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A NEW CLASS OF SCHR ÖDINGER OPERATORS WITHOUT POSITIVE EIGENVALUES

Following the proof given by Froese and Herbst in [FH82] with another conjugate operator, we show for a class of real potential that possible eigenfunction of the Schrödinger operator has to decay sub-exponentially. We also show that, for a certain class of potential, this bound can not be satisfied which implies the absence of strictly positive eigenvalues for the Schrödinger operator.

INTRODUCTION

In this article, we will study the Schrödinger operator H " ∆ `V with a real potential, on L 2 pR ν q, where ∆ is the non negative Laplacian operator. Here V is a multiplication operator, i.e. V can be the operator of multiplication by a real function or by a distribution of strictly positive order. When V " 0, we know that H " ∆ has a purely absolutly continuous spectrum on r0, `8q with no embedded eigenvalues. We will try to see what happened if we add to ∆ a "small" potential V , which is compact with respect to ∆. In this case, H is a compact perturbation of ∆ and we already know that the essential spectrum of H is r0, `8q.

An argument of quantum mechanics can make us believe that our Hamiltonians has no strictly positive eigenvalues, when V is ∆-compact or compact on H 1 , the first order Sobolev space, to H ´1, its dual space. This argument is reinforced by a result of S. Agmon [START_REF] Agmon | Lower bounds for solutions of Schrödinger equations[END_REF], T. Kato [START_REF] Kato | Growth properties of solutions of the reduced wave equation with variable coefficients[END_REF], R. Lavine [RS70, Theorem XIII.29] and B. Simon [START_REF] Simon | On positive eigenvalues of one-body Schrödinger operators[END_REF]. They proved the absence of positive eigenvalues for the operator H " ∆ `V if the potential is a sum of a short range potential and a long range potential, i.e. V can be written

V " V 1 `V2 with $ ' ' ' ' & ' ' ' ' % lim |x|Ñ`8
|x|V 1 pxq " 0 lim |x|Ñ`8

V 2 pxq " 0 lim |x|Ñ`8

x ¨∇V 2 pxq ď 0.

Similarly, L. Hörmander [START_REF] Hörmander | The Analysis of Linear Partial Differential Operators[END_REF]Theorem 14.7.2] proved that a possible eigenvector of H, associated to a positive eigenvalue, and its first order derivatives cannot have unlimited polynomial bounds if |x|V is bounded. A.D. Ionescu and D. Jerison [START_REF] Ionescu | On the absence of positive eigenvalues of Schrödinger operators with rough potentials[END_REF] proved also this absence of positive eigenvalues for the 1-body Schrödinger operator, for a class of potentials with low regularity (V P L ν{2 loc if ν ě 3, V P L r loc , r ą 1 if ν " 2). R. Froese, I. Herbst , M. Hoffman-Ostenhof and T. Hoffman-Ostenhof ( [START_REF] Froese | Exponential bounds and absence of positive eigenvalues for n-body Schrödinger operators[END_REF] and [START_REF] Froese | On the absence of postitive eigenvalues for one-body Schrödinger operators[END_REF]) proved a similar result, concerning the N-body Schrödinger operator. We will explain below their result for the 1-body Schrödinger operator and we will generalize their proof to obtain larger conditions on the potential. More recently, using a similar proof than in [START_REF] Froese | Exponential bounds and absence of positive eigenvalues for n-body Schrödinger operators[END_REF], two other results were proved. T. Jecko and A. Mbarek [START_REF] Jecko | Limiting absorption principle for Schrödinger operators with oscillating potentials[END_REF] proved the absence of positive eigenvalues for H " ∆ `V where V is the sum of a short range potential, a long range potential and an oscillating potential which are not covered by the previous results. In the case of the discrete Schrödinger operator, M.A. Mandich [START_REF] Mandich | Sub-exponential lower bounds for embedded eigenfunctions of some discrete Schrödinger operators[END_REF] proved that under certain assumption on the potential, eigenfunctions decays subexponentially and that implies the absence of eigenvalues on a certain subset of the real axis. This three proofs use the generator of dilations A D , or the discrete generator of dilations in [START_REF] Mandich | Sub-exponential lower bounds for embedded eigenfunctions of some discrete Schrödinger operators[END_REF], as conjugate operator. In our case, the continuous case, the generator of dilations has the following expression

A D " 1 2 pp ¨q `q ¨pq,
where q is the multiplication operator by x and p " ´i∇ is the derivative operator with p 2 " ∆.

On the other hand, it is well known that we can construct a potential such that H has positive eigenvalues. For example, in one dimension, the Wigner-von Neuman potential W pxq " w sinpk|x|q{|x| with k ą 0 and w P R › has a positive eigenvalue equal to k 2 {4 (see [START_REF] Neuman | über merkwürdige diskrete eigenwerte[END_REF]). Moreover, B. Simon proved in [START_REF] Simon | Some Schrödinger operators with dense point spectrum[END_REF] that for all sequence pK n q n"1¨¨¨`8 of distinct positive reals, we can construct a potential V such that pK 2 n q n"1¨¨¨`8 are eigenvalues of H. Moreover, B. Simon showed that if ř 8 n"1 K n ă 8, then |q|V is bounded, which implies that V is ∆-compact.

In their article [START_REF] Froese | Exponential bounds and absence of positive eigenvalues for n-body Schrödinger operators[END_REF], R. Froese and I. Herbst proved the following Theorem 1.1 ([FH82], Theorem 2.1). Let H " ∆ `V with V a real-valued measurable function. Suppose that (1) V is ∆-bounded with bound less than one, (2) p∆ `1q ´1q ¨∇V p∆ `1q ´1 is bounded. Suppose that Hψ " Eψ. Then S E " sup " α 2 `E ; α ą 0, exppα|x|qψ P L 2 pR ν q

* (1.1)
is `8 or the Mourre estimate is not valid at this energy with A D as conjugate operator.

From this result, they deduce the following Corollary 1.2 ([FH82], Theorem 3.1). Let H " ∆ `V with V a real-valued measurable function. Let E ą 0. Suppose that

(1) V is ∆-compact,

(2) p∆ `1q ´1q ¨∇V p∆ `1q ´1 is compact,

(3) for some a ă 2 and b P R, we have in the form sense q ¨∇V ď a∆ `b.

(1.2)

Suppose that Hψ " Eψ. Then ψ " 0.

Following their proof, we will extend their result in two directions. First, we will see that for a larger class of ∆-compact potential, we can prove that possible eigenvector of H must satisfy some sub-exponential bounds in the L 2 -norm. We will also show that this implies the absence of positive eigenvalue if V satisfies a condition of type (1.2). Secondly, we will extend their results in the case where the potential is not ∆-bounded but compact from H 1 to H ´1. To prove these results we will use another conjugate operator of the form

A u " 1 2 puppq ¨q `q ¨uppqq,
where u is a C 8 vector field with all derivatives bounded. Remark that this type of conjugate operator is essentially self-adjoint with the domain DpA u q Ą DpA D q (see [ABdMG96, Proposition 4.2.3]). This conjugate operator was also used in [START_REF] Martin | On the limiting absorption principle for a new class of Schrödinger Hamiltonians[END_REF]. In this paper, it is proved that for a certain choice of u (u bounded), the commutator between V and A u can avoid us to impose conditions on the derivatives of the potential, which can be useful when V has high oscillations. Moreover, the commutator with the Laplacian, considered as a form with domain H 1 , is quite explicit: r∆, iA u s " 2p ¨uppq which implies that the commutator is bounded from H 1 to H ´1. Since the unitary group generated by A u leaves invariant the domain and the form domain of the Laplacian (see [ABdMG96, Proposition 4.2.4]), this proves that ∆ is of class C 1 pA u q and, similarly if if we add a potential V which is ∆-compact( respectively compact from H 1 to H ´1), with the regularity C 1 pA u , H 2 , H ´2q (respectively C 1 pA u , H 1 , H ´1q), since the domain (respectively the form domain) is the same than the domain of the Laplacian, we deduce that H " ∆ `V is of class C 1 pA u q. If we take u such that x ¨upxq ą 0 for all x " 0, remark that the Mourre estimate is true with A u as conjugate operator on all compact subset of p0, `8q for ∆. For this reason, and to follow the proof of [START_REF] Froese | Exponential bounds and absence of positive eigenvalues for n-body Schrödinger operators[END_REF], it will be convenient to choose u of the form xλpxq with λ : R ν Ñ R a positive function. All differences with [START_REF] Froese | Exponential bounds and absence of positive eigenvalues for n-body Schrödinger operators[END_REF] will be explain in Section 4 and Section 5.

