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Abstract—The anthropomorphic model observer (MO) plays an 
important role in the assessment and optimization of medical 
imaging systems. The MO is a task-based approach. While the 
abnormality can appear as a hypersignal or a hyposignal for 
different imaging modalities, sequences or organs, no MO has 
been proposed for the hyposignals detection-localization task in 
the literature. To improve the clinical relevance of the existing 
MOs, we propose an anthropomorphic MO that can also deal with 
hyposignals in this paper. In a previous study, we reported a 
perceptually relevant channelized joint observer (PCJO) for 
detecting and localizing multiple signals with unknown amplitude, 
orientation, size and location. Here, we extend it mathematically 
to hyposignals task. A free-response study (close to the real 
diagnostic procedure) for both hypersignals and hyposignals in 
cerebral and abdominal CT images was conducted with four 
radiologists. The equally weighted alternative free-response 
operating characteristic (wAFROC1) was used as the figure of 
merit (FOM). Statistical analyses show that the extended PCJO 
approaches the experts’ performances with no significant 
difference in the studied tasks. The results demonstrate that the 
extended PCJO is an alternative to replace radiologists for the 
evaluation and comparison of different medical image processing 
algorithms. The PCJO has been originally proposed on Magnetic 
Resonance Imaging (MRI) but tested on computerized 
tomography (CT) here; the coherent results show that the PCJO 
can be generalized to another modality - CT. We also provide in 
this paper the reference values of all the parameters in the PCJO 
to facilitate its future application on MR or CT images. 

 
Index Terms—Model observer, PCJO, detection-localization, 

CT images, hypersignals, hyposignals. 

 
 

I. INTRODUCTION 

edical image processing (e.g. denoising, interpolation, 
compression, enhancement…) is one of the most 

important issues in biomedical engineering domain. While 
many new image processing algorithms have been proposed to 
improve or to guarantee the image quality, their task-based 
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Extended PCJO for the detection-localization of 
hypersignals and hyposignals in CT images 
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(a)                                                        (b) 

Fig. 1 A cerebral CT image of a multiple sclerosis (MS) patient (a) and an 
abdominal CT image of a hepatic carcinoma patient (b). Note the arrow in each 
image points to one abnormality (lesion). 

 
(a)                                             (b) 

Fig.2 A cerebral MR image of a hematoma patient (a) and an abdominal MR 
image of a pancreatic cancer patient (b). Note the arrow in each image points to 
one abnormality (lesion). 
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evaluation method is still an open question. For example, the 
simple numerical metrics, such as the normalized mean-square 
error (NMSE) and the peak signal-to-noise-ratio (PSNR), were 
still frequently used [1] [2] [3], while it has been widely 
admitted that they correlate poorly with human perception. The 
image quality actually has a close relationship with the intended 
purpose the image serves [4]. Since medical images are used for 
diagnosis, researchers are prone to define the medical image 
quality in terms of observer performance for a given diagnostic 
task. Human is the end-user of medical images, consequently 
the most correct and the ultimate way of image quality 
evaluation is to use human observers [5]. However, this method 
is costly and time-consuming. Nowadays, it has been largely 
recognized that medical image quality can be objectively 
assessed by the anthropomorphic model observer (MO) as the 
surrogate of the human observer [6], and the MO performance 
should be measured by its capacity of predicting human 
observer performance on the specific task [7]. The task should 
be clinically relevant, such as detecting the presence or absence 
of an abnormality, locating lesions’ positions, etc.  

