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Abstract—Content Delivery Networks (CDNs) are faced with
an increasing and time varying demand of video contents. Their
ability to promptly react to this demand is a success factor.
Caching helps, but the question is: which contents to cache?
Considering that the most popular contents should be cached, this
paper focuses on how to predict the popularity of video contents.
With real traces extracted from YouTube, we show that Auto-
Regressive and Moving Average (ARMA) models can provide
accurate predictions. We propose an original solution combining
the predictions of several ARMA models. This solution achieves
a better Hit Ratio and a smaller Update Ratio than the classical
Least Frequently Used (LFU) caching technique.

Index Terms—Popularity prediction, ARMA, CDN, YouTube.

I. Introduction
Contents Delivery Networks (CDNs) know an increasing

success as shown by their huge number of users. To meet their
various requirements, they have to provide a huge number of
contents. To maximize the satisfaction degree of users raises
a performance problem at the network and server levels. To
alleviate this problem, the contents should be located very
close to the users. Hence, the solution consists in caching the
most popular contents. The CDN response time is then reduced
as well as the network traffic.

The simplest solution consists in caching the contents that
were the most popular the day before. This solution, called
LFU [1], ejects the Least Frequently Used contents from the
cache. In this paper, we want to determine whether a predictive
approach based on an ARMA (Auto-Regressive and Moving
Average) model is able to outperform LFU by improving the
caching hit ratio.

In this paper, we apply different prediction methods to
caching in CDNs. Unlike in [2], we investigate here prediction
methods originated from the statistic field. More precisely, the
contributions of this paper are the following:
• Based on a time varying identification of an ARMA model
for the solicitation evolution of video contents in a CDN, we
predict the next step using the linear predictor. Applying the
ARM A(ρ, q) model on the number of solicitations for the w

previous days, where w is the size of the observation window,
we predict the number of solicitations for the following day.
• Taking into account the constraints specific to the caching
application, we show how to perform parametric identification
of the ARMA model order adaptively using a sliding horizon

of past samples. We then propose to predict the next value
using this adaptive ARM A(ρ, q) model based on a sliding
window.
• Finally, we identify the conditions for which this ARMA
model outperforms LFU for caching by comparing perfor-
mances using different datasets.

II. Related work

Let us consider a time series yt that can be estimated using:
• An Auto Regressive (AR) model of order ρ that is a linear
regression based on the ρ prior values. We then have yt =

ϕ1yt−1+ ...+ϕρyt−ρ, where ϕi, i = 1..ρ, are the parameters of
the AR model that need to be estimated and pt is the estimated
value of yt .
• A Moving Average (MA) model of order q that reflects the
influence of randomness on the q prior values. We then have
yt = εt + θ1εt−1 + ... + θqεt−q , where both the parameters
θi, i = 1..q, and the sequence of εt need to be estimated
for the MA model. The sequence εt is a zero mean, white
sequence normally distributed and of variance σ2.
• An AutoRegressive Moving Average (ARMA) model, de-
noted ARM A(ρ, q), that combines the two previous models.
Thus the ARM A(ρ, q) model can be formulated as:
yt = εt + ϕ1yt−1 + ... + ϕρyt−ρ + θ1εt−1 + ... + θqεt−q (1)

where ϕ1, ..., ϕρ are the parameters for the AR part, θ1, ..., θq
are the parameters for the MA part, and ε is the white noise.
(ρ, q) is the model order of the identified ARMA model. ρ
(respectively q) represents the number of observations used
to compute the value of yt according to the AR model
(respectively MA model). ρ and q take integer values greater
than or equal to 0 and do not necessarily coincide with the
parameters of the AR or MA models identified separately for
the same time series.
Consequently, for an ARM A(ρ, q) model there are ρ + q

parameters. The problem consists in finding the best tradeoff
between on the one hand, model complexity increased by a
high order of ρ and q and on the other hand, model accuracy
evaluated by means of the prediction error. A model that has
been over parameterized has poor predictive performance. The
model requires the determination of both the order and the
parameters.



