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Abstract—Game theory is a powerful tool that has recently
been used in networks to improve the end users’ quality of
experience (e.g. decreased response time, higher delivery rate).
In this paper, we propose to use game theory in the context of
Content Delivery Networks (CDNs) to organize video contents
into clusters having similar request profiles. The popularity of
each content in the cluster can be determined from the popularity
of the representative of the cluster and used to store the most
popular contents close to end users. A group of experts and a
decision-maker predict the popularity of the representative of
the cluster. This considerably reduces the number of experts
used. More precisely, we model the clustering problem as a
hedonic coalition formation game where each coalition represents
a cluster. The coalition game converges to a stable partition
representing a solution of the problem considered. We compare
the results of this approach with the clustering obtained by
the K-means algorithm. We evaluate the impact of the content
profile observation window considered to establish the clustering.
We also evaluate the complexity of the proposed algorithm.
Simulation results are obtained on traces of a real CDN. Finally,
we extend the proposed approach to model an on-line clustering
reflecting the CDN dynamics in terms of proposed contents and
contents solicitations.

Keywords—Content Delivery Network, clustering, YouTube,
video content, coalition game.

I. LEARNING TECHNIQUES IN CONTENT DELIVERY
NETWORKS

Content Delivery Networks, CDNs are becoming ever in-
creasingly successful. For instance, YouTube, known to be the
most popular for User-Generated Contents, serves 460 million
visits per day, while Netflix, a Video-on-Demand system,
serves 22 million visits per day. The price of this success lies
in the large amount of traffic generated to allow end users to
view video content when it pleases them. To reduce this traffic,
caching techniques are used to store the video contents close
to the end users. For an efficient management of the CDN and
a high degree of end user satisfaction, video contents with the
highest popularity must be cached.

In a previous paper [1], we showed how to use machine
learning techniques to predict the popularity of video content
in order to store the most popular content close to the users
requesting it. For that purpose, several experts provide their
popularity prediction to a forecaster that builds its own pre-
diction based on the advice of its experts. However, due to the
high amount of video contents in a CDN, it is not realistic
to have a group of experts for each video content. In this
paper, we present a solution to group together video contents

showing some similarities in terms of request profiles. We use
game theory as a framework to state our problem and find
the most suitable clustering for the video contents considered.
The simulations are based on real video profiles collected from
YouTube.

This paper is organized as follows. In Section II, we present
some examples where game theory is used in networks. In
Section III, we model the clustering problem as a coalition
game with as much players as the number of video contents to
cluster. In Section IV, we compare the clustering obtained by
this coalition approach with that obtained by the well-known
K-means algorithm. We evaluate the impact of the size of the
observation window and of the play order. The complexity
of the coalition formation algorithm is computed to prove the
scalability of this approach. Finally, we conclude in Section V.

II. RELATED WORK

Game theory is a powerful mathematical tool that studies
the behavior of rational agents interacting in strategic scenarios
to maximize their gains and minimize their costs. In cooper-
ative games [2] the players form coalitions to enhance their
collective and marginal benefits. In contrast, in non-cooperative
games [3] players act selfishly and independently to enhance
their own utility for a given profile of others’ decisions. In
strategic interactions, the gain of a particular player does
not depend solely on this player’s own decision. Indeed, the
behavior of the other players involved will highly impact the
outcome of the game (i.e. individual payoffs). Depending on
the redistribution of the coalition gain, two sub-classes of
cooperative games have been defined, namely: transferable
and non transferable utility games. When the decision to join
a given coalition is based only on which other players are
already present, the cooperative game is said to be hedonic. If
the value (gain) of a coalition is not super-additive the agents
will rearrange into a set of disjoint collections according to a
process called a partition formation game. The convergence of
this game along with its stability are of great importance.

Game theory has recently been used in networks to model,
analyze and provide solutions to various problems. The authors
of [4] provide a game theoretical formulation of the proactive
caching of videos on small base stations. The proposal aims
to reduce the latency experienced by the users. Their solution
in based on many-to-many matching games and the developed
caching strategy satisfies up to three times more requests than
random caching policy.