One of the first anthropomorphic MOs may be the 
nonprewhitening matched filter (NPWMF) [8], considering 
that the human eyes cannot perform the pre-whitening 
operation. Then, the channelization mechanism was adopted by 
MOs to model the frequency and orientation selectivity of the 
human visual system (HVS), e.g. the channelized ideal 
observer (CIO) [9] and the channelized Hotelling observer 
(CHO) [10]. The above anthropomorphic MOs have 
successfully predicted human performance in 
signal-known-exactly (SKE) experiments [11] [12], where the 
entire signal attributes are fixed and a priori known by 
observers. However, in clinical routine radiologists are 
uncertain about the abnormality attributes before looking at the 
images; the experiments thus have to be 
signal-known-statistically (SKS) to approach the real 
diagnostic procedure. An SKS MO could detect or localize one 
or multiple abnormalities without knowledge about their size, 
shape, amplitude or orientation, etc. A detailed review on the 
SKS MOs can be found in [13]. Later developments on the SKS 
MOs include the MO proposed by Georges Acharian et al. that 
models the sequence of eye fixations that human observers 
make when exploring an image to detect an object [14]. Lee et 
al. replaced the 2D spatial channels in the CHO by a set of 4D 
space-time channels to develop a 4D MO for the detection of 
motion defects in 4D gated medical images [15]. Gifford et al. 
continued to improve the visual-search (VS) observer’s 
prediction performance by integrating the eye tracking data or a 
support-vector machine (SVM) [16] [17]. Diaz et al. extended 
the CHO and the NPWE to the Filtered Channel Observer 
(FCO) based on convolution channels [2]. The FCO can be 
implemented as a template with an internal noise component 
which renders the performance calculation very simple even 
though it could not match all the human performances with a 
single internal noise component for all signal shape, size and 
contrast conditions even for one signal. Note that our 
previously proposed SKS MO, the perceptually relevant 
channelized joint observer (PCJO) [18], still remains one of the 

most clinically relevant MOs: (1) it can not only perform the 
detection task, but also the localization task; (2) it covers a large 
variety of unknown signal parameters (amplitude/contrast, 
orientation, position, size and the number of signals); (3) the 
number of signals per image can be more than one; (4) it has 
been validated using simulated multiple sclerosis (MS) lesions 
and real medical background (cerebral MR images) on which 
there is no significant difference between the task performance 
of experts and that of the PCJO. 

Each medical imaging modality has its own specific features 
corresponding to the studied physical and physiological 
phenomena; the pixel or voxel values depend on the chemical 
and physical characteristics of the studied tissues [19]. In 
radiological terminology, an abnormality appears as a 
hypersignal or a hyposignal, respectively indicating that the 
abnormality has a higher or lower intensity than its surrounding 
tissues. For example, the MS lesions appear as hypersignals on 
a cerebral CT image (as shown by red arrows in Fig.1 (a)) while 
the hepatic carcinoma abnormalities appear as hyposignals on 
an abdominal CT image (refer to Fig.1 (b)); the traumatic 
lesions of hematoma appear as hypersignals on a cerebral MR 
image (see Fig.2 (a)) while the pancreatic cancer lesions appear 
as hyposignals on an abdominal MR image (as illustrated in 
Fig.2 (b)). As human observer, the radiologist has to be able to 
interpret both kinds of signals to achieve a precise diagnosis. 
However, existing MOs are limited to mimic human observers 
in hypersignal related tasks. To the best of our knowledge, no 
MO has been proposed or tested for hypo-signals, which is 
however frequently encountered by radiologists in clinical 
routine.   

In this paper, we try to further improve the clinical relevancy 
of the SKS MO by incorporating the hyposignal profile into the 
mathematical model. Our main contributions are: 1) a 
mathematical derivation based on the PCJO that allows it to 
detect and localize not only hypersignals but also hyposignals 
with unknown amplitude, orientation, size and number of 
signals; 2) an application of the extended PCJO on the cerebral 
and abdominal CT images, along with a free-response 
experiment using human observers, not only for the 
performance evaluation of the extended PCJO with regard to 
hyposignals, but also for the validation of the PCJO on another 
imaging modality to verify its generality; 3) the analysis of the 
reference values of all the parameters in the PCJO to facilitate 
its future application on the MR or CT images. 

The rest of this paper is organized as follows: in section 2, we 
introduce the mathematical model of background and signal, 
redefine the signal detection model for hyposignals, and deduce 
the new SKS MO for hyposignals; section 3 introduces the 
selected experimental protocol; section 4 shows and discusses 
the results; section 5 concludes the paper. 