Determining the best value of ρ and q is called model
order identification. There are several error criteria used for
model identification, they aim at determining the best model
that is the model minimizing an error criterion. We can cite
the most frequently used that are the Akaike’s Information
Criterion (AIC), the sample-size corrected AIC (AICc), and
the Bayesian Information Criteria (BIC). These three criteria
apply a log-likelihood function and penalize more complex
models having a great number of parameters. More precisely,
let log(L) denote the value of the maximized log-likelihood
objective function for a model with k parameters fit to n data
points, we have:

AIC = −2log(L) + 2(ρ + q)

AICc = AIC +
2(ρ + q)(ρ + q + 1)

n − ρ − q − 1
BIC = −2log(L) + (ρ + q)log(n)

AICc is an AIC with a correction for finite sample sizes. It is
used when the observation size is small relative to the model
dimension, usually n/(ρ + q) < 40. For the BIC criterion,
the penalty is also function of the sample size. The models
providing the smallest values of the selected error criterion are
chosen. These indicators will be used to analyze the optimum
ratio (ρ+ q,w), with w the size of the sliding horizon of past
samples, for this type of application by using typical records.
It is not for use in real time because it requires to know the
a priori Mean Squared Error of the prediction errors which is
in fact related with the log(L) in the case of residuals normal
distributed.

The learning sample is used to compute the parameters of
the model. The estimation of the ARMA model parameters
consists in finding the parameters that minimize some error
criterion. Usually, an iterative algorithm like Recursive Pre-
diction Error Method (RPEM), [3] is applied that stops when
the error is less than a given threshold.

The computational complexity of the parameter estimation
algorithm of an ARM A(ρ, q) model was evaluated in [4]:
Property 1: The parameter estimation of an ARM A(ρ, q)

model has a computational complexity of O(m3w), where w

is the length of the time series sample and m = max(ρ, q+ 1).
Proof: see [4].
Once the model parameters have been computed, the

ARM A(ρ, q) model is able to predict the next value of the
time series considered, using Equation 2.

Property 2: Because the prediction is one step, the optimal
predictor is the same ARM A(ρ, q) model. The prediction of
yt is given by:

pt = ϕ1yt−1 + ... + ϕρyt−ρ + θ1εt−1 + ... + θqεt−q (2)

and the prediction error is εt .
Proof: Since εt is white, there is no way to obtain lesser
prediction error variance with any other predictor. Thereby
the prediction is optimal in the sense on minimum variance.

Notice that in this paper, the prediction of yt is denoted
pt instead of ŷt in the literature. The ARM A(ρ, q) model has
been successfully applied for prediction as a statistical method

in various fields. Focusing on networks, we can list some
examples such as:
• Aggregation techniques based on an ARMA model in wireless
sensor networks [5], [6]. The difficulties come from the re-
source limitations of wireless sensor nodes. Processing power,
memory capacity and network bandwidth being strongly lim-
ited, the model order is upper-bounded by 5 for both ρ and q
and the window size is fixed to 20. Each time the difference
between the new data and the data predicted by the ARMA
model is higher than a given threshold, data stored in the buffer
up to the arrival of new data are aggregated and a new ARMA
model is found to better fit the new data. This aggregation
technique has the advantage of being self-adaptive to the data
series. By reducing the number of transmissions done by
wireless sensor nodes, this technique provides important gains
in terms of network bandwidth and energy of sensor nodes.
• Distance estimation in wireless networks. In [7], an efficient
adaptive estimation of the distance between sensors in a
mobile network was presented using an ARM A(1, 0) model
that adaptively tunes the parameter using the RPEM over the
following cost function:

Vt =
1
2

t∑
i=1

λt−iε2
i , (3)

where λ is a scalar in the interval (0, 1] called the forgetting
factor which performs an exponential windowing over the pre-
vious prediction errors. The width of the exponential window
depends on the value of λ. If λ < 1, previous prediction
errors contribute only marginally to the criterion function.
The window’s width is reduced as λ decreases. In the case
λ = 1, all past data are equally weighted. Thus, the value
of λ determines the memory of the past data, which is a
suitable parameter to take into account time-variant mobility
dynamics of the nodes in a mobile network. The proposed
method outperfoms several classical approaches reaching error
values very close to the Cramer-Rao Lower Bound for both the
static and the dynamic cases.
Like in [8], we use ARM A(ρ, q) models to predict the

