth noticing that σxx is characterized by broader peaks
than on the electron side.
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The observed differences between holes and electrons are
explained by the coupling of the surface states with the heavy-
hole �8,HH bulk band. From the band structure of strained
HgTe [17], the �8,HH band is expected to efficiently couple
to the hole part of the surface states. This coupling opens
up scattering channels resulting in the increased broadening
of σxx peaks. The LL broadening is determined using the
amplitude dependence of the SdH oscillations as a function of
the magnetic field using the relation

�Rxx

4R0
= γth exp

(
− π

wcτq

)
, (1)

where �Rxx is the amplitude of the SdH oscillations, R0 is
the resistance background of the oscillations, γth describes the
temperature effect on the LL broadening, τq is the quantum
scattering lifetime, and wc = eB

m∗ is the cyclotron frequency.
The cyclotron effective mass m∗ has been determined using
the relation m∗ = h̄

√
πn

vf
[19], where vf is the surface-state

band velocity equal to 5 × 105 m s−1 in our structures [17].
Figure 4(a) displays the evolution of the broadening �e =

h̄
2τq

in the electron side as a function of the gate voltage. Note
that �e is decreasing with Vgate. This behavior is consistent
with Rxx mapping of Fig. 2(a) where we can see that the
closer the LLs are from the Dirac point, the more important
the magnetic field value is at which the splitting appears.
This is especially visible with the ν = 2 plateau appearing for
|B| � 1.5 T while ν = 4 shows up at larger gate voltage value
for |B| � 1.0 T. Due to a non-negligible bulk contribution in
the hole side, a similar analysis in this regime has not been
possible. However, to have an estimation of the broadening,
we have fitted N = 1 and N = −1 LL peaks with a Gaussian
distribution to extract the full width at half maximum [see
inset of Fig. 4(b)]. Figure 4(b) demonstrates the difference
through the �Vgate values between hole and electron peaks.
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FIG. 4. Estimation of the Landau-level broadening on the elec-
tron and the hole sides. (a) Determination of the LL energy broadening
�e as a function of Vgate in the electron side. (b) Estimation of the
energy broadening �h on the hole side using comparison between the
full width at half maximum �Vgate of the Rxx peaks for the N = 1
(blue) and N = −1 (red) peaks (shown in the inset) as a function
of B.

With a ratio of about 3.7, the hole broadening �h has been
estimated to be larger than 11 meV. More precise determination
of �h is complicated as it would also depend on the gate
voltage.

As a consequence of �h � �e, a larger magnetic field
is needed on the hole side to resolve the observed spin
splitting on the electron side. Whereas the ν = 2 plateau is
obtained for |B| larger than ∼1.5 T with a clear separation of
the Rxx maxima into two distinct branches [see Fig. 2(a)],
additional measurements on a second sample with ohmic
contacts working up to 5.5 T allow detecting the ν = −2
plateau on the hole side only when B equals 5 T [18].
We can thus conclude that only one set of fan diagrams,
associated to the same surface state on both electron and
hole sides, is observed in the quantum Hall regime. Moreover,
the degeneracy of the Landau levels is lifted for a 15-nm-
thick HgTe topological film at high perpendicular magnetic
fields.
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0.5 to 20 K and at B = 3 T. The inset is a zoom on the electron side.
The thermally activated behavior of Rxx minima is evidenced.

C. Quantum Hall transport spectroscopy

To gain knowledge on the nature of the Landau levels, we
analyzed the temperature dependence of the magnetoconduc-
tance in the quantum Hall regime [20–22]. In such a procedure,
the energy difference between LLs is estimated via thermal
activation. More precisely, the temperature dependence of the
longitudinal resistance Rxx minima (see Fig. 5) is fitted using
the Arrhenius law [see Fig. 6(a) for ν = 1]: Rmin

xx ∝ exp (−�E
2kBT

)
where �E is the activation energy gap, kB the Boltzmann
constant, and T the temperature. Figure 5 displays the quantum
Hall effect measurements performed for temperatures rising
from the mK range up to 20 K. As expected, the resistance
minima are increasing with temperature. One can notice that
they are still visible at 20 K in the electron side while
they disappear around T = 4 K in the hole side. Such
difference is interpreted as the impact of the �8,HH bulk
band on the hole side. This analysis has thus only been
performed on the electron side. We first focus on odd filling
factors where two successive LLs have different orbitals
[see Figs. 6(b) and 6(c)]. We clearly observe nonregular
energy separations between the successive LLs. Indeed, they
decrease with N and increase nonlinearly with B (mostly
noticed for the ν = 1 gap). Both observations are in qualitative
agreement with a Dirac-like LL energy spectrum scaling
as

√
NB.