MAIN RESULTS

Now we will give our main results. Notice that we will recall the notion of regularity (C k , C k U , C 1,1 ) with respect to an operator on Section 3.2. To simplify notations, let U be the set of vector fields u with all derivatives bounded which can be writed upxq " xλpxq with λ a C 8 bounded positive function. In particular, p ∇λppq is bounded. We have the following:

Theorem 2.1. Let H " ∆`V on L 2 pR ν q,
where V is a symmetric potential such that V is ∆-bounded with bound less than one. Let E P R and ψ such that Hψ " Eψ. Suppose that there is u P U such that p∆ `1q ´1rV, iA u sp∆ `1q ´1 is bounded, then, for all 0 ă β ă 1,

S E " sup " α 2 `E ; α ą 0, exppαxxy β qψ P L 2 pR ν q
* is either `8 or in E u pHq, the complement of the set of points for which the Mourre estimate (see Definition 3.2) is satisfied with respect to A u .

We will give some comments about this Theorem:

(a) Let u P U. Since the unitary group generated by A u leaves invariant the Sobolev space H 2 , V P C 1 pA u , H 2 , H ´2q if and only if p∆ `1q ´1rV, iA u sp∆ `1q ´1 is bounded. Thus, in this case, we can replace the assumption p∆ `1q ´1rV, iA u sp∆ 1q ´1 in Theorem 2.1 by an assumption of regularity.

(b) Since we do not have an explicit expression for the commutator between an operator of multiplication and the conjugate operator A u , in the proof of Theorem 2.1, it is convenient to chose the function F , which appears in the proof, with a vanishing gradient at infinity. This is the case if β ă 1 but not if β " 1. Remark that for certain type of potential, by using the interaction between the potential and ∆, we can prove the exponential bounds or sub-exponential bounds (β " 1), even if V R C 1 pA u , H 2 , H ´2q (see [JM17, Proposition 7.1] and Proposition 6.3). (c) Remark that if V is ∆-compact and V P C 1 u pA u , H 2 , H ´2q, for u P U, V satisfies assumptions of Theorem 2.1 and the Mourre estimate is true for all λ P p0, `8q (see [ABdMG96, Theorem 7.2.9]). So, in this case, if E ą 0, then exppαxxy β qψ P L 2 pR ν q for all α ą 0 and β P p0, 1q. Moreover, in this case, by the Virial Theorem, we can see that the set of eigenvalues in J " p0, `8q has no accumulation point inside J and are of finite multiplicity. (d) If V vanishes at infinity and can be seen as the Laplacian of a short range potential (i.e. V " ∆W with lim

|x|Ñ`8 xxyW " 0), then V is ∆-compact and xqyV : H 2 Ñ H ´2 is compact.
In this case, we can apply Theorem 2.1 to

H " ∆ `V . (e) For ζ P R, θ ą 0, k P R ˚and w P R, let V pxq " wp1 ´κp|x|qq sinp|x| ζ q |x| θ , with κ P C 8 c pR, Rq with κp|x|q " 1 if |x| ă 1, 0 ď κ ď 1.
Note that this type of potential was already studied in [BAD79, DMR91, DR83a, DR83b, JM17, RT97a, RT97b]. If ζ ă θ or if θ ą 1, we can see that V is a long range or a short range potential. Moreover, in [START_REF] Jecko | Limiting absorption principle for Schrödinger operators with oscillating potentials[END_REF], it is proved that if ζ `θ ą 2, then V has a good regularity with respect to A D . So we can apply Theorem 1.1 in these two areas. In [START_REF] Jecko | Limiting absorption principle for Schrödinger operators with oscillating potentials[END_REF], they also showed that if ζ ą 1 and θ ą 1{2, then a possible eigenvector associated with positive energy has unlimited exponential bounds. But, if |ζ ´1| `θ ă 1, they proved that H R C 1 pA D q and so we cannot apply Theorem 1.1 with this potential. If 2ζ `θ ą 3, ζ ą 1 and 0 ă θ ď 1{2, then V is of class

C 1,1 pA u , H 2 , H ´2q Ă C 1
u pA u , H 2 , H ´2q for all u bounded (see [Mar17, Lemma 5.4]). So, Theorem 2.1 applies if 2ζ `θ ą 3 with ζ ą 1 and 0 ă θ ď 1{2.

Since the Laplacian operator ∆ can be seen as a form on H 1 , the first order Sobolev space, to H ´1, the dual space of H 1 , we can also study the case where V : H 1 Ñ H ´1 is compact. In this case, the difference between the resolvent of H and the resolvent of ∆ is compact and the essential spectrum of H is still r0, `8q. We have the following Theorem 2.2. Let H " ∆ `V on L 2 pR ν q, where V is a real-valued function such that V : H 1 Ñ H ´1 is bounded with relative bound less than one. Let E P R and ψ such that Hψ " Eψ. If there is u P U such that xpy ´1rV, iA u sxpy ´1 is bounded, then, for all 0 ă β ă 1,

S E " sup " α 2 `E ; α ą 0, exppαxxy β qψ P L 2 pR ν q * is either `8 or in E u pHq.
We make some comments about this theorem: is compact. Thus the Mourre estimate is true on all compact subset of p0, `8q. So, if E ą 0, in this case, the sub-exponential bounds are true for all α ą 0.

(a) Since V : H 1 Ñ H ´1 is
(d) For ζ P R, θ P R, k P R ˚and w P R, let V pxq " wp1 ´κp|x|qq sinp|x| ζ q |x| θ , with κ P C 8 c pR, Rq with κp|x|q " 1 if |x| ă 1, 0 ď κ ď 1. If ζ `θ ą 2, then V : H 1 Ñ H ´1 is compact and V is of class C 1,1 pA u , H 1 , H ´1q Ă C 1 u pA u , H 1 , H ´1q for all u bounded (see [Mar17, Lemma 5.4]). So, Theorem 2.2 applies if ζ `θ ą 2, even if θ ď 0. (e) Let
V pxq " wp1 ´κp|x|qqe 3|x|{4 sinpe |x| q with w P R, κ P C 8 c pR, Rq, 0 ď κ ď 1 and κp|x|q " 1 if |x| ă 1. Note that this type of potential was already studied in [START_REF] Combescure | Spectral and scattering theory for a class of strongly oscillating potentials[END_REF][START_REF] Combescure | Spectral and scattering theory for the Schrödinger operator with strongly oscillating potentials[END_REF]. We can show that V : [START_REF] Martin | On the limiting absorption principle for a new class of Schrödinger Hamiltonians[END_REF]Lemma 5.6]). So, for all w P R, Theorem 2.2 applies. Moreover, since V is not ∆-bounded, we cannot apply Theorem 1.1.

H 1 Ñ H ´1 is compact and V is of class C 1,1 pA u , H 1 , H ´1q Ă C 1 u pA u , H 1 , H ´1q for all u bounded (see
(f) Assume that V : H 1 Ñ H ´1 is symmetric, bounded with bound less than one and that there is µ ą 0 such that xxy 1`µ V pxq P H ´1. Then there is u P U such that V P C 1,1 pA u , H 1 , H ´1q (see [Mar17, Lemma 5.8]). In particular, for this type of potential, Theorem 2.2 applies. For example, in dimension ν ě 3, if we take χ : R Ñ R such that χ P C 3 , χp|x|q " 0 if |x| ą 1 and χ 1 p0q " χ 2 p0q " 1, the potential defined by In particular, if W satisfies xqy 1`ǫ W is bounded for one choice of ǫ ą 0, then Theorem 2.2 applies for V " divpW q.

V pxq " `8 ÿ n"2 n p3ν´1q{2 χ 1 pn 3ν{2 p|x|
Since in the proof of Corollary 1.2, one use only assumption (1.2) by applying it on certain vectors that are constructed with a possible eigenvector of H, we can weaken the conditions on the potential. For 0 ă β ă 1 and α ą 0, let F β pxq " αxxy β . We have the following

Theorem 2.3. Suppose that V is ∆-compact.
Let ψ such that Hψ " Eψ with E ą 0 and such that ψ F " exppF β pqqqψ P L 2 pR ν q for all α ą 0, 0 ă β ă 1. Suppose that there is δ ą ´2, δ 1 , σ, σ 1 P R such that δ `δ1 ą ´2 and, for all α ą 0, 0 ă β ă 1, pψ F , rV, iA D sψ F q ě δpψ F , ∆ψ F q `δ1 pψ F , p∇F β q 2 ψ F q `pσα `σ1 q}ψ F } 2 . (2.1)

Then ψ " 0.