II. EXTENDED PCJO FOR HYPOSIGNALS 

In this work, we use the same background and signal models 
as in the previous studies [18] and [20]: the Correlated 
Gaussian background (CGB) and a 2D Gaussian lesion model. 

Our proposed SKS MO is based on the PCJO, thus we firstly 
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recall the PCJO’s framework which is composed of two parts. 
The first part (called Candidates Localization) executes a 
global search on the tested image based on the visible 
difference predictor (VDP) model and locates all the 
abnormality candidates deserving further check. The candidate 
blocks were extracted as the input of the second part. The 
second part (called CJO Detection Decision) applies the 
channelized joint detection-estimation observer (CJO) [18] on 
each candidate blocks to calculate its test statistic (related to 
detection decision). For more details on the PCJO, please refer 
to [20]. 

Since the VDP can always provide a detection probability 
map (between a reference image and a distorted image) even 
when the abnormality has a lower intensity than its 
surroundings, we have just to adapt the CJO to the hyposignal. 
The Candidates Localization part in our extended PCJO 
remains the same as in [20]. Our extension concerns only the 
CJO Detection Decision part. The mathematical derivations of 
the CJO for hypersignals were introduced in [20], in the 
following we will only give a brief introduction of the CJO for 
hyposignals.  

Since the hyposignal intensity is lower than its surrounding 
tissues, we can model the image g by subtracting the signal xΛ 
(Λ is the signal parameters vector) from the background b. The 
hyposignal detection task can then be seen as the validation of 
one of two exclusive hypotheses: 

                         : , 0,1kH k k= − + =Λg x b                           (1) 
where the binary variable k controls the hyposignal absence (k 
= 0) or presence (k = 1), and g  is an 1M ×  vector for an 
image with M  pixels.  

Based on the joint detection and estimation theory, the signal 
parameter Λ  and the hypothesis kH  are estimated together to 

maximize the joint posterior probability ( )kP HΛ, | g : 

             ( , ) argmax ( )
k

k kH P H
Λ,Η

Λ = Λ, | g                             (2) 

Similar to the derivations in [20], considering the statistical 
independence of Λ  and kH , the monotonicity of the 
logarithmic function, the constancy of ( )P g  and the CGB 

with bΣ  as its covariance matrix, Eq. (2) can be substituted by: 

1

,

1( , ) argmax{ln ( )+ln ( ) ( )}
2k

t
k kH P H P k k−

Η
= − +Λ b Λ

Λ
Λ Λ x Σ g x                                                                                               

(3) 
In order to estimate the parameter Λ , we can maximize the 

posterior probability ( | )P Λ g :  

                              ˆ=argmax ( | )P
Λ

Λ Λ g                                       (4) 

Two assumptions (the parameter Λ  is uniformly distributed 
over feasible region ( )ℜ Λ  and the presence of the signal or 
not is equiprobable) lead Eq.(4) to: 

1 11 1=argmax{ ( )}, ( ) 0ˆ 2 2
any value in ( ) ,

t t
e

otherwise

− −⎧ − + − + >⎪
= ⎨
⎪ ℜ⎩

Λ b Λ Λ b ΛΛ
Λ x Σ g x x Σ g x

Λ
Λ

   (5) 
Considering the classical probabilistic decision model, we can 
set a decision rule as follows: when 

0 1
ˆ ˆ( | , ) ( | , )P H P H>Λ g Λ g  we choose 0H , which means that 

the hyposignal is absent; otherwise, the hyposignal is present. 
Then the following decision equation can be derived: 

1

0

1 0
ˆ ˆ

1

( )1( ) ln
2 ( )

H

t

H

P H
P H

λ − >
= − +

<
bΛ Λx Σ g x                  (6) 

where λ  is the test statistic for deciding the presence or 
absence of the hyposignal. 