The resulting energy gaps for even filling factors do not
show the same behavior [see Fig. 6(d)]. Indeed, the activation
energy gaps for all these LLs are similar and linear with B. The
slope 2β has been estimated to be about 2.07 ± 0.65 meV/T
from the red solid line fit of Fig. 6(d), which is similar to
the Landau-level splitting observed in HgTe nontopological
quantum wells [23,24].

To quantitatively model the energy gaps for odd and even
filling factors, we consider an effective low-energy model of
a thin 3D topological insulator. From the two-dimensional
(2D) quantum well point of view, the increased thickness
of our 15-nm sample leads to additional bands [25]. Out of
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FIG. 6. Minimum of Rxx as a function of temperature T for the
ν=1 filling factor. (a) This analysis allows to extract the activation
energy gap �E for all positive filling factors at different B. �E

evolution with B for odd filling factors ν = 1,3,5 and 7: (b) from
the model of eq. 2 and 3: �Eν=2N+1 = EN+1,− − EN,+, (c) from
the experimental data. (d) �E as a function of B for even filling
factors. In (c) and (d), the red solid lines represent the result of
the model �Eν=2N+1 = EN+1,− − EN,+ − � and �Eν=2N = EN,+ −
EN,− − �, respectively, with a constant offset � = 3 meV (see text).
In (c), the blue solid line shows the result of the model with a larger
offset of �= 11 meV, in better agreement with the data for ν=1.

these bands two of them correspond to the top and bottom
surface states while the others are confined bulk bands of a 3D
topological insulator [27]. The low-energy transport properties
of the sample will thus be dominated by these two overlapping
surface bands with opposite chirality h̄vf τz(σxky − σykx)
coupled by a k-dependent hopping amplitude of ( �

2 − k2

2M
)τx .

This coupling is purely of orbital nature, it does not depend
on spins, and originates from the overlap of the two surface
states that opens a constant gap � and introduces a quadratic
k2

2M
hopping amplitude [12]. In these conditions, we obtain the
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following LL energy spectrum with β = e
2M

represented in
Fig. 7 and explained in further detail in [18],

EN,± = ±
√

2Neh̄v2
f B +

(
�

2
− NβB

)2

± βB,N � 1,

(2)

E0,± = ±
∣∣∣∣βB − �

2

∣∣∣∣. (3)

While of orbital nature, the term βB acts as an effective
Zeeman energy and β is fixed by the analysis of the even filling
factor energy gaps performed in the previous paragraph. This
spectrum evidences a splitting of each orbital LL due to the
presence of the quadratic term. It is worth noting that for a
vanishing overlap between the two surfaces both the gap and
the quadratic term go to zero and one should observe only odd
filling factors [13]. The results of this model for the estimated
vf are presented in Figs. 6(b), 6(c), and 6(d) through the solid
red lines. To obtain a good agreement between the data and
the model for all energy gaps, we need to take into account the
width of the Landau level � as an offset in energy.

As the filling of individual Landau level is carried by
both magnetic field and gate voltage, it is difficult to make
a direct relationship between one broadening value and one
filling factor. Therefore to fit the activation energy gaps of
Figs. 6(c) and 6(d) we choose to use a constant value of
3 meV to represent the broadening. We recognize that using
this approximation, the quality of the fits is not optimal
especially for ν = 3, 5, and 7 but it definitely illustrates that
the probed energy gaps are characterized by a nonconstant
energy difference contrary to classical 2D electron gas.

Nevertheless, for ν = 1, the model requires a three times
larger � = 11 meV [solid blue line in Fig. 6(c)] that can be
explained by the proximity in energy of the �8,HH band [17].
Note that the model and the data are in good agreement for
ν = 1. We explain this better fit quality by the fact that the
ν = 1 plateau extends over a small range of gate voltages
in comparison with the higher filling factors as can be seen
in Fig. 2, and thus the broadening correction needed for this
filling factor does not significantly vary with B.