If we only suppose that V : H 1 Ñ H ´1 is bounded (but not necessarily ∆-bounded), we have the following:

Theorem 2.4. Suppose that V : H 1 Ñ H ´1 is bounded. Let ψ such that Hψ " Eψ with E ą 0. For 0 ă β ă 1 and α ą 0, let F β pxq " αxxy β . Denote ψ F " exppF β pqqqψ. Suppose that ψ F P L 2 pR ν q for all α ą 0, 0 ă β ă 1, and that there is δ ą ´2, δ 1 , σ, σ 1 P R such that δ `p1 `}xpy ´1V xpy ´1}qδ 1 ą ´2 and, for all α ą 0, 0 ă β ă 1,

pψ F , rV, iA D sψ F q ě δpψ F , ∆ψ F q `δ1 pψ F , p∇F β q 2 ψ F q `pσα `σ1 q}ψ F } 2 . (2.2)
Then ψ " 0.

We make some comments on the two previous theorems:

(a) Since we suppose that ψ has sub-exponential bounds, for α, β fixed, ψ F has subexponential bounds too. Moreover, we can remark that ψ F is an eigenvector for HpF q :" e F He ´F " H ´p∇F q 2 `pip∇F `i∇F pq.

This makes easier to prove (2.1) and (2.2). (b) Remark that in (1.2), the inequality is required to be true in the sense of the form. In (2.1) and (2.2), we do not ask to have this inequalities for all φ P DpHq X DpA u q, but only for a type of vector with high decrease at infinity.

(c) Assumption (1.2) corresponds to the case where δ 1 " σ " 0 and δ ą ´2 in (2.1).

In particular, if V satisfies (1.2), it satisfies (2.1) too.

(d) Remark that if δ 1 ě 0, conditions δ `δ1 ą ´2 and δ `p1`}xpy ´1V xpy ´1}qδ 1 ą ´2 are always satisfied.

(e) Actually, one only need to require (2.1) and/or (2.2) for β near 1 and α large enough.

(f) We can replace (2.1) by the similar inequality

pψ F , rV, iA D sψ F q ě δpψ F , ∆ψ F q `δ1 pψ F , p∇F β q 2 ψ F q `δ2 }g 1{2 A D ψ F } 2 `pσα `σ1 q}ψ F } 2 (2.1') with δ ą ´2, δ `δ1 ą ´2 and δ 2 ą ´4. (2.2) may be replaced by pψ F , rV, iA D sψ F q ě δpψ F , ∆ψ F q `δ1 pψ F , p∇F β q 2 ψ F q `δ2 }g 1{2 A D ψ F } 2 `pσα `σ1 q}ψ F } 2 (2.2')
with δ ą ´2, δ `p1 `}xpy ´1V xpy ´1}q}δ 1 ą ´2 and δ 2 ą ´4 and the both Theorems remain true. This enlarges the class of admissible potentials (see Section 6).

(g) Let V sr and V lr be two functions such that there is ρ sr , ρ lr , ρ 1 lr ą 0 and |x| 1`ρsr V sr pxq, |x| ρ lr V lr pxq and |x| ρ 1 lr x∇V lr pxq are bounded. Suppose that V satisfies assumptions of Theorem 2.3 (respectively Theorem 2.4). Then Ṽ " V `Vsr `Vlr satisfies assumptions of Theorem 2.3 (respectively Theorem 2.4) too. To see that, notice that V lr and V sr are compact on H 1 and are of class

C 1 pA D , H 1 , H ´1q X C 1 u pA u , H 1 , H ´1q for all u P U and that there is σ 1 , σ 2 P R such that pψ F , rV lr , iA D sψ F q ě σ 1 }ψ F } 2 pψ F , rV sr , iA D sψ F q ě ´ǫpψ F , ∆ψ F q `σ2 ǫ }φ} 2
for all ǫ ą 0. In particular, we can choose ǫ ą 0 small enough such that, if V satisfies (2.1) (respectively (2.2)), Ṽ satisfies (2.1) (respectively (2.2)).

(h) If V can be seen as the derivative of a bounded function (the derivative of a short range potential for example), the conclusion of Theorem 2.4 is still true if one assume (2.2) and if one replaces the condition δ `p1 `}xpy ´1V xpy ´1}qδ 1 ą ´2 by the weaker condition δ `δ1 ą ´2.

(i) For ζ, θ P R, k P R ˚and w P R, let V pxq " wp1 ´κp|x|qq sinp|x| ζ q |x| θ , with κ P C 8 c pR, Rq with κp|x|q " 1 if |x| ă 1, 0 ď κ ď 1.
As for the subexponential bounds, we can see that if θ ą 0 and ζ ă θ or θ ą 1, then Corollary 1.2 applies. In [START_REF] Jecko | Limiting absorption principle for Schrödinger operators with oscillating potentials[END_REF], they showed that if ζ ą 1 and θ ą 1{2, H " ∆ `V has no positive eigenvalues. Moreover, they claimed that if θ ą 0, ζ `θ ą 2 and |w| is small enough then V satisfies (1.2) and so Corollary 1.2 applies. But their proof is not sufficient if θ ď 1{2 because we need to have the commutator bounded from H 1 to H ´1 and in this case, it is only bounded from H 2 to H ´2. Here, we can show a better result:

if ζ `θ ą 2, V : H 1 Ñ H ´1 is compact, of class C 1,1 pA u , H 1 , H ´1q
for all u bounded and satisfies (2.2) for all w. Therefore V satisfies assumptions of Theorem 2.4 for all w P R. In particular, if θ ă 0, V is not bounded. Moreover, if ζ `θ " 2 and 1{2 ě θ, then V satisfies assumptions of Theorem 2.3 for |w| sufficiently small. All this results are collected in Proposition 6.3.

(j) Let

V pxq " wp1 ´κp|x|qqe 3|x|{4 sinpe |x| q with w P R, κ P C 8 c pR, Rq, 0 ď κ ď 1 and κp|x|q " 1 if |x| ă 1. For all w P R, we can apply Theorem 2.4 (see Lemma 6.4). Moreover, since V is not ∆-bounded, we cannot apply Corollary 1.2. Now, we assume that V has more regularity with respect to A u . In this case, we can prove a limiting absorption principle and we can show that the boundary values of the resolvent will be a smooth function outside the eigenvalues. To this end, we need to use the Hölder-Zygmund continuity classes denoted Λ σ . The definition of this particular classes of regularity is recalled on Section 3.2. We also need some weighted Sobolev space, denoted H t s which are defined on Section 3.1 Theorem 2.5 ([Mar17], Theorem (3.3)). Let Rpzq " pH ´zq ´1 be the resolvent operator associate to H. Let V : H 1 Ñ H ´1 be a compact symmetric operator. Suppose that there is u P U and

s ą 1{2 such that V is of class Λ s`1{2 pA u , H 1 , H ´1q. Then the limits Rpλ ˘i0q :" w*-lim µÓ0 Rpλ ˘iµq (2.3)
exist, locally uniformly in λ P p0, `8q outside the eigenvalues of H. Moreover, the func-

tions λ Þ Ñ Rpλ ˘i0q P BpH ´1 s , H 1 ´sq (2.4)
are locally of class Λ s´1{2 on p0, `8q outside the eigenvalues of H.

Since Λ s`1{2 pA u q Ă C 1 u pA u q for all s ą 1{2, by combining Theorems 2.2, 2.4 and 2.5, we have the following are of class Λ s´1{2 on p0, `8q.

Corollary 2.6. Let V : H 1 Ñ H ´1 be a compact symmetric potential and s ą 1{2. If there is u P U such that V is of class Λ s`1{2 pA u , H 1 ,
The paper is organized as follows. In Section 3, we will give some notations and we recall some basic fact about regularity. In Section 4, we will prove Theorem 2.1 and Theorem 2.2. In Section 5, we will prove Theorem 2.3 and Theorem 2.4. In Section 6, we will give some explicit classes of potential for which we can apply our main results. Finally in Appendix A, we will recall the Helffer-Sjöstrand formula and some properties of this formula that we will use in the proof of our main Theorems.