popularity of video contents. However, the approach used
for the so-called frequently-accessed videos is not adaptive
as ours. In fact, for a time series, giving the popularity of
video contents on 365 days, they use 183 days for parameter
identification of the ARMA model and the rest for prediction.
In addition, to reduce computation time, the authors use a data
transformation based on the singular values decomposition in
order to predict the main component of the individual time
series using ARMA modeling.
In this paper, we carry out an analysis of different orders

of ARM A(ρ, q) models and we select the best ones: those
providing the smallest MSE. Notice that MSE refers to the
cumulated loss up to time t instead of the instantaneous loss
used in [8] because of the high fluctuations of popularity of
video contents. In addition, the final purpose of our study is
to improve caching using popularity predictions.



III. Theoretical framework
A. Parameter estimation of an ARMA model

Let us assume the following quadratic cost over an horizon
of t past samples:

Vt =
1
2

t∑
i=1

ε2
i , (4)

where εt is the prediction error given by
εt = yt − pt, (5)

where pt is the prediction using the ARM A(ρ, q) model
with parameters vector Φt = [ϕ1,t . . . , ϕρ,t, θ1,t, . . . , θq,t ] that
minimizes Vt defined by Equation 4. Notice that the cost Vt is
the same as this defined by Equation 3 but considering λ = 1.
The parameters vector Φt is unknown and it is estimated

by using the well-known Recursive Prediction Error Method
(RPEM), [3]. To this end, the Gauss-Newton recursive algo-
rithm over the cost function is used. The algorithm and its
properties are given by the following theorem:
Theorem: Consider the cost function Vt defined by Equa-

tion 4 to be minimized, with respect to the parameter vector
Φt , by the following Gauss Newton recursion:

εt = yt − pt ; (6)
ϕt = −ε ′t ; (7)

Mt = Mt−1 −
Mt−1ϕtϕ

T
t Mt−1

1 + ϕTt Mt−1ϕt
(8)

Φt = Φt−1 + Mtϕtεt (9)

where t is the iteration step, Mt is a square matrix of dimension
(ρ + q); Φt and ϕt are column vectors, ε ′t is the derivative of
ε with respect to the parameters in Φt−1, and T denotes the
transpose.

Then, the following holds: Φt converges as k → ∞ with
probability 1 to one element of the set of minimizers.{

Φ|σ′2 = 0
}

; (10)

where σ
′2 is the derivative of the prediction error variance

with respect to Φ.
Proof : See [3].

The initial values are as follows: t = 1, M1 is the identity
matrix and ε1 is a vector of zeros. Φ(0) is obtained by doing the
least squared estimation from data. This recursive algorithm
can be repeated several times over the observation window
where the parameters obtained in the previous stage are used
as initial values of the new stage. In the convergence vector
optimal parameters are obtained at each step t.

B. Problem statement
Given any video content C, we focus on the time series yt

describing the evolution of its number of solicitations. We want
to use an ARM A(ρ, q) model to predict the future values of this
time series, according to Equation 2. Each ARM A(ρ, q) model
is characterized by its complexity and its accuracy. The choice
of the model must find the best trade-off between complexity
and accuracy taking into account the constraint of the caching
application.

To improve the accuracy of the model, we propose to use an
adaptive ARM A(ρ, q) model: at each time t, the parameters
of the ARM A(ρ, q) model are computed on a sliding window
of size w. More precisely, at time t − 1, the ARM A(ρ, q)
model predicts the value of the time series at time t according
to Equation 2, using the w last observations in the window
[t − w, t − 1] to compute the parameters φi and θ j of the
ARM A(ρ, q) model. This principle is illustrated in Figure 1.
Then, the sliding window moves one step ahead, starting at
time t−w+1 and ending at time t, the parameters are computed
using the observations in this window, and the prediction for
time t + 1 is given.

Fig. 1: Principle of the sliding window in the ARMA model.
Notice that the model’s order (ρ and q) is fixed, whereas

the computation of parameters φi and θ j is done at each time
k using an iterative parameter estimation algorithm. That is
why the ARM A(ρ, q) model is said adaptive.
The prediction error metric is given by the Mean Square

Error, MSE:
MSE =

∑n
i=1(yi − pi)2

n
,

where yi denotes the real data series considered, pi is the
time series of the predicted value of these data, n is the total
number of values in the data series. MSE allows us to compare
different models applied on the same video content. If now, we
want to compare the performances of a model on two different
contents, we need to normalize the error as follows:

N MSE =
MSE∑n
i=1 y

2
i

.