As in [20], we solve the dimensionality problem by 
introducing the channel matrix ΛU  to firstly obtain the 

channelized image 'g : 
' = Λg U g                                        (7) 

The matrix ΛU  is built in the same way as in [20] to be capable 
of searching the optimal parameter in the channel domain rather 
than in the spatial domain, without loss of accuracy:  

'( )t t= =Λ Λ ΛU A U U A                            (8) 

where ΛA  is used to map the parametric signal Λx  to a 

reference signal 0x  whose parameters are known: 0=Λ ΛA x x ;
'
ΛA  serves to map the channelized parametric signal '

Λx  to a 

channelized reference signal  '
0x : ' ' '

0=Λ ΛA x x . The matrices 

U  and '
ΛA  remain the same as in [20], where U  is 

constructed by K steerable channels and J scale-shiftable 
channels. We can finally get the following equations for the 
parameters estimation and the detection decision: 

' t ' 1 ' ' '
0 0' t 2

F

1 1=argmax ( ) ( ) ( + )
|| ( ) || 2e

−−
b Λ

Λ Λ

Λ x Σ A g x
U A

  (9) 

    ' ' 1 ' ' '
ˆ0 0' 2

ˆ

1 1( ) ( ) ( + )
|| ( ) || 2

t
t
F

λ −−
= b Λ

Λ

x Σ A g x
U A

                   (10) 

For the hyposignal, the expression of  '
bΣ   is: 

( )( )

( ) ( ) ( ) ( )

' ' ' ' '
0 0 0

' ' ' ' ' ' ' '
1 1 1

1ˆ
2
1
2

t

t

H H H

H H H∧ ∧ ∧ ∧

= − − +

⎡ ⎤ ⎡ ⎤+ − + + − +⎣ ⎦ ⎣ ⎦

bΣ g g g g

g x g x g x g x

 

 (11) 

III. EXPERIMENTAL PROTOCOL 

A. Experimental images 
With the extension on the CJO Detection Decision part, the 

new version of the PCJO can not only work on hypersignals, 
but also on hyposignals.  

To study the PCJO task performance on hyposignals, we 
selected the hepatic carcinoma (cf. Fig. 3) as the target 
pathology and CT as the imaging modality. To further verify its 
generality over modalities, we also selected the MS lesions 
appearing as hypersignals under CT (cf. Fig. 3).  
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From a retrospective database of the Nanjing First Hospital, 
we extracted 10 healthy subjects’ abdominal and cerebral CT 
image. We then chose 100 independent slices for the abdominal 
images and 80 independent slices for the cerebral images as the 
reference image-slices.  

We then inserted (i) one to three subtractive lesions with an 
amplitude value between 20 and 35 on the abdominal CT 
image-slices to simulate the hepatic carcinoma lesions 
(hyposignals), and (ii) one to three additive lesions with an 
amplitude value between 40 and 55 on the cerebral CT image to 
simulate the MS lesions (hypersignals). The proprieties of the 
simulated lesions’ amplitude, shape, size, position and 
orientation had been verified and confirmed by a consultant CT 
expert who did not participate in the subjective experiments. 
According to the consultant expert, these additive and 
subtractive lesions are sufficiently representative and mimic 
well the real abnormalities.  

 

    

    
Fig.3 Examples of experimental image-slices, the left two image-slices are 
original image-slices from healthy subjects and the right ones are those with 
simulated hyposignals (top image) and hypersignals (bottom image). 
 
    Note that for the detection-localization task, the lesions must 
not be too conspicuous or too difficult. Otherwise, observers 
(radiologists or MOs) could always detect and localize the 
abnormalities easily, or they would never detect and localize 
any of them. In these extreme cases, different imaging systems 
cannot be adequately differentiated through different task 
performances of observers. The subtlety of the simulated 
lesions in our experiments was well controlled to make the task 
not too easy nor too difficult.  

B. Human Observer studies 
In order to objectively assess radiologists’ performances, we 

conducted the same free-response study as in [20] with four 
radiologists. The four radiologists are hereafter referred to as 
E1, E2, R1 and R2, where E1 and E2 are CT experts, with 
respectively 12 and 10 years’ abdominal and cerebral imaging 

experience and R1 and R2 have respectively 2 and 5 years’ 
abdominal and cerebral imaging experience. Their task was to 
mark, with a mouse-click, the locations of any perceived 
lesions, and assign a confidence level on a 0 to 100 integer scale 
to each mark. Each radiologist performed this free-response 
task on 100 abdominal CT image-slices and 80 cerebral CT 
image-slices without time limits. The radiologists were blinded 
about the number of lesions (0-∞) that might be present on each 
image-slice and the lesion parameters. Each mark was 
classified as lesion localization (LL) if it was within an agreed 
upon distance of a simulated lesion or else it was classified as 
non-lesion localization (NL). 

