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The scaling up of electron spin qubit based nanocircuits has remained challenging up till date and

involves the development of efficient charge control strategies. Here, we report on the

experimental realization of a linear triple quantum dot in a regime isolated from the reservoir. We

show how this regime can be reached with a fixed number of electrons. Charge stability diagrams

of the one, two, and three electron configurations where only electron exchange between the dots is

allowed are observed. They are modeled with the established theory based on a capacitive model of

the dot systems. The advantages of the isolated regime with respect to experimental realizations of

quantum simulators and qubits are discussed. We envision that the results presented here will make

more manipulation schemes for existing qubit implementations possible and will ultimately allow

to increase the number of tunnel coupled quantum dots which can be simultaneously controlled.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4984745]

Electrons trapped in laterally defined quantum dots

(QD) have emerged as a versatile platform for qubit imple-

mentations1–4 and mesoscopic physics test-beds5–7 and have

recently attracted attention as a possible candidate for quan-

tum simulators.8 Single electron charges and their spin can

nowadays be routinely trapped, manipulated, and read out in

single- and double-QD systems.2,9 An important experimen-

tal effort has been carried out on multidot systems, and the

charge control of arrays made of up to four tunnel-QDs has

been demonstrated.10–15 As far as spin is concerned, a

triangular triple QD showed charge frustration in transport

measurements,16 hinting at the possibility of studying spin

frustration in such a system, and coherent oscillations of three

spin states were demonstrated in a linear triple QD.17–19

Despite the inherent scaling properties of lithographically

defined semiconductor based systems, the coupling of the

QDs with the electron reservoir implies an infinite number of

possible charge configurations. The resulting complexity in

the dot array tunability limits the capabilities to control

simultaneously an increasing number of tunnel-coupled quan-

tum dots and represents an important challenge for large-

scale spin-based quantum information processing.

In this study, we apply our recently developed technique

of isolated charge manipulation20,21 to a linear chain of three

quantum dots. In this regime, the coupling to the electron

reservoir can be neglected, and only interdot charge transi-

tions are allowed. As a result of the reduced complexity, all

possible charge configurations at a fixed electron number are

easily accessible, and the tunnel-coupling between the dots

can be controlled over several orders of magnitude in situ
while keeping the electron number fixed. We show how we

can bring the linear-triple dot system into an isolated regime

and that the electron number can be prepared deterministi-

cally and kept for an arbitrarily long time. The observed

charge stability diagrams are analyzed with a model based

on the established constant interaction model22 and one

obtains a good agreement between the theory and the experi-

ment. These results provide a guideline for scaling up the

number of tunnel-coupled QDs, opening up manipulation

schemes for qubit implementations, and presenting pathways

for the realization of quantum simulators with quantum dot

arrays.

Our device was fabricated using a Si doped AlGaAs/

GaAs heterostructure grown by molecular beam epitaxy with a

two-dimensional electron gas (2DEG) 100 nm below the crys-

tal surface which has a carrier mobility of 106 cm2 V–1 s–1

and an electron density of 2:7� 1011 cm–2. QDs are defined

and controlled by the application of negative voltages on

Ti/Au Schottky gates deposited on the surface of the crystal. A

schematic view of the linear-triple dot sample can be seen in

Fig. 1(a). By applying very negative voltages on diagonally

FIG. 1. (a) Scanning electron microscopy (SEM) image of the linear-triple

dot sample. Depletion gates have been colored for clarity. The yellow dots

indicate the approximate positions of the QDs. (b) Top: electrostatic simula-

tion of the potential distribution with realistic gate voltages. The potential is

color coded from low potential (blue) to high potential (red). The voltages

applied on the top and bottom barrier gates (blue in SEM image) are more

negative than on the left/right gates to achieve a linear chain of QDs.

Screening effects and the random impurity distribution are not taken into

account. Bottom: 2-dimensional cut along the white dashed line through the

simulated potential showing the three distinct potential minima.
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opposite bottom and top blue gates, we can tune the sample

into a linear chain of three QDs as indicated in the electrostatic

potential calculation of Fig. 1(b).23,24 Home-made electronics

ensure fast changes in both the chemical potentials and tunnel-

couplings with voltage pulse rise times below 2 ls. The charge

configuration can be read out by four quantum point contacts

(QPC), tuned to be sensitive local electrometers.25 The sample

is mounted on a home-made dilution cryostat with an electron

temperature of 150 mK, estimated from Coulomb peak

broadening.26,27

The isolation of the electrons is achieved by increasing

the tunnel barriers to the leads with more negative voltages

on the barrier gates [blue in Fig. 1(a)]. To access the isolated

regime, a specific voltage sequence needs to be performed.

We first reset the number of electrons in the QD 1 to zero at

the position R [see Fig. 2(c)], and then load the QD 1 in a

position of high tunneling with the leads, close to the point

A. By changing the position A, we can load the quantum dot

with any number of electron. The system is then discon-

nected from the leads with a fast ls voltage pulse on VB

towards point B [black arrows in Fig. 2(c)], which rapidly

raises the potential barrier between the quantum dot and the

electron reservoir such that the electron number is preserved.