In [5] the authors proposed a coalition formation among
secondary base stations (SBSs) in a cognitive radio network.
The main objective of this work is to form coalitions between
the SBSs to improve the accuracy of detecting primary users.
The SBSs share their information through control channels
with secondary users. The coalitions are formed based on the
tradeoff between the gain from learning new channels and the
cost of receiving inaccurate information.

A cooperative game model is proposed in [6] to investigate
content production and sharing in P2P networks. An incentive-
based mechanism is proposed to counteract the selfishness of
individual peers. In this work, several incentive mechanisms
such as cooperation, payments, repeated peer interaction, in-
tervention, and enforced full sharing are compared.

The authors of [7] investigate coalition games for coopera-
tive spectrum sensing. They propose maximizing the detection
probability of the primary user presence while minimizing
the probability of false alarms in single-channel cognitive
networks. A distributed learning algorithm for Nash-stable
coalition formation based on a sequence of switch rules is
provided.

In [8], the authors introduce a coalition game model for
self-organizing unmanned aerial vehicles collecting data from
randomly located tasks in wireless networks. A hedonic game
formulation is provided and the stability of the coalition
formation game proved.

In this paper, we focus on hedonic coalition formation [8],
where each player switches to an existing coalition that is
preferred to the current one.

III. COALITION FORMATION PROBLEM

A. Concepts and notations
We first introduce some notations before formulating the

clustering problem as a coalitional game.
We consider n video contents. We denote i, i ∈ [1, n] any

video content in this set. We measure the popularity of each
video content as its number of requests per day. Let yi(k) be
the number of requests of video content i on day k.

We consider an observation window ow of size size(ow).
At day k, the observation window associated with a video
content includes the days k − size(ow), k − size(ow) + 1,
. . . , k − 1. We use the numbers of daily requests for all days
in the observation window to perform content clustering. The
idea consists in forming clusters of video contents with similar
daily request profiles.

We define the representative of a set of video contents
rep(C), as the video content in C that minimizes the square
of the distance of the other contents in C to itself:

∀C, rep(C) = argmini∈C
∑

j∈C,j 6=i

∑
k∈ow

(yj(k)− yi(k))2.

The representative of any set C is dynamically selected among
the members of C after each change in the membership of C.
We also define the maximum distance of a set C of video
contents to its representative. It is defined as follows:

Dmax(C) =
∑
j∈C

∑
k∈ow

(yj(k)− yrep(C)(k))
2.

For each player i, we define History(i) the history of i
as the set of coalitions that player i left voluntarily.

A round is the time needed to allow each player to play
exactly once. Hence, the number of rounds is the number of
times a single player plays in the game.

B. Coalitional game problem and its solutions
Clustering of video contents is modeled as a coalitional

game with n rational players, where n is the number of video
contents to consider. The set of players is denoted {i, i =
1 . . . n}, where i is a video content.

At any time, the coalitional game ensures that any player
belongs to exactly one coalition. Each coalition represents the
set of video contents belonging to the same cluster.

Each player i ∈ [1, n] defines a preference relation
denoted ≥i over Ci the set of all possible coalitions to which
player i can belong. Let any two coalitions C1 and C2 ∈ Ci,
C1 ≥i C2 if and only if player i strictly prefers to belong to
coalition C1 rather than coalition C2, or player i likes both
coalitions equally.

A coalition formation game is said to be hedonic [8] if
and only if the two following rules are met:
Rule R1 : The preference of any player, among two coalitions
it belongs to, depends only on the players present in the two
coalitions considered.
Rule R2 : The coalitions form as a result of the preferences
of the players over their possible coalition set.

As a consequence, a hedonic coalition formation game
is defined by a set of players and the preference relation
for each player.

We assume that the payoff of any player i ∈ [1, n], denoted
ui(C) is equal to the payoff of the coalition C to which it
belongs.We also assume that the preference of any player i ∈
[1, n] for a given coalition depends on the payoff i that the
coalition brings it. More precisely:

∀(C1, C2) ∈ Ci, C2 >i C1 iff ui(C2) > ui(C1).