NOTATIONS AND BASIC NOTIONS

3.1. Notation. Let X " R ν and for s P R let H s be the usual Sobolev space on X with H 0 " H " L 2 pXq whose norm is denoted } ¨}. We are mainly interested in the space H 1 defined by the norm }f } 2 1 " ş `|f pxq| 2 `|∇f pxq| 2 ˘dx and its dual space H ´1.

We denote q j the operator of multiplication by the coordinate x j and p j " ´iB j considered as operators in H. For k P X we denote k ¨q " k 1 q 1 `¨¨¨`k ν q ν . If u is a measurable function on X let upqq be the operator of multiplication by u in H and uppq " F ´1upqqF , where F is the Fourier transformation:

pF f qpξq " p2πq ´ν 2 ż e ´ix¨ξ upxqdx.
If there is no ambiguity we keep the same notation for these operators when considered as acting in other spaces. If u is a C 8 vector fields with all the derivates bounded, we denote by A u the symmetric operator:

A u " 1 2 pq ¨uppq `uppq ¨qq " uppq ¨q `i 2 pdivuqppq. (3.1)
Notice that A u is essentially self-adjoint (see [ABdMG96, Proposition 4.2.3]). Since we will use vector fields u which have a particular form, we use the space U define by Definition 3.1. We define U the space of C 8 vector fields u with all derivates bounded such that there is a strictly positive bounded function λ : X Ñ R of class C 8 with upxq " xλpxq for all x P X.

Let A D " 1 2 pp ¨q `q ¨pq be the generator of dilations.

As usual, we denote xxy " p1 `|x| 2 q 1{2 . Then xqy is the operator of multiplication by the function x Þ Ñ xxy and xpy " F ´1xqyF . For real s, t we denote H t s the space defined by the norm

}f } H t s " }xqy s f } H t " }xpy t xqy s f }. (3.2)
Note that the norm }f } H t s is equivalent to the norm }xqy s xpy t f } and that the adjoint space of H t s may be identified with H ´t ´s.

We denote ∆ " p 2 the non negative Laplacian operator, i.e. for all φ P H 2 , we have

∆φ " ´n ÿ i"1 B 2 φ Bx 2 i .
For I a Borel subset of R, we denote EpIq the spectral mesure of H on I.

Definition 3.2. Let A be a self adjoint operator on L 2 pR ν q. Assume that H is of class C 1 pAq. We say that H satisfies the Mourre estimate at λ 0 with respect to the conjugate operator A if there exists a non-empty open set I containing λ 0 , a real c 0 ą 0 and a compact operator K 0 such that

EpIqrH, iAsEpIq ě c 0 EpIq `K0 (3.3)
We denote E u pHq the complement of the set of λ 0 for which the Mourre estimate is satisfied with respect to A u .

In the Helffer-Sjöstrand formula (Appendix A), there is a term of rest which appears. To control it we define the following space of application: Definition 3.3. For ρ P R, let S ρ be the class of the function ϕ P C 8 pR ν , Cq such that

@k P N, C k pϕq -sup tPR ν |α|"k xty ´ρ`k |B α t ϕptq| ă 8. (3.4)
Note that C k define a semi-norm for all k.

3.2. Regularity. Let F 1 , F 2 be to Banach space and T : F 1 Ñ F 2 a bounded operator.

Let A a self-adjoint operator such that the unitary group generated by A leaves F 1 and F 2 invariants.

Let k P N. We said that T P C k pA, F 1 , F 2 q if, for all f P F 1 , the map R Q t Þ Ñ e itA T e ´itA f has the usual C k regularity.

We said that T P C k u pA, F 1 , F 2 q if T P C k pA, F 1 , F 2 q and all the derivatives of the map R Q t Þ Ñ e itA T e ´itA f are norm-continuous function. The following characterisation is available:

Proposition 3.4 (Proposition 5.1.2, [ABdMG96]). T P C 1 pA, F 1 , F 2 q if and only if rT, As " T A ´AT has an extension in BpF 1 , F 2 q.
For k ą 1, T P C k pA, F 1 , F 2 q if and only if T P C 1 pA, F 1 , F 2 q and rT, As P C k´1 pA, F 1 , F 2 q.

We can defined another class of regularity called the C 1,1 regularity: Proposition 3.5. We said that T P C 1,1 pA, F 1 , F 2 q if and only if

ż 1 0 }T τ `T´τ ´2T } BpF 1 ,F 2 q dτ τ 2 ă 8,
where T τ " e iτ Au T e ´iτ Au .

An easier result can be used:

Proposition 3.6 (Proposition 7.5.7 from [START_REF] Amrein | C 0 -groups, commutator methods, and spectral theory of N -body Hamiltonians[END_REF]). Let A be a self-adjoint operator.

Let G be a Banach space and let Λ be a closed densely defined operator in G ˚with domain included in DpA, G ˚q and such that ´ir belongs to the resolvent set of Λ and r}pΛ ìrq ´1} BpG ˚q ď C P R for all r ą 0. Let ξ P C 8 pXq such that ξpxq " 0 if |x| ă 1 and ξpxq "

1 if |x| ą 2. If T : G Ñ G ˚is symmetric, of class C 1 pA, G, G ˚q and satisfies ż 8 1 }ξpΛ{rqrT, iAs} BpG,G ˚q dr r ă 8 then T is of class C 1,1 pA, G, G ˚q.
If T is not bounded, we said that T P C k pA, F 1 , F 2 q if for z R σpT q, pT ´zq ´1 P C k pA, F 2 , F 1 q.

Proposition 3.7. For all k ą 1, we have

C k pA, F 1 , F 2 q Ă C 1,1 pA, F 1 , F 2 q Ă C 1 u pA, F 1 , F 2 q Ă C 1 pA, F 1 , F 2 q. If F 1 " F 2 " H is an Hilbert space, we note C 1 pAq " C 1 pA, H, H ˚q. If T is self-adjoint,
we have the following:

Theorem 3.8 (Theorem 6.3.4 from [START_REF] Amrein | C 0 -groups, commutator methods, and spectral theory of N -body Hamiltonians[END_REF]). Let A and T be two self-adjoint operators in a Hilbert space H. Assume that the unitary group texppiAτ qu τ PR leaves the domain DpT q of T invariant. Set G " DpT q. Then (1) T is of class C 1 pAq if and only if T P C 1 pA, G, G ˚q.

(2) T is of class C 1,1 pAq if and only if

T P C 1,1 pA, G, G ˚q.
Remark that, if T : H Ñ H is not bounded, since T : G Ñ G ˚is bounded, in general, it is easier to prove that T P C 1 pA, G, G ˚q than T P C 1 pAq.

If G is the form domain of H, we have the following:

Proposition 3.9 (see p. 258 of [START_REF] Amrein | C 0 -groups, commutator methods, and spectral theory of N -body Hamiltonians[END_REF]). Let A and T be self-adjoint operator in a Hilbert space H. Assume that the unitary group texppiAτ qu τ PR leaves the form domain G of T invariant. Then

(1)

T is of class C k pAq if T P C k pA, G, G ˚q, for all k P N. (2) T is of class C 1,1 pAq if T P C 1,1 pA, G, G ˚q.
As previously, since T : G Ñ G ˚is always bounded, it is, in general, easier to prove that T P C k pA, G, G ˚q than T P C k pAq. Now we will recall the Hölder-Zygmund continuity classes of order s P p0, 8q . Let E be a Banach space and F : R Ñ E a continuous function. If 

0 ă s ă 1 then F is of class Λ s if F is Hölder continuous of order s. If s " 1 then F is of class Λ 1 if
0 ă σ ď 1; then F is of class Λ s if F is k times continuously differentiable and F pkq is of class Λ σ . We said that V P Λ s pA u , H 1 , H ´1q if the function τ Þ Ñ V τ " e iτ Au V e ´iτ Au P BpH 1 , H ´1q is of class Λ s . Remark that, if s ě 1 is an integer, C s pA u , H 1 , H ´1q Ă Λ s pA u , H 1 , H ´1q.

SUB-EXPONENTIAL BOUNDS ON POSSIBLE EIGENVECTORS

In this section we will prove Theorem 2.1 and Theorem 2.2.

4.1. The operator version. Our proof of Theorem 2.1 closely follows the one of Theorem 2.1 in [START_REF] Froese | Exponential bounds and absence of positive eigenvalues for n-body Schrödinger operators[END_REF]. Therefore, we focus on the main changes. We will use notations of Theorem 2.1.