A schematic of the potential at the points A and B is shown

in Fig. 2(a). Starting from point B, the parameter space is

explored by varying the chemical potentials of the individual

QDs with VB and VT. More precisely, for different VT, VB is

scanned from negative to positive gate voltages. For VB

more positive than –0.6 V, electron exchange between the

dots and the reservoir is possible and leads to changes of

electron number in the dot, which are detected as peaks in

the differential conductance of the electrometer. This corre-

sponds to the blue charge degeneracy lines in the stability

diagram as can be seen in the top of Fig. 2(c). These lines

separate the charge regions of QD1 and are used to calibrate

where to tune the point A to load an arbitrary number of

electrons. For VB more negative than –0.6 V, the charge

degeneracy line disappears, showing that the dwell time

of an electron in the QD becomes much larger than the

measurement time, and the system becomes effectively

decoupled from the reservoir. In other terms, the only

allowed charge transitions for electrons are between adjacent

QDs. These interdot electron tunnel events will change the

detector QPC current similarly to classical charge degener-

acy lines and can therefore be detected as shown in the lower

part of Fig. 2(c). We note that the timescale for the VB-scan

is several seconds, confirming that an electron can be kept

isolated in the QD for a long duration. The result of the isola-

tion procedure manifests itself directly on the stability dia-

gram presented in Fig. 2(c).

In the case of one-electron-loading, we observe three

distinct degeneracy lines indicating charge transitions

between QDs. Their slopes permit to label the three obtained

charge configurations. For more positive voltages on the

gates VB and VT (see Fig. 1), the electron is confined in

the loading QD 1 [see Fig. 2(a)]. We label this configuration

(1 0 0) indicating the number of electrons in the respective

QDs. By making the voltage on VB more negative, it is possi-

ble to move the electron into QD 2 (0 1 0). For very negative

voltages on both gates, the electron is moved to QD 3 (0 0 1).

As expected from the sample geometry, the voltage VT

strongly affects the height of the energy barrier between QD

1 and QD 2 and therefore the tunnel-coupling between the

respective QDs. For positive values of VT, this increased

tunnel-coupling leads to a broadening of the associated

degeneracy line.28 Conversely, the QD 2–QD 3 degeneracy

line is almost unaffected by VT. Due to linear configuration of

the dot array, the electron tunneling process between QD 1

and QD 3 is the result of an indirect coupling mediated by the

QD 2.13,29 As a consequence, we expect a strong dependence

of the associated energy with the two direct tunnel-couplings

(QD 1-QD 2 and QD 2-QD 3) and the energy detuning with

the chemical potential of QD 2. In the geometry of the sam-

ple, both the QD 1-QD 2 coupling and the detuning are con-

trolled by VT. It explains the observed fast change in the QD

1-QD 3 degeneracy line shape, suggesting the QD 1-QD 3

tunnel-coupling going to zero for VT smaller than –0.6 V.

Despite these strong changes in the tunneling rate, the

transition lines in the stability diagram stay clearly visible

over a large parameter range, showing the insensitivity of

FIG. 2. (a) Schematic of the QD potential with respect to the chemical

potential of the 2DEG in the loading position (left) and isolated state (right).

(b) Calculated stability diagram from the simulation for one electron loaded

in the dot system. Only boundaries between charge configurations are repre-

sented as a function of DVT and DVL. The absolute voltages are defined by

the charge offset N0. VB is assumed to only weakly couple to the chemical

potential of QD 2 and mostly affects QD 1 while VT is assumed to couple to

both chemical potentials equally. The chemical potential of QD 3 is assumed

to be independent of the varied gates. (c) Differential conductance of the

right QPC current with respect to VB (stability diagram). Once in the isolated

configuration, VB is scanned from more negative to more positive voltages

(indicated by arrow). The reset-load-isolation sequence is performed before

each gate scan to set the initial electron number. Lines indicate abrupt

changes in QPC conductance, where blue (red) color indicates electrons dis-

placed closer to (farther from) the sensing QPC. The position of the electron

among the three QDs is indicated in the graph following the notation in the

text. In red, we label the different transitions indicating the connected QDs.

When VB is slowly pushed towards more positive values, the QD trapping

potential becomes too shallow with respect to the barrier height, resulting in

a tunneling event of the electron to the reservoirs. This manifests in stochas-

tically appearing electron loss events (red dotted lines in the stability dia-

gram close to the region C) which delimit the isolated configuration with the

electron number fixed to a single electron.

233101-2 Flentje et al. Appl. Phys. Lett. 110, 233101 (2017)



this approach to an initially unknown coupling strength. It

nevertheless disappears in two regimes: first, when the

tunneling time becomes much longer than the measurement

time such that the events become stochastic [� Hz; left of

VT � �0:6V;VB � �0:8V in Fig. 2(c)]. Second, it disap-

pears in the limit where the tunneling energy becomes much

larger than temperature (�GHz), and therefore, the line

broadens until no longer being observable [right part of Fig.