More precisely, the payoff ui(C) of each player i ∈ C is
defined according to Algorithm 1 as follows:
ui : 2n → R

Algorithm 1 Payoff of player i in coalition C

Compute Threshold of coalition C
if C ∈ History(i) then
ui(C) = −∞

else
if size(C) = 1 then
ui(C) = −Threshold− 1

else
if Dmax(C) > Threshold then
ui(C) = −∞

else
ui(C) = −Dmax(C)

end if
end if

end if

where rep(C) is the representative of coalition C and
Dmax(C) denotes the maximum distance of contents in
coalition C to the representative of this coalition. Algorithm 3
shows how the value of Threshold is computed.

The representative of coalition C is selected according to
Algorithm 2 as follows:



Algorithm 2 Selection of the representative of coalition C

if size(C) = 2 then
if (
∑
j∈C,k∈ow y

2
j (k)) ≤ (

∑
m∈C,k∈ow y

2
m(k)) then

rep(C) = m
else
rep(C) = j

end if
else
rep(C) = argmini∈C

∑
j∈C,j 6=i

∑
k∈ow(yj(k)−yi(k))2

end if

The value of Threshold depends on the coalition C con-
sidered. It is computed according to Algorithm 3 as follows:

Algorithm 3 Computation of the Threshold value in coalition
C

if
∑
k∈ow y

2
rep(C)(k) < α ∗ size(ow) then

Threshold = α ∗Drift2 ∗ size(ow)
else

if
∑
k∈ow y

2
rep(C)(k) ≥ β ∗ size(ow) then

Threshold = Drift2 ∗ β ∗ size(ow)
else
Threshold = Drift2 ∗

∑
k∈ow y

2
rep(C)(k).

end if
end if

We distinguish three cases for the computation of
Threshold, depending on the sum of the square values of
requests for the coalition representative in the observation
window. If this sum is less than α ∗ size(ow), this case
occurs when a particular video content is no longer or very
seldom requested, Threshold is set to α times the size of the
observation window ow multiplied by Drift2, where Drift
is the maximum relative drift between the representative of
C and a member of this coalition. We can take, for instance,
Drift = 10%. If on the other hand, the sum of the square
values of the representative of C is very large, higher than
β ∗size(ow), then Threshold is set to β times the size of the
observation window ow times Drift2. α and β are parameters
determined empirically depending on the number of requests
for contents considered meeting α < β. When the sum of the
squares belongs to the interval [α ∗ size(ow), β ∗ size(ow)],
Threshold gets a value proportional to the sum of the squares
of the number of requests for the representative of coalition C.
More precisely, Threshold = Drift2 ∗

∑
k∈ow y

2
rep(C)(k).

With this payoff function, each player is strongly discour-
aged from returning to a coalition belonging to its history. It is
also discouraged from remaining alone in its coalition, as each
player is encouraged to join a coalition where all the members
are close to their cluster representative. This is captured by the
payoff function (see the last instruction in Algorithm 1).

In a coalition game, a partition P is a set of disjoint
coalitions such that any player i ∈ [1, n] belongs to exactly
one coalition in P .

Each player plays one after the other, according to an
ordered sequence. Let P denote the current partition formed by
the coalitions that exist when any player i is playing. Player i
in coalition C1 wants to increase its payoff by joining another
coalition C2 that exists when it is playing but does not belong

to its history: C2 ∈ P
⋃
{∅} and C2 /∈ History(i), where

History(i) denotes the set of coalitions that i left.
The hedonic coalitional game is based on the switching

rule. This rule corresponds to a selfish decision, where any
player i decides to switch to another coalition in the current
partition P independently of the effects on the other players,
provided this switch increases the payoff of i:

Switching rule: Any player i leaves its current coalition
C1 to join coalition C2 ∈ P

⋃
{∅} and C2 /∈ History(i) if

and only if
ui(C2

⋃
{i}) > ui(C1).

This can be also noted by:

C2

⋃
{i} >i C1.

Theorem 1. Starting from any initial partition, this hedonic
coalitional game always converges to a final partition.

Proof: This hedonic coalitional game can be seen as an
ordered sequence of partitions starting from the initial one,
denoted P0. We then have P0 → P1 → P2 . . .Pk → Pk+1 . . .
where Pk+1 is obtained from Pk after a player i ∈ [1, n] has
applied the switching rule. We observe that (1) the number
of players is finite, (2) the number of possible coalitions each
player i can belong to is finite: the size of Ci is finite, and (3)
no player prefers going back to a coalition belonging to its
history. It follows that the sequence of partitions obtained in
the coalitional game is finite. Hence the game converges to a
final partition.