The constraints given by the caching application are due to
the fact that a CDN is managing millions of contents:
• Since an ARM A(ρ, q) model has ρ + q parameters and these
parameters must be computed on all the data values in the
window, we prefer small values of ρ and q to minimize
the number of parameters to compute, while ensuring an
acceptable prediction error. This is the parsimony principle.
• The model order needs to be in accordance with the length
of the window: w should be at least equal to ρ + q. To this
end we apply the AIC criterion. In addition, the length of the
window is related to the local stationarity and will be checked
on line.
• The complexity of computation and memory requirement per
content should be optimized so as not to loose predictability
while being kept reasonable.
We adopt the following assumption about the first w obser-

vations:



Assumption 1: By convention, the ARM A(ρ, q) model
predicts

pt =


0 if t=0
yt−1 if 1<t<w-1
ϕ1yt−1 + ... + θ1εt−1 + ... otherwise

for any time t ∈ [1,w], the ARM A(ρ, q) model predicts
pt = yt−1 if t > 1 and p1 = 0 otherwise.

C. Properties of our adaptive ARMA model
As previously said, we use AIC (or AICc depending on the

value of n/(ρ + q)) and N MSE to compare our models on
a given video content. We can express AIC and AICc as a
function of MSE [9]. By replacing

∑n
i=1(yi−pi )2

n by MSE , we
get: AIC = n · log(MSE) + 2(ρ + q),

AICc = n · log(MSE) + 2(ρ + q) + 2(ρ + q) · (ρ + q + 1)
n − ρ − q − 1

.

Let us now focus on the smallest window size acceptable
for model parameter estimation.

Property 3: For parameter estimation, any ARM A(ρ, q)
model accepts the same smallest window size as the
ARM A(q, ρ) model.
This can be explained by the fact that in the estimation of the

ρ+ q parameters, ρ and q play a symmetric role. In addition,
we also conjecture the following property that we checked on
15 pairs (ρ, q), with ρ and q ∈ [1, 15].

Property 4: For any ARM A(ρ, q) model, the smallest win-
dow size acceptable for model parameter estimation is given
by:

wmin = 2 ∗ max(ρ, q) + ρ + q. (11)
From this property, we can deduce which information cri-

terion, AIC or AICc, should be used to compare two models
using a window of minimal size.

IV. Popularity prediction with ARMA
A. Notations

Table I summarizes the notation adopted in this paper.
TABLE I: Notations.

ρ the order of the AR part of the ARMA model
q the order of the MA part of the ARMA model
w the observation window size. The ARMA model parameters are

computed using the last w samples
C the set of video contents

For each given video content c ∈ C
yt the number of solicitations at time t
pt the prediction of the number of solicitations for time t
n the total number of samples

B. Datasets extracted from YouTube
The datasets considered are real traces extracted from the

YouTube CDN. We randomly select video contents and extract
their traces. For each video content, its trace consists in its
number of solicitations for every day since its creation until
the trace extraction day.

In this paper, we consider two sets: The first set S1 contains
30 video contents randomly chosen. It is used to determine the
best ARM A parameters which are the model order (ρ, q) and
the window size w. This reduces the number of the experts

ARM A to be evaluated on the second set S2. The random
choice of video contents can be justified by the high fluctuation
of the popularity of the video contents. Each video could be
put in the cache at some point during its lifetime. The second
set S2 contains 60 contents chosen to evaluate the caching
strategy. These contents have close popularities with different
fluctuations. This allows us to highlight the dynamics of the
cache (insertion, eviction).
Each video content has its own profile of popularity evolu-

tion. The popularity is evaluated by its number of solicitations.
Figure 2 depicts five different profiles of video contents among
those belonging to the first set.
C. Selection of the best ARM A(ρ, q) models on the first set
The purpose of this section is to determine the ARM A(ρ, q)

models providing the most accurate predictions on the set S1
considered. The accuracy of predictions is evaluated by their
MSE at the end of the simulation. Since we want to compare
caching based on ARMA prediction and LFU in terms of
MSE, we start by computing the value of MSE for LFU.
We recall that LFU predicts for day t the same number of
solicitations as for day t − 1. The values of MSE for 5 video
contents among the 30 contents of the set S1 are given in
Table II.