These analyses point at the Dirac nature of the surface-state
carriers of strained HgTe thin films.

III. CONCLUSION

In conclusion, we have shown that the quantum Hall regime
with vanishing longitudinal resistance is achieved in 15-nm-
thick strained HgTe layers. Dirac carriers are revealed via
quantum Hall spectroscopy and solely propagate through states
delocalized between the top and bottom topological surfaces
of the HgTe slab. The overlap between the surface states results
in the mixing of the two Dirac species and in the splitting of the
Landau levels. Dirac-surface-restricted transport demonstrated
on these strained HgTe thin films opens the route towards the
realization of circuits with a particularly a large potential for
spintronic applications as experimentally investigated in [26].
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APPENDIX A: ADDITIONAL MEASUREMENTS
ON A SECOND SAMPLE

To complete our analysis, we present here additional mea-
surements made on a second sample (called sample 2 hereafter)
for which ohmic contacts were reliable up to 5.5 T. The
heterostructure design, the growth conditions, and nanofab-
rication steps are exactly the same between sample 2 and the
one discussed in the main text (called sample 1 hereafter).

1. Metallic surface states

The gate dependence of Rxx was measured at zero magnetic
field for several Hall bars with lengths L ranging from 1 to
40 μm keeping the aspect ratio constant. All the Hall bars
considered in this section were fabricated from sample 2.
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at zero magnetic field for sample 2. VDP is defined for each curve
as the voltage Vgate corresponding to the maximum Rxx and slightly
varies from one Hall bar to another. The Hall bar length varies from
1 to 40 μm.

Similar observations were performed on sample 1. Figure 8
displays Rxx as a function of the gate voltage for B = 0 T and
for T lower than 100 mK. For all the bars, Rxx evolves the
same way as a function of the gate voltage Vgate and exhibits
a maxima at the Dirac point (DP) for Vgate = VDP. Resistance
maxima are to first approximation increasing with L from 1
to 25 k�. This witnesses a nonballistic transport suggesting a
metallic behavior of the surface states for which the resistance
value is governed by scattering disorder potential. These
observations are inconsistent with quantum spin Hall effect
expected for thin HgTe topological quantum wells [14]. It is
worth noting some divergences in the resistance of Hall bars
of the same dimensions.

2. Experimental evidence of the Landau-level splitting
in the hole side

In the main text, Hall bar magnetoconductance measure-
ments were presented for magnetic fields up to 3 T where
quantization between electron and hole side differs. All integer
filling factors were observed in the electron side whereas only
odd ones were observed for holes. Additional measurements
have been performed for magnetic field values B up to 5.5 T
on sample 2.

Figure 9 displays the longitudinal resistance Rxx as well as
the Hall resistance Rxy as a function of B and Vgate for a Hall bar
characterized by a length L = 8 μm and a width W = 2 μm at
T = 100 mK. These two mappings unambiguously evidence
the appearance of the ν = −2 plateau for B � 5 T. This is
emphasized in Fig. 10 where two traces of σxy for both B = 3
T and B = 5.3 T are displayed. A very clear and well defined
ν = −2 plateau exists for B = 5.3 T whereas for B = 3 T the
quantization in the hole side jumps from −1 to −3.
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FIG. 9. (a) Rxx as a function of Vgate and the perpendicular
magnetic field B. The black dashed lines represent the expected
position of the minima of Rxx from the density evolution with Vgate

extracted at low magnetic field (see Fig. 1). (b) Hall resistance Rxy

(in units of h

e2 ) as a function of Vgate and B. These data are extracted
from sample 2.

APPENDIX B: MODEL AND ORIGIN OF THE
LANDAU-LEVEL SPLITTING

1. Model

We consider a thin layer of topological insulator material,
with two parallel surfaces indexed by τ z = +1 for the top
(T) and τ z = −1 for the bottom (B) surface. The effective
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FIG. 10. Appearance of even filling factor on the hole side for
high magnetic fields. Hall conductance σxy as a function of Vgate at
B = 3 T (red) and B = 5.3 T (blue) for sample 2.