Property 1. The final partition obtained in this hedonic
coalitional game is Nash-stable and individually stable [8].
In other words, no player can get a strictly higher payoff,
even by joining another coalition.

Proof: By contradiction, we assume there exists a player
i that has an incentive to increase its payoff by leaving its
coalition C1 in the final partition P and joining the coalition
C2 ∈ P

⋃
{∅} such that C2

⋃
{i} >i C1. This contradicts the

fact that P is the final partition of the hedonic coalitional game.
Hence, the final partition is Nash stable.

The final partition obtained in this coalition game is such
that on the one hand, the number of coalitions in the final
partition provides the number of clusters obtained, and on
the other hand, each coalition belonging to the final partition
represents the set of video contents belonging to the same
cluster.

C. Discussion
Notice however that the final partition obtained depends on

both the initial partition and the order in which the players
play. In this coalition game where no clustering has been done
before, it is natural to start from an initial partition where each
video content is alone in its cluster. Different play orders may
lead to different clusterings as illustrated in Figures 1a, 1b and
1c. Ten video contents are considered for clustering. Initially
each of them belongs to a distinct cluster and the play order of
the coalition game is Random, Rich-to-Poor and Poor-to-Rich,
respectively.

The Poor-to-Rich order is obtained when players play
according to the increasing order of their payoffs. The Rich-
to-Poor order is obtained when they play according to the
decreasing order of their payoff. More precisely and for both



orders, the play order in each round r is computed at the
beginning of round r: the players are sorted according to their
current payoff. Notice however that the Random order is
computed only once at the beginning of the game and is used
at each round of the game.

In Figures 1, we depict each coalition by a set with its
representative represented in red while the other members are
in black. We observe that the only common coalition to all
three orders is the coalition {1}. The cluster centered around
3 exists in the Random and Rich-to-Poor orders, however its
membership differs in both orders (i.e. see members 2 and 5).
In this example, the Poor-to-Rich order leads to the smallest
number of coalitions: three instead of four for the other orders.
In the following, we will conduct more extensive simulations
to compare these three orders (see Section IV-C).

a Random order b Rich-to-Poor order c Poor-to-Rich order

Fig. 1: Clustering of 10 contents.

The switching rule can be applied with different policies
to join a coalition that improves the payoff of the player. We
can distinguish:

• the First-Coalition, where the player joins the first coali-
tion C ∈ P that improves its payoff. This policy is the
simplest one and requires the least computation.
• the Best-Coalition, where the player computes its payoff
if it joins each existing coalition and selects the coalition
that provides the highest payoff.

The First-Coalition policy is preferred to the Best-Coalition
policy, because of its better scalability. Scalability matters as
the amount of video contents existing in a CDN is very high
(e.g. > 5000).

IV. PERFORMANCE EVALUATION

A. Simulation parameters
We first developed an extraction tool that extracts real

traces of video contents stored in YouTube. We extracted 1000
video contents. The video contents used in the performance
evaluation reported in this section were randomly chosen from
those 1000 contents. We then developed a simulation tool for
coalition games in Matlab. In all the simulations reported in
this paper, each player applies the First-Coalition policy.

TABLE I: Simulation parameters

Observation window size size(ow) ∈ {5, 7, 10}
Drift 10%, 30%

Parameters α = 400, β = 1000000
Number of video contents n ∈ {20, 50, 100, 150, 200}
Choice of video contents randomly extracted from YouTube

Policy First-Coalition
Initial partition each content in its own coalition

Play order Random, Poor-to-Rich or Rich-to-Poor
Simulation result average of 20 simulations

Each simulation is defined by its parameters such as the
number and the identifier of the randomly selected video
contents, the value of Drift, the size of the observation
window ow, the play order. The values of these parameters are
given in Table I. Each player i ∈ [1, n] plays in sequence. The
play order is either Random, Rich-to-Poor or Poor-to-Rich. It
is fixed for the whole game.

Initially, each player is alone in its coalition. In other
words, the initial partition in the coalitional game is given
by {{1}, {2}, . . . {n}}. There are as many clusters as video
contents.