For ǫ ą 0 and τ ą 0, define the real valued functions F and g by F pxq " τ ln ˆxxyp1 `ǫxxyq ´1˙a nd ∇F pxq " xgpxq.

(4.1)

Let E P R and ψ P DpHq such that Hψ " Eψ. Let ψ F " exppF qψ. On the domain of H, we consider the operator HpF q " e F He ´F " H ´p∇F q 2 `pip∇F `i∇F pq. (4.2)

As in [START_REF] Froese | Exponential bounds and absence of positive eigenvalues for n-body Schrödinger operators[END_REF], ψ F P Dp∆q " DpHpF qq,

HpF qψ F " Eψ F (4.3)
and pψ F , Hψ F q " pψ F , pp∇F q 2 `Eqψ F q.

(4.4)

If we suppose in addition that xqy βτ exppαxqy β qψ P L 2 pR ν q (4.5) for all τ and some fixed α ě 0, 0 ă β ă 1, then (4.3) and (4.4) holds true for the new functions F and g given by F pxq " αxxy β `τ lnp1 `γxxy β τ ´1q and ∇F pxq " xgpxq (4.6) for all γ ą 0 and τ ą 0.

To replace Formula (2.9) in [START_REF] Froese | Exponential bounds and absence of positive eigenvalues for n-body Schrödinger operators[END_REF], we prove the following Lemma 4.1. Suppose that V is ∆-compact. Let u P U. Assume that H " ∆ `V is of class C 1 pA u q. For both definitions of F and g, we have pψ F , rH, iA u sψ F q " pψ F , rp∇F q 2 ´q ¨∇g,

iA u sψ F q ´4› › › › λppq 1{2 g 1{2 A D ψ F › › › › 2 ´2ℜ ˆgA D ψ F , i∇λppq ¨pψ F 4ℜ ˆrg 1{2 , λppqsg 1{2 A D ψ F , A D ψ F ˙. (4.7)
We make some remarks about this Lemma:

(a) In the case (4.1), note that xxyg 1{2 pxq is bounded. Thus

› › › › λppq 1{2 g 1{2 A D ψ F › › › › is well defined.
(b) In the case (4.6), suppose that (4.5) is true for all τ and some fixed α ě 0, 0 ă β ă 1, we have

A D ψ F " p ¨qψ F `i 2 ψ F " p ¨q xqy xqy ˆ1 `γxqy β τ ´1˙τ exppαxqy β qψ `i 2 ψ F .
Thus, ψ F P L 2 pR ν q and xqy ˆ1 `γxqy β τ ´1˙τ exppαxqy β qψ P L 2 pR ν q.

Moreover, since Hψ " Eψ and ∇F is bounded for all τ ą 0, we can show that xqy ˆ1 `γxqy β τ ´1˙τ exppαxqy β qψ P H 1 .

Thus › › › › λppq 1{2 g 1{2 A D ψ F › › › › is well defined. (c) If V : H 1 Ñ H ´1 is compact and V P C 1 pA u , H 1 , H ´1q, Lemma 4.1 is still true with the same proof. Proof. [Lemma 4.1] Since V is of class C 1 pA u , G, G ˚q whith G " H 2 if V is ∆-compact, G " H 1 if V : H 1 Ñ H ´1 is compact
, by a simple computation, we can show that e F ∆e ´F is of class C 1 pA u , G, G ˚q, which implies that HpF q " e F ∆e ´F `V is of class C 1 pA u , G, G ˚q. For φ P DpHq X DpA u q, we have pφ, rH, iA u sφq " pφ, rpH ´HpF qq, iA u sφq `pφ, rHpF q, iA u sφq " ppH ´HpF qqφ, iA u φq ´pA u φ, ipH ´HpF qqφq `pφ, rHpF q, iA u sφq By using (4.2) and (4.3), we have: pH ´HpF qqφ " pp∇F q 2 ´pip∇F `i∇F pqqφ A simple computation gives pip∇F `i∇F pqφ " ipppqgq `pqgqpqφ " q ¨∇gφ `2igA D φ

We have pH ´HpF qqφ " pp∇F q 2 ´q ¨∇g ´2igA D qφ thus pφ, rH, iA u sφq " pφ, rp∇F q 2 ´q ¨∇g, iA u sφq ´p2gA D φ, A u φq ´pA u φ, 2gA D φq `pφ, rHpF q, iA u sφq (4.8)

Since upxq " xλpxq, A u " 1 2 pλppqp ¨q `q ¨λppqpq " λppqA D `1 2 rq, λppqsp

Using the Fourier transform, we see that rq, λppqs " i∇λppq.

Therefore A u " λppqA D `i 2 ∇λppq ¨p which implies # p2gA D φ, A u φq " p2gA D φ, λppqA D φq `p2gA D φ, i 2 ∇λppq ¨pφq pA u φ, 2gA D φq " pλppqA D φ, 2gA D φq `p i 2 ∇λppq ¨pφ, 2gA D φq
By sum, we get

p2gA D φ, A u φq `pA u φ, 2gA D φq " 2pA D φ, pgλppq `λppqgqA D φq `pgA D φ, i∇λppq ¨pφq `pi∇λppq ¨pφ, gA D φq.
Since g and λ are positive,

gλppq `λppqg " 2g 1{2 λppq 1{2 λppq 1{2 g 1{2 `g1{2 rg 1{2 , λppqs `rλppq, g 1{2 sg 1{2 .
This yields

pA D φ, pgλppq `λppqgqA D φq " 2 › › › › λppq 1{2 g 1{2 A D φ › › › › 2 `2ℜ ˆg1{2 A D φ, rg 1{2 , λppqsA D φ ˙.
So from (4.8), we obtain pφ, rH, iA u sφq " pφ, rp∇F q 2 ´q ¨∇g, iA u sφq

´4› › › › λppq 1{2 g 1{2 A D φ › › › › 2 ´2ℜ ˆgA D φ, i∇λppq ¨pφ 4ℜ ˆg1{2 A D φ, rg 1{2 , λppqsA D φ ˙`pφ, rHpF q, iA u sφq.(4.9)
Remark that if F satisfies (4.1), since xqyg 1{2 is bounded, all operators which appears on the right hand side of (4.9) are bounded in the H 1 norm. In particular, this equation can be extended to a similar equation for φ P G Ă H 1 . Thus, since ψ F P G, we obtain a similar equation by replacing φ by ψ F .

If F satisfies (4.6), we can see that all operators which appears on the right hand side of (4.9) are bounded in the H 1 1 norm. In particular, this equation can be extended to a similar equation for φ

P H 2 1 if V is ∆-compact, φ P H 1 1 if V : H 1 Ñ H ´1 is compact.
In all cases, since, by the Virial theorem and (4.3), pψ F , rHpF q, iA u sψ F q " 0, we obtain (4.7). l

Since in (4.7), we do not know an explicit form for the commutator rp∇F q 2 ´q ¨∇g, iA u s, as in [START_REF] Froese | Exponential bounds and absence of positive eigenvalues for n-body Schrödinger operators[END_REF], we need to control the size of this expression.

Lemma 4.2. Let f : R ν Ñ R be a C 8 application such that f P S ρ . Then xqy ´ρrf pqq, iA u s is bounded for all C 8 vector fields u with bounded derivatives.

Proof. Suppose that f P S ρ . Then @k P N, sup

tPR ν txty ´ρ`k |B α t f ptq|u ă 8
for all α multi-index such that |α| " k.

Since rf pqq, qs " 0 and

A u " q ¨uppq ´i 2 divpuqppq,
we have rf pqq, iA u s " rf pqq, iq ¨uppq `1 2 divpuqppqs " iq ¨rf pqq, uppqs `1 2 rf pqq, divpuqppqs (4.10) By using the Helffer-Sjöstrand formula on rf pqq, uppqs, with B " q, T " uppq and ϕpxq " f pxq, we have: Let F pxq " τ lnpxxyp1 `ǫxxyq ´1q and Ψ ǫ " ψ F {}ψ F }.

rf
Following [FH82, equations (2.11) and (2.12)], we can prove that ∇Ψ ǫ is bounded and that p∆ `1qΨ ǫ converges weakly to zero as ǫ Ñ 0. Thus, for all η ą 0, since xqy ´η p∆ `1q ´1 is compact, }xqy ´ηΨ ǫ } converges to 0 and, similarly, }xqy ´η ∇Ψ ǫ } converges to 0.