Note that no lesion-absent image-slices were presented to 
human observers in the experiment for time-saving purposes, 
but we can still get a high statistical power by using the 
wJAFROC1 figure of merit (cf. section III.D).  

 

C. Extended PCJO Configurations 
In the Candidates Localization part of the PCJO, the healthy 

CT image-slices were considered as the reference image for the 
VDP, while those with simulated lesions were considered as the 
distorted image. The default parameters in VDP were given in 
[22]. The probability threshold applied on the detection 
probability map in the Candidates Localization part (Tp in [20]) 
is set to the values varying from 0.1 to 0.9 with a step of 0.1. 

For the CJO Detection Decision part, 600 training blocks 
(300 without signal and 300 with signal) were extracted from 
healthy abdominal and cerebral CT images, respectively. The 
size of blocks was set to 65×65. The scale range of the 
simulated lesions was min max[ , ] [1,12]σ σ = ; the orientation 

varied between 0 and π; the shape was defined by 2b = and 
the amplitude range was [amin, amax] = [20,35] for hyposignals 
and [amin, amax] = [40,55] for hypersignals. 

 

D. Observer performance data analysis method 
Since the data consisted of a-priori unknown numbers of 

mark-rating pairs on each viewed image-slice, where each slice 
was a simulated diseased case, the appropriate analysis is to use 
the area under the equally weighted alternative free-response 
receiver operating characteristic AwAFROC1 as the performance 
metric or figure or merit (FOM) [23-24]. It is defined as 
follows: 

( )( )
2 2

2 1 1 2

2

1 '
1 1 ' 12 2

1 max ,
kLK K

wAFROC kl l k l kl
k l k

A W z z
K K

ψ
= = =

= ∑∑ ∑           (12) 

In the above expression the index of a diseased case is k or k’, 
NL locations are indexed by l1 and LL locations by l2. The 
rating of a case is denoted by 

1'k l
z  for NLs and 

2kl
z  for LLs. 

The number of lesions on case k is denoted by Lk. The function 
( )xψ  is defined as unity if x > 0, one half if x = 0 and zero if 

x<0. The max() function is the maximum over the indicated 
subscript. The quantity 

2kl
W  is the weight of lesion l2 on 

diseased-case k. The weights, which and sum to unity on each 
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case, denote the clinical importance of each lesion. In the 
current study the lesions were weighted equally, so  

                                 
2

1
kl

k

W
L

=                                        (13) 

The weighting assures that each case gets equal importance 
in the analysis, regardless of the number of lesions in it. In the 
absence of such weighting, cases with larger numbers of lesions 
would contribute more to the FOM than cases with fewer 
lesions, an undesirable characteristic since each case is 
intended to be an equally representative sample from the 
population of cases. 

Since each free-response experiment (abdominal or cerebral) 
constitutes a single modality multiple reader study, the method 
described by Hillis [25] for fixed reader analysis is applicable 
(see Section 5.4 in cited paper). The necessary co-variances 
were evaluated using the jackknife method [26].  

The analysis applies a statistical test, using the 
F-distribution, of the null hypothesis that all readers have 
identical performances. The Type I error rate (alpha) of the test 
was chosen to be 0.05. If the null hypothesis is rejected, i.e., if 
the p-value of the overall F-test is smaller than 0.05, then one is 
justified in concluding that at least one pair of readers have 
different performances. Since the F-test controls the overall 
probability of a Type I error, no further correction (e.g., 
Bonferroni) for multiple comparisons is needed. Which reader 
pairs are different is determined by applying individual t-tests 
to each reader pairing. A t-test yielding a p-value less than 0.05 
means that particular pair of readers have significantly different 
performances.  