2(c)]. Moreover, the QD 1-QD 2 tunnel-coupling can then be

continuously varied by changing VT without erroneously

changing the electron number. This controlled variability of

the tunnel-coupling in the isolated regime has recently been

used to implement a spin manipulation scheme which is par-

tially protected from charge noise.20

To show the straightforwardness of this approach for

scaling-up the occupation number, we load the triple QD

with two or three electrons and perform the same gate scans

[Figs. 3(a) and 3(b)]. Similar to the one electron case, the

isolated degeneracy lines are characterized by the same three

slopes, and the different charge configurations are therefore

assigned as represented in Fig. 2.

Furthermore, we can quantitatively understand the struc-

ture formed by the transition lines with the constant interac-

tion model.2,30 In the electrostatic model presented in Fig. 4,

the coupling between electrons in the QDs and the gates is

modeled as a sum of capacitances. We first introduce the

renormalized gate capacitances ajx to parametrize the effect

of gate voltage Vj on the potential of QD x. Then, the energy

of the charge configurations ~ki [i.e., for N¼ 1, ~k1 ¼(1 0 0)]

is given by30

E~ki
¼
X

x

1

EC;x

X
j

ajxVj þ kix � N0½ �EC;x

� �2
; (1)

where the summation is over all QDs x, EC;x is the charging

energy of QD x, and N0 is the number of electrons

compensating the positive donor charges which are related to

the electron density of the 2DEG. As the electron reservoirs

can no longer be used as chemical potential references, ki

has to be limited to the subspace of configurations with con-

stant total electron charges, and the smallest Eki
will be the

ground state. In the model, we neglect the finite capacitive

coupling between QDs and the dot orbital energies. These

effects do not change the shape of the diagram but only

renormalize the involved capacitances and charging ener-

gies. The boundaries between the energetically lowest lying

charge configurations as a function of the gate voltages

have been plotted for different total number of electrons in

Fig. 2(b) and in Figs. 3(c) and 3(d) and showed an excellent

qualitative agreement with the experimental data. At a degen-

eracy line, the energy of the two associated quantum dot con-

figurations is equal. The respective slopes of the transitions in

the experimental diagrams therefore allow to infer the ratios

aT/aB for the respective QDs. The absolute values can in prin-

ciple be measured using transport measurements or photon-

assisted tunneling31 (possible in the isolated regime). Here,

we got quantitative agreement by guessing one parameter

(aB1) and neglecting any influence of VB and VT on QD 3 (see

Fig. 4). The charging energies of the QDs are determined by

the positions of the parallel charge degeneracy line crossings

in the diagram with two electrons [Fig. 3(a)].

The reduced complexity of the obtained charge dia-

grams can be harnessed for the operation of large quantum

dot systems. As electrons can access all configurations with-

out unwanted electron exchange with the reservoirs due to

pulse imperfections, this approach of fixed electron number

manipulation allows to increase the effective size of the

available configuration space. The isolation also allows to

study the behavior of systems in which an increasing number

of QDs prevents the more distant leads to be used as an

effective chemical potential reference.

In conclusion, we have performed a full control

sequence for a multidot system decoupled from the leads.

We have demonstrated how the system can be initialized

with a desired number of electrons, and that all possible

charge configurations can be easily accessed with the same

electrons. The resulting system can be understood and mod-

elled with established theory and shows qualitative and

quantitative consistency with the measured diagrams. The

reduced complexity of the isolated regime makes charge

reorganization in the structure straightforward and permits

higher tunability of the dot parameters. We conclude that

this approach will allow to increase the size of multiqubit

FIG. 3. Stability diagrams in the isolated regime for two (a) and three (b)

electrons, respectively, with a procedure identical to Fig. 2 and with the

same color coding of the derivative of the detector current. A controlled

number of electrons is first loaded, and then VB is scanned from negative to

positive voltages. Calculated stability diagrams from the simulation for two

(c) and three (d) electrons loaded in the dot system. Only boundaries

between charge configurations are represented as a function of DVT and DVL

[see the caption of Fig. 2(b)].

FIG. 4. Schematic of the electrostatic model used to simulate the response

of the system to variations of the gate voltages. The change in chemical

potentials of different QDs are linked to the gate voltages by coefficients ax.

For the simulations, we used~aB¼(0.05 0.0202 0)e,~aT¼(0.0709 0.0563 0)e,

and ~EC¼(2.4 2.1 2.6) meV.

233101-3 Flentje et al. Appl. Phys. Lett. 110, 233101 (2017)



systems and open up manipulation schemes for existing sys-

tems. Finally, the concept of isolated charge manipulation

can be directly extended to similar qubit architectures such

as electron spins in silicon and should therefore find wide

application in future experiments.
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