From Lemma 4.1, we deduce that ˆΨǫ , rH, iA u sΨ ǫ ˙ď ˆΨǫ , rp∇F q 2 ´q ¨∇g,

iA u sΨ ǫ 2ℜ ˆgA D ψ F , i∇λppq ¨pψ F 2ℜ ˆgA D Ψ ǫ , i∇λppq ¨pΨ ǫ ˙. (4.14)
Since pp∇F q 2 ´q ¨∇gq is in S ´2, by Lemma 4.2, we have xqy 2 rp∇F q 2 ´q ¨∇g, iA u s is bounded. Thus the first term on right side of (4.14) converges to zero as ǫ Ñ 0. By assumptions, ∇λppq ¨p is bounded. Since ∇Ψ ǫ is bounded, xqy ´1A D Ψ ǫ is bounded and , for all µ ą 0, }xqy ´1´µ A D Ψ ǫ } converges to zero as ǫ Ñ 0. Thus, since xqy 2 g is bounded, the last term on the right side of (4.14) converges to zero as ǫ Ñ 0.

Moreover, by the Helffer-Sjostrand formula, we have rg 1{2 , λppqs " ´i∇pg 1{2 q∇λppq `I with xqyIxqy s 1 bounded for s 1 ă 1. In particular, xqyrg 1{2 , λppqsxqy s 1 is bounded for all s 1 ă 1. Thus,

› › ›xqyrg 1{2 , λppqsg 1{2 A D Ψ ǫ › › › " › › ›xqyrg 1{2 , λppqsg 1{2 xqy 3{2 xqy ´3{2 A D Ψ ǫ › ›
› , and since xqyg 1{2 is bounded, the second term on the right side of (4.14) converges to zero as ǫ Ñ 0.

Thus, we deduce that lim sup ǫÑ0 ˆΨǫ , rH, iA u sΨ ǫ ˙ď 0.

We follow [START_REF] Froese | Exponential bounds and absence of positive eigenvalues for n-body Schrödinger operators[END_REF]equations (2.16) to (2.19)]to prove that, if E R E u pHq, then xxy τ ψ P L 2 pR ν q @τ ą 0.

Suppose now that the Theorem 2.1 is false so that

S E " α 2 1 `E (4.15)
where α 1 ą 0 and S E R E u pHq. By definition of E u pHq, we have (3.3) for some δ ą 0, some c 0 ą 0 and some compact operator K 0 with I " rS E ´δ, S E `δs.

As in [FH82, equations (2.22) and (2.23)], let α P p0, α 1 q such that α 2 `E P rS E ´δ{2, S E `δ{2s.

Let 0 ă β ă 1. We have for all τ ą 0 xxy βτ exppαxxy β qψ P L 2 pR ν q. (4.16) Suppose γ ą 0 such that α `γ ą α 1 . So we have } expppα `γqxxy β qψ} " `8. (4.17)

In the following, we suppose that γ is sufficiently small, γ P p0, 1s. We denote by b j , j " 1, 2, ¨¨¨constants which are independant of α, γ and τ .

Let F pxq " αxxy β `τ lnp1 `γxxy β τ ´1q and ψ F " exppF qψ, Ψ τ " ψ F {}ψ F }.

By a simple estimate, we have |x∇gpxq| ď b 1 xxy β´2 and p∇F q 2 pxq ď pα `γq 2 xxy 2β´2 ď pα `γq 2 .

As previously, (4.14) is true. Since pp∇F q 2 ´q ¨∇gq is in S 2β´2 , by Lemma 4.2, we have xqy 2´2β rp∇F q 2 ´q ¨∇g, iA u s is bounded. Therefore, the first term on right side of (4.14) converges to zero as τ Ñ 8. By assumptions, ∇λppq ¨p is bounded. As previously xqy ´1A D Ψ τ is bounded and , for all µ ą 0, }xqy ´1´µ A D Ψ τ } converges to zero as τ Ñ `8. Thus, since xqy 2´β g is bounded, the last term on the right side of (4.14) converges to zero as τ Ñ `8.

Moreover, by the Helffer-Sjostrand formula, we have rg 1{2 , λppqs " ´i∇pg 1{2 q∇λppq `I with xqy s Ixqy s 1 bounded for s ă 2, s 1 ă 1 and s `s1 ă 3 ´β 2 .

In particular, xqy 1 rg 1{2 , λppqsxqy 1{2 is bounded. Thus,

› › ›xqyrg 1{2 , λppqsg 1{2 A D Ψ ǫ › › › " › › ›xqyrg 1{2 , λppqsxqy 1{2 g 1{2 xqy ´1{2 A D Ψ ǫ › › › ,
and since xqy 1´β 2 g 1{2 is bounded, the second term on the right side of (4.14) converges to zero as τ Ñ `8. All of this implies that

ˆżB |∇Ψ ǫ | 2 d n x ˙1{2 ď ˆżB |∇F Ψ ǫ | 2 d n x ˙1{2 `ˆż B |e F ∇ψ| 2 d n x ˙1{2 }ψ F } ´1 ď C 1 ˆżB |Ψ ǫ | 2 d n x ˙1{2 `C2 ˆżB |∇ψ| 2 d n x ˙1{2 }ψ F } ´1 ď C 1 ˆżB |Ψ ǫ | 2 d n x ˙1{2 `C2 ˆżR ν |∇ψ| 2 d n x ˙1{2 }ψ F } ´1. Since V : H 1 Ñ H ´1 is
lim ǫÑ0 ż B |∇Ψ ǫ | 2 d n x " 0.
Moreover, since V : H 1 Ñ H ´1 is bounded with bound less than one, there is 0 ă a ă 1 and 0 ă b such that

|pΨ ǫ , V Ψ ǫ q| ď a}∇Ψ ǫ } 2 `b.
So, by (4.4), we have p1 ´aq}∇Ψ ǫ } 2 ´b ď pΨ ǫ , HΨ ǫ q ď pE `τ 2 q.

So }∇Ψ ǫ } is bounded as ǫ Ñ 0 and with a similar argument, }xpyΨ ǫ } is bounded as ǫ Ñ 0 So, for all N ą 0, if χ N is the characteristic function of tx : xxy ď N u, we have

}∇F ∇Ψ ǫ } ď }χ N ∇F ∇Ψ ǫ } `}p1 ´χN q∇F ∇Ψ ǫ } ď C 4 }χ N ∇Ψ ǫ } `τ N ´1}∇Ψ ǫ }.
Since this inequality is true for all N ą 0 and }∇Ψ ǫ } is bounded as ǫ Ñ 0, lim ǫÑ0 }∇F ∇Ψ ǫ } " 0 and as in [FH82, equation (2.13)], we deduce that

lim ǫÑ0 }pH ´EqΨ ǫ } " 0 which implies $ & % lim ǫÑ0 }EpRzIqΨ ǫ } " 0 lim ǫÑ0 }pH `iqEpRzIqΨ ǫ } " 0 .
As previously, by writing xpy " p1 `xpy ´1V xpy ´1q ´1xpy ´1pH `1q, we deduce that lim ǫÑ0 }xpyEpRzIqΨ ǫ } " 0.

So if f 1 pǫq " pΨ ǫ , EpRzIqrH, iA u sΨ ǫ q, we have

lim ǫÑ0 |f 1 pǫq| ď lim ǫÑ0 }xpyEpRzIqΨ ǫ } ¨}xpy ´1rH, iA u sxpy ´1} ¨}xpyΨ ǫ } " 0
and simlarly with f 2 pǫq " pΨ ǫ , EpIqrH, iA u sEpRzIqΨ ǫ q. Remark that we can prove similar things with F pxq " αxxy β `τ lnp1 `γxxyτ ´1q. Thus, by using a similar proof than for Theorem 2.1, Theorem 2.2 is proved. l A. MARTIN

POSSIBLE EIGENVECTORS CAN NOT SATISFIES SUB-EXPONENTIAL BOUNDS

In this section, we will prove Theorem 2.3 and Theorem 2.4.

Proof. [Theorem 2.3] In this proof, we will follow the method used in [CFKS08, Theorem 4.18].

Suppose that Theorem 2.3 is false: there is ψ " 0 such that exppαxxy β qψ P L 2 pR ν q for all α ą 0, 0 ă β ă 1 and Hψ " Eψ with E ą 0. For α ą 0, 0 ă β ă 1, let F β pxq " αxxy β . As previously, we denote ψ F " exppF β pqqqψ and xg β pxq " ∇F β pxq.