The analysis method is implemented in an R package called 
RJafroc (https://cran.r-project.org/web/packages/RJafroc). 
 

IV. RESULTS AND DISCUSSIONS 

A. Results of radiologists & PCJO for abdominal CT image 

For the detection-localization of simulated hepatic carcinoma 
lesions on abdominal CT images, the wAFROC1 FOMs of the 

four radiologists were calculated and are shown in Table I. 
From the F-test results, we can see that no significant difference 
exists between the FOMs of all the four radiologists (p-value = 
0.4 > 0.05).  

TABLE I 
THE TASK PERFORMANCES OF ALL RADIOLOGISTS FOR ABDOMINAL CT IMAGES 

Overall F-test results 

F statistic 0.98 

ndf (numerator degrees of freedom) 3 

ddf (denominator degrees of freedom) 297 

p-value 0.40 

FOM for individual radiologists 

 
wAFROC1 FOM Detection rate 

E1 0.80 0.73 

E2 0.80 0.79 

R1 0.78 0.75 

R2 0.77 0.53 
 
 

TABLE II 
NUMBER OF LL MARKS AND NL MARKS UNDER DIFFERENT THRESHOLD TP OF 

THE PCJO FOR ABDOMINAL CT IMAGES 

Tp LL NL 

0.1 180 24 

0.2 167 24 

0.3 161 27 

0.4 146 21 

0.5 128 27 

0.6 117 17 

0.7 107 14 

0.8 80 5 

0.9 63 1 
 

 

 

 

 
FIG. 4 The WAFROC1 FOM of the PCJO under different threshold Tp for 
abdominal CT images vs. those of four radiologists 
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  For the PCJO, we firstly studied the influence of the 
probability threshold (Tp) by varying it from 0.1 to 0.9 with a 
step of 0.1. The numbers of LL and NL marks obtained by 
different Tp settings are shown in Table II. We can see that 
when Tp is between 0.4 and 0.7, the LL and NL numbers of the 
PCJO seem close to those of radiologists.  
    We then further find the relation between the wAFROC1 
FOM difference (between the PCJO and radiologists) and the 
probability threshold (Tp), as shown in Fig. 4. Note that for 
different thresholds, we tried different combinations of the 
number of steerable channel K and the number of 
scale-shiftable channel J to get the smallest wAFROC1 FOM 
difference. F-test results showed that when Tp = 0.5 ~ 0.7, there 
is no significant difference between the wAFROC1 FOM of the 
PCJO and that of all the four radiologists. In addition, when the 
threshold Tp = 0.5 the wAFROC1 FOM of the PCJO is closest 
to those of two experts. In order to make the wAFROC1 FOM 
of the PCJO closest to that of most radiologists, we retained the 
value 0.5 for the Tp for the abdominal CT images.  
  With Tp = 0.5, we then explored the influence of the number of 
steerable channels K and the number of scale-shiftable 
channels J on the PCJO’s performance, as shown in Fig. 5. The 
results illustrate that: (1) the number of scale-shiftable channel 
J has a much stronger effect on the PCJO’s FOM than the 
number of steerable channels K; (2) even with a small number 
of channels, (K=3 & J=4, 3×4=12 channels), there is no 
significant difference between the PCJO’s wAFROC1 FOM 
and that of the four radiologists (p-value > 0.05). 

 

B. Results of radiologists & PCJO for cerebral CT images 
Table III summarizes the task performances obtained for the 

detection-localization of simulated MS lesions on cerebral CT 
images. Since the p-value of the overall F-test is 0.00 < 0.05 
(that means there are significant differences among readers), 
we also listed the difference for each pair of radiologists. The 
p-values of each paired t-test demonstrate that there is no 
significant difference between expert 1 and expert 2 (p = 0.88 > 
0.05), all other pairings of readers are significantly different. 
This finding is consistent with our previous experiment about 
hypersignals on MR images where there was a significant 
difference between the experts and the non-experts [20].  