We are now able to study the impact of (1) the size of the
observation window, (2) the play order, and (3) the number
of video contents considered, on the clustering obtained. This
clustering is qualitatively evaluated by:
• the number of clusters obtained,
• the average distance Davg of the cluster members to their

representative,
• the maximum distance Dmax of cluster members to the

representative of the cluster.
We evaluate the complexity of the coalition game in terms of
number of rounds, number of switches and execution time.
Finally, we compare the results obtained with those given by
the well-known K-means algorithm.

B. Impact of the size of the observation window
The size of the observation window can range from the

creation time of the video content up to the current time or it
can be equal to the last week only, for instance. In this first
series of simulations, we randomly select 50 video contents
and vary the size of the observation window ow in the set
{5, 7, 10}. Smaller values are not tested because they would
have less practical interest since they would lead to a too
frequent clustering. Simulation results reported in Table II
show that the smallest size, 5, tends to increase the number
and/or the size of the coalitions formed, while minimizing the
average distance to the representative of the coalition. That is
why in the following, we take a value of 5 for the size of the
observation window.

TABLE II: Impact of the observation window size.

size(ow) coalitions Davg Dmax
5 2.4 236.4 7173.4
7 2.3 1077 8252.3

10 1.3 731 1476.3

C. Impact of the play order and the number of video contents
In this second series of simulations, we evaluate the impact

of both the number of video contents and the play order on
the clustering in terms of number of clusters obtained, average
and maximum distance to the representative of this cluster.
The number of video contents ranges from 20 to 200. For
each configuration defined by the number of video contents
considered, we compare the results obtained for three play
orders: Random, Rich-to-Poor and Poor-to-Rich. The average
number of clusters obtained is depicted in Figure 2.

This number tends to increase with the number of video
contents as long as this number is less than or equal to 150;
There is no noticeable difference in the number of clusters
obtained for 150 and 200 contents. This can be explained by
the fact that there is a limited number of content profiles.



Contents are then grouped together in a number of clusters
corresponding to this number of profiles. We observe that the
play order has a very limited impact on the number of clusters
obtained. For 20 and 100 contents, the number of clusters is
identical for the three orders tested.
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Fig. 2: Average number of clusters.

We also depict the average distance to the representative
of the cluster in Figure 3, taking into account only clusters
whose size is strictly higher than one. It tends to increase with
the number of contents considered. The Rich-to-Poor order
is the order minimizing the average distance obtained for all
configurations tested. The reason is that rich players form
coalitions with the smallest distance to their representative,
subsequently poor players join these coalitions.
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Fig. 3: Average distance to the representative of the cluster.

The maximum distance to the representative of the cluster
is illustrated in Figure 4. Again, the Rich-to-Poor order outper-
forms the Random and Poor-to-rich orders in minimizing the
maximum distance to the representative. This appears clearly
for 200 contents. The reason is the same as for the average
distance to the representative. As a conclusion regarding this
series of simulations, we select the Rich-to-Poor order for
further simulations.
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Fig. 4: Maximum distance to the representative of the cluster.

D. Complexity
It is interesting to know the complexity of this coalition

game. We first evaluate the complexity by the number of
rounds needed to get the stable partition as a function of
the number of players (Figure 5). The three play orders lead
to a very small number of rounds. Even for 200 contents,
this number of rounds is less than 35 for the Rich-to-Poor
and Poor-to-Rich orders. The Rich-to-Poor order, that is the
order tending to minimize the maximum distance to the
representative, gives very good performances.
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Fig. 5: Average number of rounds.

Another interesting parameter to evaluate the complexity
of the coalition game is the total number of switches done by
the players.
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Fig. 6: Average number of switches.

This is the number of times the switching rule is applied in
the game. Knowing the number of rounds R, the total number
of switches, denoted S, is upper bounded by n∗(R−1), where
n is the number of players. The term −1 is introduced to take
into account the fact that during the last round no player is able
to increase its current payoff by joining an existing coalition.
Simulation results corroborate this bound. Here again, we
observe the very good performances for the Rich-to-Poor order
that minimizes the total number of switches (Figure 6): less
than 1520 for 200 contents. This is explained by the fact
that since rich players, belonging to a coalition where the
maximum distance is small, select the existing coalitions that
increase their payoff, poor players are encouraged to join these
coalitions and it offers them fewer possibilities in the future to
improve again their payoff. This is reflected by the difference
S − n ∗ (R − 1) that accounts for the number of times a
player is unable to increase its current payoff. For instance,
with 200 contents and the Rich-to-Poor order, the difference
is 34 ∗ 200− 1520 = 5280.