TABLE II: MSE error for LFU.
Content MSE
C1 1.28E+03
C2 6.24E+03
C3 2.84E+03
C4 1.77E+06
C5 1.33E+10

In the second series of experiment, we study the impact of
the window size on the prediction error for a given model.
For each profile tested, we make vary ρ = q from 1 to 15.
For any pair (ρ, q) we compute MSE, NMSE, AIC and AICc
of the model for different window sizes. We recall that it is
useless to select ARMA models providing a MSE error higher
than this computed for LFU. Results obtained for each content
C1 to C5 are depicted in Figure 3.

Results show that for values of ρ ≤ 15, small values of w
minimize the MSE error for any ARM A(ρ, ρ) model applied
to the five profiles C1 to C5. More precisely, a window size
of w = wmin or w = 2wmin minimizes the MSE. In addition,
there exists small values of ρ giving predictions with an MSE
error close to the smallest one.
We compare LFU and ARM A(ρ, q) predictions. Extracted

traces show that, for all the contents tested except content C5,
there exists at least one ARM A(ρ, q) model with ρ ≥ 1 and
q > 0 that outperforms LFU in terms of accuracy as depicted
in Figure 4. Notice that C5 has a very specific profile (see
Figure 2d): the number of solicitations has a very strong peak
the first day, and a strong decrease the second day, followed
by a very small number of solicitations during the next days.
It is impossible to predict the peak of solicitations without any
additional information (e.g. occurrence of a social event).
With the results obtained up to now, we want to select the

ARM A(ρ, q) models that provide the most accurate predic-
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Fig. 2: Popularity profiles of five video contents selected in S1.
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Fig. 3: Impact of ρ, q and w on the MSE error of ARMA
models applied to the five video contents selected.

tions on the first set considered. We select the model orders
verifying the following two conditions:
• the window size computed according to Equation 11 is less
than or equal to 20, to meet the parsimony principle.
• the error provided by the ARM A(ρ, q) model, evaluated by
its MSE, is less than the error provided by LFU.
Hence, for each ARM A(ρ, q) model, we compute the number
of times where it has provided a MSE smaller than the one
obtained by LFU. Results are depicted in Table III and the
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Fig. 4: Orders vs errors.

last column denotes the percentage over the video contents
forming S1.

TABLE III: Percentage of contents in the set S1 for which the
ARM A(ρ, q) models outperform LFU.

(ρ, q) wmin Ratio of least MSE (%)
(1, 0) 3 90
(1, 1) 4 93.3
(3, 3) 12 90
(4, 4) 16 100
(5, 5) 20 86.6



D. ARM A(ρ, q) Predictions on the second set

The best ARM A(ρ, q) models being selected on the first set
S1 according to Table III. We now apply these experts on the
second set S2 consisting of 60 video contents. Note that an
expert is a logical entity that computes and predicts the future
number of requests for each video content. As a first series of
tests, we compare their predictions in terms of MSE to those
provided by:
• the LFU expert that predicts for time t the number of
solicitations at time t − 1, that is pt = yt−1,
• and the Basic expert [11] that predicts for time t the number
of solicitations at time t−1 plus the same increase or decrease
as at time t − 1. In other words, it predicts pt = yt−1 + (yt−1 −
yt−2) = 2yt−1 − yt−2 .
Let RE = (r1, ..., rc, ..., rn) the vector of rewards of expert

E where n is the number of video contents in the set S2 ,

rc =


1 if E is the expert that provides
the least MSE for content c

0 otherwise
For each expert evaluated, we define two ranks on the set

of contents considered:
• the daily rank of an expert E is the sum of its vector of
rewards RE at time t.

drE (t) =
n∑

c=1
rc

• the cumulated rank of an expert E is the sum of the daily
rank of this expert on all the days considered in the simulation
(here 100 days).

crE =
100∑
t=1

dr(t)