In order to get the best probability threshold (Tp), we then 
varied it from 0.1 to 0.9 with a step of 0.1 and counted the 
number of LL and NL marks obtained by the model, as shown 
in table VI. It can be seen that when Tp = 0.9, the number of LL 
and NL is very close to subjective results from the experts. We 
then plotted the wAFROC1 FOMs of the PCJO vs. different 
values of Tp, as shown in Fig. 6. F-test results showed that when 
Tp = 0.8 and 0.9, there is no significant difference between the 
PCJO and the two experts. From Fig.6 we can see that when Tp 
= 0.9 the PCJO reaches the nearest approximation of the 
experts’ task performance. This is also coherent with the setting 
in [20], where Tp was set to 0.9.  

With Tp = 0.9, we then compared the wAFROC1 FOMs of the 
PCJO to those of the experts with different combinations of the 
number of steerable channels K and the number of scale-shiftable channels J, as shown in Fig. 7. Here, we observe 

 
Fig. 5 JAFROC1 FOMs of the PCJO under different combinations of the number 
of steerable channel K and the number of scale-shiftable channel J, and the 
significance testing results between the PCJO and each of the four radiologists 
for abdominal CT image 
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again the same influences of K and J as in the above section 
(section IV.A): K hardly influences the PCJO’s FOM while J 
does. There is no significant difference between the PCJO’s 
performance and that of the experts for any combination of K 
and J. 

 

C. Discussion 
When comparing the results on the two types of CT images, 

we observed a behavioral difference between the experts and 
the radiologists (a significant difference was pointed out 
between the two groups for hypersignals, but not for 

hyposignals). This may indicate that the detection-localization 
task is more difficult on hypersignals than on hyposignals, 
since human observers have to read more images to familiarize 
themselves with this type of abnormalities and to have more 
experiences of diagnoses on this type of images (the differences 
between experts and average radiologists) to reach a good task 
performance. It is known that as the difficulty increases, the 
HVS’s detection probability threshold rises. In order to 
approach human performance, the PCJO involves an HVS 

 

 

 
FIG. 6 The wAFROC1 FOM of the PCJO under different threshold Tp  for 
cerebral CT images vs. those of two experts 

TABLE III 
THE TASK PERFORMANCES OF ALL RADIOLOGISTS FOR CEREBRAL CT IMAGES 

Overall F-test results 

F statistic 13.08 

ndf (numerator degrees of freedom) 3 

ddf (denominator degrees of freedom) 237 

p-value 0.00 

FOM for individual radiologists 

 
wAFROC1 FOM Detection rate 

E1 0.81 0.64 

E2 0.81 0.66 

R1 0.75 0.78 

R2 0.68 0.54 

Paired Differences 

 
Difference p-value Confidence 

Interval 

E1-E2 0.00 0.88 [-0.03, 0.04] 

E1-R1 0.06 0.00 [0.03, 0.10] 

E1-R2 0.14 0.00 [0.07, 0.20] 

E2-R1 0.06 0.00 [0.03, 0.09] 

E2-R2 0.13 0.00 [0.07, 0.20] 

R1-R2 0.07 0.02 [0.01, 0.13] 
 

Fig. 7 JAFROC1 FOMs of the PCJO under different combinations of the 
number of steerable channel K and the number of scale-shiftable channel J, and 
the significance testing results between the PCJO and each of the four 
radiologists for cerebral CT image 

TABLE IV 
NUMBER OF LL MARKS AND NL MARKS UNDER DIFFERENT THRESHOLD TP 

OF THE PCJO FOR CEREBRAL CT IMAGES 

Tp LL NL 

0.1 216 11 

0.2 216 6 

0.3 216 10 

0.4 216 12 

0.5 215 9 

0.6 212 8 

0.7 197 7 

0.8 182 6 

0.9 144 5 
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model (the VDP), on the output of which we applied a detection 
probability threshold Tp. Thus, the different difficulty levels of 
the two tasks can consequently explain why the Tp should be 
higher in the cerebral experiment (0.5~0.7) than that in the 
abdominal experiment (0.8~0.9). 