For practical reasons, it may be necessary to know the time
needed to obtain the final result. That is why we also measure
the time spent on computing the final result in Figure 7. Up-to-
now the Rich-to-Poor order outperforms the other play orders.
However, this could be questioned if it was achieved at the
cost of a large computation time because of the computation
of the play order at each round. Simulation results show that
this is not the case. Even for 200 contents, the clustering is
obtained in less than 1000 seconds (i.e. 16 minutes) on a
laptop, processor Intel with 8-Core, 2.7 GHz and 8 Gb of
memory. Hence, this coalition game is scalable.
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Fig. 7: Average time in seconds.

E. Comparison with the K-means clustering algorithm
Before comparing the simulation results obtained with

those obtained by the well-known K-means clustering algo-
rithm [9], we present the principles of the K-means algorithm.

1) Presentation of the K-means clustering algorithm:
This algorithm is widely used for cluster analysis in data
mining. K-means clustering partitions observations into K
clusters such that each observation belongs to the cluster with
the nearest mean. As a result, the data space is partitioned into
K Voronoi cells.

The K-means algorithm proceeds by iterations. Each iter-
ation t consists of two steps:
• Assignment step: Assign each observation xp to the cluster
C

(t)
i , with 1 ≤ i ≤ K, whose mean m(t)

i at iteration t yields
the least within-cluster sum of squares (WCSS). Since the
sum of squares is the squared Euclidean distance, this is
intuitively the ”nearest” mean.

C
(t)
i =

{
xp :

∥∥xp−m(t)
i

∥∥2 ≤ ∥∥xp−m(t)
j

∥∥2 ∀j, 1 ≤ j ≤ K},
where each xp is assigned to exactly one cluster C(t)

i .
• Update step: Compute the new means m

(t+1)
i as the

centroids of the observations in the new clusters.

m
(t+1)
i =

1

|C(t)
i |

∑
xj∈C(t)

i

xj .

Since both steps optimize the WCSS objective, and there only
exists a finite number of partitions, it has been proved in [9]
that this algorithm converges to an optimum, but without any
guarantee of finding the global optimum.

Initially, K observations are randomly selected from the
data set and are used as centroids. We show with the example
depicted in Figure 8 that the clustering obtained with the
K-means algorithm depends on the random selection of K
observations chosen as initial centroids. We consider 10 video
contents and set the value of K to 4. The left part and the right

part of Figure 8 illustrate two different results for two initial
selections of centroids given by {2, 10, 8, 9} and {2, 10, 4, 5}).
These results are obtained by two successive executions of K-
means on the same set of video contents.

Fig. 8: Impact of the initial random selection in K-means.

In this algorithm, K, the number of clusters built by the
K-means algorithm, is given as an input of the algorithm. The
main difficulty is how to fix K a priori, without having any idea
of the result of the clustering. An inadequate value of K may
lead to a clustering of poor quality, as depicted in Figure 9,
where we consider the same set of contents as in Figure 8, but
we give a value of K = 2, with the selection of{4, 5} as initial
centroids. We get two coalitions with a maximum distance to
the representative equal to 35737.

Fig. 9: Impact of the value of K on the K-means clustering.

We notice that all these drawbacks of the K-means cluster-
ing algorithm do not exist with the hedonic coalition formation
game.

2) Comparative results with K-means clustering:
To have a significant comparison of the clusterings obtained
by the coalition game and K-means, we first run the coalition
game and obtain a certain number of coalitions nC . We then
run the K-means algorithm with K = nC . We consider a
number of video contents in the set {20, 50, 100}. Simulation
results are reported in Table III and the associated execution
times are given in Table IV.

TABLE III: Comparison between Game and K-means.