By direct calculation, we have ∇F β pxq " αβxxxy β´2 and

# |∇F β | 2 " α 2 β 2 xxy 2β´2 p1 ´xxy ´2q x∇p∇F β pxqq 2 " 2α 2 β 2 xxy 2β´2 p1 ´xxy ´2q `β ´1 `p2 ´βqxxy ´2˘.
(5.1) By assumptions, ψ F P L 2 pR ν q for all α ą 0, 0 ă β ă 1. Suppose that there is δ ą ´2, δ 1 , σ, σ 1 P R such that δ `δ1 ą ´2 and (2.1) is true.

Take α ą 0 and 0 ă β ă 1. We denote C (possibly different) constants that do not depend on α or β. From (2.1), we derive

pψ F , rH, iA D sψ F q ě p2 `δqpψ F , ∆ψ F q `δ1 pψ F , p∇F β q 2 ψ F q `pσα `σ1 q}ψ F } 2 . (5.2)
Since V is ∆-compact, we can find (see [START_REF] Kato | Perturbation theory for linear operators[END_REF]), for all 0 ă µ ă 1, some C µ ą 0 such that pψ F , ∆ψ F q ě µpψ F , Hψ F q ´Cµ }ψ F } 2 .

Inserting this information in (5.2) and using (4.4), we get, for all 0 ă µ ă 1, pψ F , rH, iA D sψ F q ě `p2 `δqµ `δ1 ˘pψ F , p∇F β q 2 ψ F q `pσα `C ´Cµ q}ψ F } 2 . (5.3) By (4.7) with λpxq " 1, we have

pψ F , rH, iA D sψ F q ď pψ F , ppx∇q 2 g β ´x∇p∇F β pxqq 2 qψ F q. Since |px∇q 2 g β | ď Cα, pψ F , rH, iA D sψ F q ď αC}ψ F } 2 ´pψ F , x∇p∇F β pxqq 2 ψ F q.
Using (5.1) and the fact that

2α 2 β 2 p2 ´βqpψ F , xqy 2β´4 p1 ´xqy ´2qψ F q ě 0, we obtain pψ F , rH, iA D sψ F q ď αC}ψ F } 2 ´2α 2 β 2 pβ ´1qpψ F , xqy 2β´2 p1 ´xqy ´2qψ F q. (5.4)
Therefore, if we denote Ψ α " ψ F {}ψ F }, it follows from (5.3) and (5.4) that α 2 β 2 `µp2 `δq `δ1 `2β ´2˘p Ψ α , xqy 2β´2 p1 ´xqy ´2qΨ α q ď αC `C.

(5.5)

Since 2 `δ `δ1 ą 0, we can choose 0 ă µ ă 1 such that p2 `δqµ `δ1 ą 0. Taking β ´1 small enough, we can ensure that τ " β 2 `µp2 `δq `δ1 `2β ´2˘ą 0.

(5.6)

Remark that we can suppose that β ě 1{2. Since t β´1 exppt β q ě 1 for all t ě 1, we derive from (5.5) that, for α ě 1, pα `1qC ě α 2 τ pΨ α´1 , p1 ´xqy ´2qΨ α´1 q.

(5.7)

Since ψ " 0, we can find ǫ ą 0 such that }1 |¨|ě2ǫ pqqψ} ą 0. For all α ą 0,

}1 |¨|ďǫ pqq exppαxqy β qψ} 2 } exppαxqy β qψ} 2 ď expp2αxǫy β q}1 |¨|ďǫ pqqψ} 2 expp2αx2ǫy β q}1 |¨|ě2ǫ pqqψ} 2 ď exp `2αpxǫy β ´x2ǫy β q ˘}ψ} 2 }1 |¨|ě2ǫ pqqψ} 2
and pΨ α , p1 ´xqy ´2qΨ α q ě p1 ´xǫy ´2q

}1 |¨|ěǫ pqqψ F } 2 }ψ F } 2 ě p1 ´xǫy ´2q ˆ1 ´}1 |¨|ďǫ pqqψ F } 2 }ψ F } 2 ě p1 ´xǫy ´2q ˆ1 ´Cǫ exp `2αpxǫy β ´x2ǫy β q ˘ẇhere C ǫ " }ψ} 2
}1 |¨|ě2ǫ pqqψ} 2 . So there exist C 1 ą 0 and α 0 ą 0 such that for all α ě α 0 , pΨ α , p1 ´xqy ´2qΨ α q ě C 1 .

This implies, together with (5.7) that, for α ě α 0 , pα `1qC ě α 2 τ C 1 which is false for α large enough. l

Proof. [Theorem 2.4] Suppose that V : H 1 Ñ H ´1 is bounded and that Theorem 2.4 is false. We have:

pψ F , Hψ F q " pψ F , ∆ψ F q `pψ F , V ψ F q ď pψ F , ∆ψ F q `}xpy ´1V xpy ´1}}xpyψ F } 2 ď pψ F , ∆ψ F q `}xpy ´1V xpy ´1} ˆpψ F , ∆ψ F q `}ψ F } 2 ˙, which implies pψ F , ∆ψ F q ě vpψ F , Hψ F q ´v}xpy ´1V xpy ´1}}ψ F } 2 ,
where v " p1 `}xpy ´1V xpy ´1}q ´1. Using (2.2), we obtain

pψ F , rH, iA D sψ F q ě p2 `δqpψ F , ∆ψ F q `δ1 pψ F , p∇F β q 2 ψ F q `pσα `σ1 q}ψ F } 2 ě p2 `δqvpψ F , Hψ F q `δ1 pψ F , p∇F β q 2 ψ F q `pσα `Cq}ψ F } 2 ě `p2 `δqv `δ1 ˘pψ F , |∇F β | 2 ψ F q `pσα `Cq}ψ F } 2 .
(5.8) By assumptions, p2 `δqv `δ1 ą 0. Thus, we can choose 0 ă β ă 1 such that τ " β 2 `p2 `δqv `δ1 `2β ´2˘ą 0.

Following the last lines of the proof of Theorem 2.3, we get a contradiction for α large enough. l

CONCRETE POTENTIALS

In this section, we study the concrete potentials that we mentioned in the several remarks following our results in Section 1.

6.1. Preliminary results. We want to apply Theorem 2.3 and Theorem 2.4 to this concrete potentials. We thus have to check the validity of (2.1) and (2.2) for them. To this end, we shall need the following Lemma 6.1. Let W be a bounded real valued function such that |q|W is bounded (W is of short range type for example) and the distributionnal ∇W is locally in L 8 . Let V " |q| ´1q ¨∇W `B `VL with B a bounded real valued function such that qB is bounded and V L a bounded real valued function such that there is θ ą 0 with xqy θ V L and q∇V L are bounded (V L is a long range potential). Let ψ P L 2 such that Hψ " Eψ with E ą 0. For α ą 0, 0 ă β ă 1, let F β pxq " αxxy β and ψ F " e F ψ. As in Theorem 2.4, suppose that ψ F P L 2 for all α ą 0, 0 ă β ă 1. Then, for all ǫ ą 0, there is For the last term on the r.h.s., remark that

C ǫ P R, independent of α, β, such that 2ℜpqV ψ F , ∇ψ F q ě ´ˆ3ǫ `4}|q|W } ˙}∇ψ F } 2 ´4}|q|W } ¨}∇F ψ F } 2 ´Cǫ pα `1q}ψ F } 2 . (
ˇˇˇ2 ℜ ˆqV L ψ F , ∇ψ F ˙ˇˇˇď ˇˇˇˆψ F , q ¨∇V L ψ F ˙ˇˇˇ`ν ˇˇˇˆψ F , V L ψ F ˙ˇˇˇ.
Thus, since V L and q∇V L are bounded, there is C ą 0 such that the last term on the r.h.s. of (6.3) is less or equal to C}ψ F } 2 .