Hamiltonian for the surface states reads

H = vf τz ⊗ (ẑ × 	σ ) · (−ih̄ 	∇) +
(

�

2
+ h̄2∇2

2M

)
τx ⊗ I

+V τz ⊗ I, (B1)

where vf is the Fermi velocity of the surface states and σx,σy

describes Pauli matrices acting on the spin Hilbert space while
τα acts on the T/B space. The first term describes the Dirac
dispersion relation for the top and bottom surface states with
opposite chirality (the spin winds in opposite ways around
the Fermi surface), while �/2 − (h̄k)2/2M is a momentum
dependent tunneling between the two surfaces, and V is
the chemical potential difference between the surfaces. The

band structure corresponding to this model is symmetric with
respect to E = 0, and reads

E2
±(k) =

(
�

2
− h̄2k2

2M

)2

+ (V ± h̄vf |k|)2. (B2)

2. Landau spectrum

We consider a magnetic field B applied along z, perpendic-
ular to the two surfaces. We obtain a spectrum with a chiral
symmetry with respect to E = 0. The Zeeman coupling is
neglected in the Hamiltonian (B1), so the effect of the magnetic
field is purely orbital, and enters into the Hamiltonian by the
minimal substitution −ih̄ 	∇ → −ih̄ 	∇ − e 	A where 	A is the
electromagnetic vector potential. In the gauge (Ax = 0,Ay =
Bx), we introduce the ladder operators

a = 1√
2

(q + ip); a† = 1√
2

(q − ip), (B3)

q = X

lB
= x − kyl

2
B

l2
B

; p = −ilB∂X, (B4)

where we introduced the magnetic length l2
B = h̄/eB.

The Hamiltonian in the presence of a magnetic field can be
rewritten as

H =−ητz ⊗ (aσ−+a†σ+) +
(

�

2
− h̄ω

2
(2a†a + 1)

)
τx ⊗ I

+V τz ⊗ I, (B5)

where we introduced 2σ± = σx ± iσy and

η2 = 2
h̄2v2

f

l2
B

= 2h̄v2
F eB; h̄ω = h̄2

Ml2
B

= h̄eB

M
. (B6)

We consider the basis |N〉 of quanta of the operators a,a†. In
the basis |T ,↑,N〉,|T ,↓,N − 1〉,|B,↑,N〉,|B,↓,N − 1〉, the
reduced Hamiltonian reads, for N � 1,

Hn =

⎛
⎜⎜⎝

V, − η
√

N,�
2 − h̄ω

2 (2N + 1),0
−η

√
N,V,0,�

2 − h̄ω
2 (2N − 1)

�
2 − h̄ω

2 (2N + 1),0, − V,η
√

N

0,�
2 − h̄ω

2 (2N − 1),η
√

N, − V

⎞
⎟⎟⎠ = τx ⊗

[(
�

2
− Nh̄ω

)
I + h̄ω

2
σz

]
− η

√
Nτz ⊗ σx + V τz ⊗ I. (B7)

Its spectrum is symmetric with respect to 0 (chiral symmetric) and the energies satisfy

E2
N,± = V 2 + Nη2 +

(
h̄ω

2

)2

+
(

�

2
− Nh̄ω

)2

±
(

Nη2[4V 2 + (h̄ω)2] + (h̄ω)2

(
�

2
− Nh̄ω

)2
)1/2

for N �= 0, (B8)

which identifies exactly with the spectrum of [13] with the notation B = h̄2/2M .
In the case N = 0, we have to consider the basis |T ,↑,0〉 and |B,↑,0〉. These basis states are annihilated by aσ− and by a†σ+,

and the effective Hamiltonian is then

H0 = V τz ⊗ 1 +
(

h̄ω − �

2

)
τx ⊗ 1, (B9)

with eigenvalues ±
√

V 2 + (h̄ω − �)2/4.
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3. Landau spectrum with V = 0

In the special case V = 0, we can rewrite Eq. (B8) as

Ẽ2
N,± = Nη2 +

(
h̄ω

2

)2

+
(

�

2
− Nh̄ω

)2

± h̄ω

(
Nη2 +

(
�

2
− Nh̄ω

)2
)1/2

=
(

εN ± h̄ω

2

)2

, (B10a)