Results concerning the set S2 are depicted in Figures 5
and 6 for the daily rank and the cumulated rank, respectively.
For the daily rank, we observe that as long as the number of
observations is smaller than its window size, any ARM A(ρ, q)
model predicts exactly the same value as LFU, as expected
because of Assumption 1. We notice that ARM A(1, 1) clearly
outperforms all the other experts considered, including LFU
and Basic. It is followed by ARM A(3, 3), then ARM A(4, 4) and
finally ARM A(5, 5). All these ARM A(ρ, q) models outperform
LFU, which itself outperforms ARM A(1, 0) and Basic.
For the cumulated rank depicted in Figure 6, we have

the same conclusions: ARM A(1, 1) predicts better than any
other ARMA model. In addition, ARM A(3, 3), ARM A(4, 4)
and ARM A(5, 5) are better than LFU. ARM A(1, 0) is the
only ARMA model that performs worse than LFU and Basic.
Hence, the popularity prediction of video contents is improved
using ARM A(ρ, q) models with ρ > 1 and q > 0.

V. Caching based on ARMA prediction

A. The caching problem

Having defined our ARM A(ρ, q) models, we use their
popularity predictions for video content caching. Each day,
these ARM A(ρ, q) models predict the popularity of all video
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Fig. 5: Daily cumulated rank on the validation set.
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Fig. 6: Total cumulated rank on the validation set.

contents. The contents having the highest popularity predic-
tions are inserted in the cache until the cache is full.
To evaluate the performance of this caching strategy based

on ARMA predictions, we use the two metrics the most
frequently adopted:
• the Hit Ratio that is defined as the percentage of requests
related to a content already in the cache.
• the Update Ratio that is defined as the percentage of contents
in the cache that are replaced by more popular contents.
In the CDN context, the best caching technique maximizes

the Hit Ratio as the first criterion and minimizes the Update
ratio as the second criterion. The performance of any caching
technique strongly depends on the cache size and on the
knowledge about requests. It has been proved in [10] that
the Optimal caching strategy is an offline strategy knowing
in advance the future solicitations. When the cache is full,
this strategy evicts the content whose request is the furthest
in the future. However, in the traces extracted from YouTube,
the only knowledge we have is the number of solicitations of
each content per day, this strategy is extrapolated to take into
account the number of solicitations of each content per day
instead of the arrival times of these solicitations. This new
version is denoted Max hit ratio.
Figure 7 depicts the evolution of the hit ratio over time

for the different experts evaluated. If the accuracy of the
ARM A(ρ, q) predictions is usually very good, we observe
some times where these predictions are of poor accuracy
for times 55 and 80, where the Hit Ratio obtained is very
low. Figure 5 has shown that ARM A(1, 1) is the model that
minimizes most frequently the MSE over the validation set.



However, even if it gives almost the best hit ratio in most
days, it crashes significantly at time 80.
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Fig. 7: Poor Hit Ratio at times 55 and 80.

In Figure 8, we depict the hit ratio evolution of ARM A(1, 1),
ARM A(3, 3), LFU and the Max hit ratio. According to Fig-
ure 6, ARM A(1, 1) minimizes the MSE most frequently than
any other evaluated expert. We take a look at its daily hit ratio
evolution and compare it with LFU. We observe that in most
cases ARM A(1, 1) provides a better hit ratio than LFU, except
around time 80. This is corroborated by the computation of
the average hit ratio: ARM A(1, 1) obtains 81.57 whereas LFU
gets 81.5. Note that for the set we are evaluating, the average
of the best hit ratio we could achieve is 82.14. ARM A(1, 1)
enables an improvement of 1‰ compared with LFU.
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Despite this low percentage, this improvement is considered
very important in the current context of work given the fact
that we are dealing with millions of content having millions of
requests. One more aspect to be mentioned here is the behavior
of ARM A(3, 3). In Figure 6, ARM A(3, 3) is not as good
as ARM A(1, 1). However, in terms of hit ratio, ARM A(3, 3)
competes ARM A(1, 1) and even has the best average hit ratio
of about 81.79 compared to the set of the evaluated experts.
While ARM A(1, 1) provides most frequently the most ac-

curate prediction, ARM A(3, 3) gets the best hit ratio. This
proves the fact that it is not only the prediction accuracy that
matters. Hence, the challenge is to properly identify the subset
of contents that will be solicited more often the next day, and
not their exact number of solicitations.
B. Forecasters definition

We saw in Section IV-C that there is no ARM A(ρ, q) model
that provides the best prediction at any time for any content.
For this reason, we introduce a new entity called Forecaster.