Cluster Davg Dmax
nb. contents Kmeans Game Kmeans Game Kmeans Game

20 7.4 17 9.21E+04 2.64 8.01E+05 8.8
50 17 41 4.56E+07 4.11E+03 9.63E+09 1.02E+05

100 28.6 79 6.20E+07 1.9E+03 1.28E+09 2.4E+03

For both K-means and the coalition game, the average
number of clusters increases with the number of contents in
{20, 50, 100}. We observe that, on the one hand, the number
of clusters given by the coalition game is higher than with K-
means and, on the other hand, the maximum distance to the



representative is much smaller: 91 compared with 1.28E+09
for 100 contents. This means that the clustering performed by
the coalition game is much more accurate. With regard to the
time needed to obtain the results, K-means needs more time
when the number of contents is higher than or equal to 50.
For instance, it is 3.5 times the time needed by the coalition
game for 50 contents.

TABLE IV: Execution times for Game and K-means.

Time(s)
nb. contents Kmeans Game

20 3.47E-03 1.04
50 44.66 38.10
100 1.44E+02 4.11E+01

As a conclusion, since the coalition game is able to quickly
provide a clustering, we recommend using it to get the number
of clusters nC and then to run K-means with K = nC .

F. Price of Anarchy
On the one hand, the coalition game is played as a dis-

tributed multi-agent system, where each agent is a player acting
on the behalf of a video content. On the other hand, K-means
is a centralized clustering algorithm that is widespread in data
mining. It is therefore logical to evaluate the Price of Anarchy,
denoted PoA, as the ratio between the solution provided by
the coalition game and that provided by K-means. To take
into account the three comparison criteria given previously,
we define PoA as a 3-dimensional vector:
• The first component of this vector gives the ratio of the
average distance within a cluster.
• The second component gives the ratio of the maximum
distance between two contents belonging to the same cluster.
• The third component gives the ratio of execution time
needed to obtain the clustering.

In the three components, the ratio is obtained when consid-
ering the distributed coalition game as the numerator and the
centralized K-means algorithm as the denominator. Table V
gives the Price of Anarchy for 20, 50 and 100 video contents.

TABLE V: Price of Anarchy.

Davg Dmax Time
20 2E-05 10.9E-04 300
50 9E-05 10−03 0.85
100 3E-05 187.5E-04 0.285

We observe that with regard to both the average distance
and the maximum distance to the representative of the cluster,
the Price of Anarchy is excellent for the coalition game.
Furthermore, for a number of contents higher than or equal
to 50, the Price of Anarchy is clearly in favor of the coalition
game.

G. Advantages of the coalition game
Modeling the clustering problem as a coalition game has

many advantages. Three of which we give below:
• It represents an elegant way to model the problem under
consideration: constraints are naturally taken into account: a
video content belongs to exactly one cluster and each cluster
contains at least one video content.
• The approach proposed is scalable with regard to the
number of players. This approach does not require the enu-
meration of all possible coalitions (i.e. 2n for n players). A

player belonging to coalition C1 has only to pick a coalition
C2 in the current partition P such that the switching rule is
met.
• The approach is simple: each player runs a very simple

algorithm. Each player applies only one rule: the switching
rule.

V. CONCLUSION
Clustering is frequently used in data mining. In this paper,

we focused on clustering in content delivery networks in order
to predict the popularity of video contents and improve cache
management. The original contribution of this paper is to
model clustering as a coalition formation game where the play-
ers are the video contents. We proved that this game always
converges to a stable partition consisting of different clusters.
We determined the best size of the observation window and
showed that the play order minimizing the maximum distance
to the representative of the cluster is the Rich-to-Poor order,
whatever the number of video contents in the interval [20, 200].
The complexity of the coalition game remains very light.
Convergence is obtained in a small number of rounds (i.e. less
than 35 rounds for 200 video contents). A comparison with
the K-means algorithm allowed us to determine the Price of
Anarchy. This price is clearly in favor of the coalition game
for the average and maximum distances to the representative
of the cluster. From the execution time point of view, it is also
in favor of the coalition game when the number of contents
is higher than or equal to 50. Furthermore, the coalition game
can be used to quickly determine the best value of K that
is required as an input parameter of the K-means algorithm.
Simulation results show that the coalition game is scalable and
provides very good performances.
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