Ẽ2
0 =

(
h̄ω − �

2

)2

, (B10b)

where

εN =
(

Nη2 +
(

�

2
− Nh̄ω

)2
)1/2

(B11)

Hence the degeneracy of the Landau levels εN of the two
relativistic surfaces corrected by the nonrelativistic couplings
is lifted by a splitting ±h̄ω/2 (±β in the notation of the main
text). The N = 0 Landau level was initially not degenerate.
Note that while this splitting is not of magnetic origin, it is
linear in magnetic field, and can be viewed as an “effective
Zeeman splitting” originating from the k2 dependence of
hybridization term between the top and bottom surfaces [13].
Such a Landau energy spectrum is represented in Fig. 7.

4. Nature of the “Landau-Level Splitting”

When V = 0 and in the limit � → 0,ω = 0 the reduced
Hamiltonian (B7) reads

H
(0)
N = −η

√
Nτz ⊗ σx. (B12)

The corresponding Landau eigenstates are (in the gauge we
have chosen)

ψ+
N,+ = 1√

2
(|T ,↑,N〉 − |T ,↓,N − 1〉),

ψ+
N,− = 1√

2
(|B,↑,N〉 + |B,↓,N − 1〉) for εN =

√
Nη,

(B13a)

ψ−
N,+ = 1√

2
(|B,↑,N〉 − |B,↓,N − 1〉),

ψ−
N,− = 1√

2
(|T ,↑,N〉 + |T ,↓,N − 1〉) for εN = −

√
Nη.

(B13b)

They are entirely localized in either the top (T ) or bottom
(B) surface, and carry no net magnetization:

〈ψ+
N,±|Sx |ψ+

N,±〉 = 〈ψ+
N,±|Sy |ψ+

N,±〉 = 〈ψ+
N,±|Sz|ψ+

N,±〉 = 0.

(B14)

Let us now discuss the effect of various terms of the
Hamiltonian (B7), treated as perturbations of the relativistic
Landau Hamiltonian (B12):

(i) Chemical potential asymmetry V . The corresponding
term is +V τz ⊗ I which merely shifts the energies of the
Landau levels of the top surface with respect to those of the
bottom surface without modifying their nature.

(ii) Top/bottom hybridization. The corresponding term is
(�

2 − Nh̄ω)τx ⊗ I. This operator will shift the energies of the
Landau levels and delocalize the eigenstates on both top and
bottom surfaces but without any splitting between the two
degenerate eigenstates. This can be inferred from the matrix
elements,

τx ⊗ I|ψ±
N,s〉 = |ψ∓

N,s〉 ⇒ 〈ψ+
N,+|τx ⊗ I|ψ+

N,−〉 = 0. (B15)

(iii) Splitting. the most striking consequence of the coupling
between the two surface states arises from the k2 term in (B1)
and leads in the reduced Hamiltonian (B7) to a term

HSplitting = h̄ω

2
τx ⊗ σz, (B16)

which satisfies

HSplitting|ψ+
N,+〉 = |ψ+

N,−〉. (B17)

Indeed, while the two eigenstates |ψ+
N,±〉 carry no magnetiza-

tion, the spin and orbital degree of freedom (eigenstates N )
are tightly bound together in their structure. This is illustrated
by the absence of magnetization along x. It is this relation
between spin and orbital degree of freedom which is broken
by the perturbation HSplitting, whose eigenstates are symmetric
(S) or antisymmetric (A) between the two surfaces and read
respectively for the positive and negative eigenvalues:

|↑,S〉 = 1√
2

(|T ,↑,N〉 + |B,↑,N〉),

|↓,A〉 = 1√
2

(|T ,↓,N − 1〉 − |B,↓,N − 1〉),

(B18a)

|↑,A〉 = 1√
2

(|T ,↑,N〉 − |B,↑,N〉),

|↑,S〉 = 1√
2

(|T ,↓,N − 1〉 + |B,↓,N − 1〉).

(B18b)

Note that these eigenstates carry a magnetization along z:
the splitting of the Landau-level eigenstates will be associated
with the appearance of finite magnetization along z of the
eigenstates, linear in magnetic field (in ω).
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