The results in this study are highly consistent with the 
findings reported in our previous study [20], even though the 
experiments are conducted by radiologists from two different 
countries (China and France, respectively) and on different 
modalities (CT and MRI, respectively). These cannot be merely 
coincident. We thus draw some conclusions on the PCJO:  
1. Though the PCJO was originally proposed based on the MR 

image backgrounds, it can be generalized to other 
modalities, where the CGB could model the background 
more or less correctly. 

2. With the number of steerable channels K=3 and the number 
of scale-shiftable channels J=4, the PCJO can approach 
well (with no statistically significant difference) the 
radiologist’s and the expert’s detection-localization 
performance in the hyposignal and hypersignal task, 
respectively. The small number of channels then renders the 
PCJO more efficiently (the PCJO executes faster with less 
channels).   

3. The reference value of the Tp could be 0.5 for hyposignals 
and 0.9 for hypersignals to mimic experts. The reference 
value may need to be adjusted according to the 
circumstances of a particular application, considering that 
the uncertainties in the clinical studies are often greater than 
those in the lab.  

  In addition, it is worth to notice that human readers (both 
experts and general radiologists) had high false negative rates 
in our 2D image experiments, cf. the low detection rates in 
Tables I and IV. Indeed, by observing the experiments and 
talking to the radiologists after the experiments, we noted that 
they could not really tell the difference between the lesions and 
the cerebral cortex that also appears as signals, without 
referring to the information in the adjacent slices, in some 
difficult cases. Thus when the simulated lesions were close to 
the cerebral cortex, which may also happen in the real clinical 
cases, the radiologists may miss them. Actually, in our previous 
studies on MR images, we inquired into the changes in 
radiologists’ performances from single-slice (2D) experiment 
to multi-slice (3D) experiment [27-28]. The comparison results 
[28] showed that both experts and radiologists improved their 
detection rate with the help of volumetric information (adjacent 
slices): an expert’s detection rate could be increased from 0.72 
to 0.90; general radiologists’ detection rates could be increased 
from 0.65 to 0.77 on average. In this study, we extracted 2D 
non-contiguous slices from 3D CT images, since we wanted to 
concentrate firstly on the extension of the PCJO for 2D images. 
But we believe that the human readers’ performances can also 
be improved when we show them volumetric CT images. This 
is also one of our future works, to compare human readers’ 
performances on reading multi-slice images with that of an 
extension of our previously proposed multi-slice PCJO 
(msPCJO). 

V. CONCLUSIONS AND PERSPECTIVES 

In this paper, we extended the PCJO for hyposignals 
detection-localization task in order to propose a highly clinical 
relevant MO. Then, we applied the new PCJO on both cerebral 
and abdominal CT images. Experimental results showed that it 
can predict well the experts’ performances in the joint 
detection-localization task for both hypersignals and 
hyposignals. Combined with its results on MR images in the 
previous study, the PCJO also showed its generality on another 
modality - CT. Although the PCJO model is parametric, the 
highly coherent results of the two studies allow us setting the 
best empirical values of all the three parameters (K=3, J=4, Tp = 
0.5 for hyposignals or 0.9 for hypersignals) for its application 
on MR and CT image quality assessments. All these features 
make the PCJO a promising method for evaluating image 
processing algorithms from the medical experts’ point of view 
in the future. 

One limitation of the study is the small number of experts and 
the limited patient data. The test CT images were selected from 
only 10 healthy subjects. Even though the slices are 
non-contiguous, it is still likely that a lot of them are correlated. 
This may have an impact on the statistical analysis. Since 
finding available experts in one hospital is very difficult and 
collecting real patient data is very costly, they remain two 
difficulties in the medial domain. We are open for 
collaborations, hoping to have more experts and real patient 
data to further validate the conclusions of this study. Another 
limitation of the study is that we did not verify how PCJO 
performs in the benchmark of different image processing 
algorithms. If the PCJO can output the same ranking as 
radiologists do, this can further prove its usefulness in the 
medical image quality assessment. This is actually our 
short-term objective: to use the PCJO for ranking different 
medical compression ratios and comparing the low-dose CT 
image qualities to the high-dose ones [29-30].  
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