The forecaster is in charge of computing a prediction based
on the predictions received from the best ARM A(ρ, q) models
selected as described in Section IV-C. More precisely, this
forecaster predicts the average value of the predictions pro-
vided by the k best experts, with 1 ≤ k ≤ 4. This forecaster
is called k-BE in short. There are several ways to define a
Best-Expert. In this paper, we use:
• the prediction error based forecaster, also called the k − BE
on MSE forecaster: this forecaster uses at time t the experts
minimizing the MSE up to time t.
• the rank based forecaster, also called the k − BE on rank
forecaster: the k best experts used are those occupying the
first rank most often for the contents in the set considered.
• the hit ratio based forecaster, also called the k − BE on hit
ratio: the k best experts used are those providing the highest
hit ratio at time t − 1.

C. Accuracy of Forecaster predictions
We now compare the predictions given by each forecaster

defined in Section V-B. Their prediction accuracy is illustrated
by Figure 9. We observe that all the forecasters have a correct
accuracy. However, the forecasters BE on rank and BE on
MSE tend to underestimate the popularity of video contents.
The best ones are those that compute an average value based
on the advice of several experts.
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Fig. 9: Prediction accuracy of each Forecaster.

D. Caching based on Forecaster predictions
We now evaluate the performances of a caching based on

forecaster prediction, itself based on ARM A(ρ, q) predictions.
For this performance evaluation of caching, we adopt the
following assumptions:
• we consider chunks of contents of same size.
• the cache size allows to cache 40% of the contents chunks.

We evaluate the Hit Ratio obtained by each forecaster.
Results depicted in Figure 10 show that k−BE forecasters have
an average hit ratio greater than all the hit ratios previously
obtained by the different experts. This validates the use of
forecasters in popularity prediction based on ARM A(ρ, q)
models.
When we look at the daily behavior of hit ratio in Figure 11,

we notice that all the forecasters are able to follow the sudden
change at time 55, unlike the experts (see Figure 7). Note
that a sudden change in hit ratio corresponds to a sudden
and very significant change in the popularity of certain video
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Fig. 10: Average Hit Ratio obtained by experts and forecasters.

contents to the point that the change is visible on all the
videos in the test set. In addition, the BE on MSE and BE
on rank forecasters have a hit ratio far from the best computed
one. These two forecasters fail because both take prediction
decision based on only one expert. So if these forecasters pick
the best expert at time t − 1 which becomes bad at time t in
term of prediction accuracy, their prediction decision will be
often incorrect. k − BE forecasters succeed in following the
second sudden variation of the hit ratio that occurred at time
80 because their decision is based on more than one expert.
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Fig. 11: Hit Ratio obtained by each Forecaster.
Once more, although the update ratio varies very often from

time t to time t+1 (Figure 11), k−BE forecasters, with k > 1
provide the smallest update ratio as depicted in Figure 13.
They outperform both the experts and the forecaster using a
single expert, even if this expert varies over time.
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VI. Conclusion
In this paper we focus on predicting the popularity of video

contents using Auto-Regressive Moving Average (ARMA)
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Fig. 13: Average Update Ratio obtained by experts and fore-
casters.

methods applied on a sliding window. These predictions are
used to put the most popular video contents into caches.
After having identified the parameters of ARMA experts, we
compare them with an expert predicting the same number of
requests as the previous day. Results show that ARMA experts
improve the accuracy of the predictions. Nevertheless, there
is no ARMA model that provides the best prediction for all
the video contents over all their lifetime. We combine these
statistical experts with a higher level of experts, called fore-
casters. By combining the experts prediction, some forecasters
succeed in predicting more accurate values which helped to
increase the hit ratio while keeping a correct update ratio.
Hence, improving the accuracy of the predictions succeeds in
improving the hit ratio. However, the most challenging task is
to properly identify the subset of the most solicited contents
the next day. References
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