Since 0 ď κ ď 1, we can remark that the first term on the r.h.s. of (6.3) is less or equal to 2}|q|W } ¨}∇ψ F } 2 . By (4.2) and (4.3), we can write

∆ψ F " Hψ F ´V ψ F " p∇F q 2 ψ F ´pip∇F `i∇F pqψ F `Eψ F ´V ψ F " p∇F q 2 ψ F ´2∇F ∇ψ F ´∆F ψ F `Eψ F ´V ψ F .
Inserting this information in the second term on the r.h.s. of (6.3), we get

2 |pp1 ´κp|q|qq|q|W ψ F , ∆ψ F q| ď 2}p1 ´κp|q|qq|q|W }}∇F ψ F } 2 `4 |pp1 ´κp|q|qq|q|W ∇F ψ F , pψ F q| `2 |pp1 ´κp|q|qq|q|W ψ F , V ψ F q| `2 |pp1 ´κp|q|qq|q|W ψ F , ∆F ψ F q| `2}p1 ´κp|q|qq|q|W }|E|}ψ F } 2 . (6.4)
By (6.2) with η " 1, we can remark that the second term on the r.h.s. of (6.4) is bounded above by 2}|q|W }}∇F ψ F } 2 `2}|q|W }}∇ψ F } 2 . Since α ´1∆F is bounded, the 2 last terms on the r.h.s. of (6.4) are less or equal to Cpα `1q}ψ F } 2 .

For the third term, we use that B, V L and |q|W are bounded to arrive at

2 |pp1 ´κp|q|qq|q|W ψ F , V ψ F q| " 2 |pp1 ´κp|q|qqW ψ F , pq ¨∇W `|q|B `|q|V L qψ F q| ď 2 |pp1 ´κp|q|qqqψ F , W ∇W ψ F q| `C}ψ F } 2 ď 2 ˇˇpp1 ´κp|q|qqqψ F , rp, iW 2 sψ F q ˇˇ`C}ψ F } 2 .
Since qW 2 and W are bounded, by (6.2), ˇˇpp1 ´κp|q|qqqψ F , rp, iW 2 sψ F q ˇˇď ˇˇppp1 ´κp|q|qqqψ F , W 2 ψ F q ˇpp1

´κp|q|qqqW 2 ψ F , pψ F q ˇď 2 ˇˇpp1 ´κp|q|qqqW 2 ψ F , pψ F q ˇpW 2 rp, p1 ´κp|q|qqqsψ F , ψ F q ˇď

C}ψ F } 2 `ǫ}∇ψ F } 2 .
Thanks to these inequalities, we derive from (6.3)

ˇˇˇ2 ℜp|q|∇W ψ F , ∇ψ F q ˇˇˇď p3ǫ `4}|q|W }q}∇ψ F } 2 `Cǫ pα `1q}ψ F } 2 `4}|q|W }}∇F ψ F } 2 .
which implies (6.1). l

Remark that, in (6.1), we can replace }|q|W } by }pp1 ´κp|q|qq|q|W }. In particular, if |q|W vanishes at infinity, we can choose the function κ such that }pp1 ´κp|q|qq|q|W } ď ǫ. Remark that, if we denote g the function such that xgpxq " ∇F β pxq, the first term on the r.h.s. of (6.3) is less or equal to

C1 αβ › › g 1{2 A D ψ F › › `C2 }ψ F } 2
where C 1 , C 2 are independent of α, β. In particular, if αβ is large enough, this term appears in (2.1') and (2.2'), and we can use these assumptions instead of (2.1) and (2.2).

(2) If θ ą 0, we can replace the assumption V c : H 1 Ñ H ´1 is compact by V c ∆-compact and xqy ρsr v ¨∇ Ṽsr bounded with the same result.

(3) If θ ď 0, W ζθ is not ∆-compact. Therefore Corollary 1.2 does not apply in this case.

(4) Making use the specific form of the potential, the absence of positive eigenvalue for H was proved in [START_REF] Jecko | Limiting absorption principle for Schrödinger operators with oscillating potentials[END_REF] if ζ ą 1 and θ ą 1{2.

(5) If 2 ě ζ`θ ě 3{2, the regularity required by Theorem 2.2 is not granted. However we can prove the sub-exponential bounds along the lines of the proof of [ In this proof, we can see that it is sufficient to prove that pΨ λ , rV, iA u sΨ λ q is uniformly bounded in λ to prove the polynomial bounds.

Suppose that 2 ě ζ `θ ě 3{2. Then V : H 1 Ñ H ´1 is compact which implies that σ ess pHq " σ ess p∆q " r0, `8q. In particular, we can find m ą 0, as large as we want, such that ´m R σpHq. In particular, by the resolvent formula, ´m R σpHpF qq.

Let F as in (4.1). Let H 0 pF q " e F pQq H 0 e ´F pQq . Remark that F pxq and ∇F pxq is bounded uniformly with respect to λ ą 1. As in [START_REF] Jecko | Limiting absorption principle for Schrödinger operators with oscillating potentials[END_REF], pΨ λ , rV ´Wζθ ´Vc , iA u sΨ λ q is uniformly bounded in λ. Therefore, we have to show that pΨ λ , rV c `Wζθ , iA u sΨ λ q is uniformly bounded in λ. By pseudodifferential calculus, we can show that, for all l P R, xP y l`2 pm `H0 pF qq ´1xP y ´l is uniformly bounded in λ. Notice that xP ypm HpF qq ´1xP y is uniformly bounded in λ. Moreover, for ǫ P r0, 1s, xqy ǫ xP ypm `H0 pF qq ´1xP yxqy ´ǫ is uniformly bounded in λ.

We can write pΨ λ , rV c , iA u sΨ λ q " `pHpF q `mqΨ λ , pHpF q `mq ´1rV c , iA u spHpF q `mq ´1pH pF q `mqΨ λ ˘.

Since xpypHpF q `mq ´1xpy is uniformly bounded and since V c is compactly support, we can easily see that pHpF q `mq ´1rV c , iA u spHpF q `mq ´1 is uniformly bounded. Using that pHpF q `mqΨ λ " pE `mqΨ λ , this implies that pΨ λ , rV c , iA u sΨ λ q is uniformly bounded in λ.

For pΨ λ , rW ζθ , iA u sΨ λ q, notice that in the expression of rW ζθ , iA u s there is only terms of the form qW ζθ ¨uppq and W ζθ divpuqppq. For terms with W ζθ divpuqppq, since W ζθ : H 1 Ñ H ´1 is compact, we know that pHpF q `mq ´1W ζθ divpuqppqpHpF q `mq ´1 is uniformly bounded.

For the other type of terms, we can write for l ą 0 pΨ λ , qW ζθ ¨uppqΨ λ q " ˆpHpF q `mq l Ψ λ , pHpF q `mq ´lqW ζθ ¨uppqpHpF q `mq ´lpH pF q `mq l Ψ λ " pE `mq 2l `Ψλ , pHpF q `mq ´lqW ζθ ¨uppqpHpF q `mq ´lΨ λ ˘.

In particular, we only have to show that for l large enough, pHpF q `mq ´lqW ζθ uppqpHpF q `mq ´l is uniformly bounded in λ. To do this, we will use the resolvent estimate and write for all M P N ˚pH pF q `mq ´1 " pH 0 pF q `mq ´1 `M ÿ k"1 p´1q k `pH 0 pF q `mq ´1V ˘k pH 0 pF q `mq ´1 `p´1q M`1 `pH 0 pF q `mq ´1V ˘M`1 pHpF q `mq ´1 " pH 0 pF q `mq ´1 `M ÿ k"1 p´1q k pH 0 pF q `mq ´1 `V pH 0 pF q `mq ´1˘k `p´1q M`1 pHpF q `mq ´1 `V pH 0 pF q `mq ´1˘M `1 .

Remark that, since

xqy ζ`θ´1 xpy ´1 ´Vsr `v ¨∇ Ṽsr `Vc `Wζθ ¯xpy ´1
is bounded and since, for all ǫ P r0, 1s, xqy ǫ xP ypm `H0 pF qq ´1xP yxqy ´ǫ is uniformly bounded, we can write pHpF q `mq ´1 " pH 0 pF q `mq ´1 `M ÿ k"1 p´1q k `pH 0 pF q `mq ´1V lr ˘k pH 0 pF q `mq ´1 `p´1q M`1 `pH 0 pF q `mq ´1V lr ˘M`1 pHpF q `mq ´1 `xpy ´1xqy 1´ζ´θ B 1 " pH 0 pF q `mq ´1 `M ÿ k"1 p´1q k pH 0 pF q `mq ´1 `Vlr pH 0 pF q `mq ´1˘k `p´1q M`1 pHpF q `mq ´1 `Vlr pH 0 pF q `mq ´1˘M `1 `B2 xqy 1´ζ´θ xpy ´1

where B 1 , B 2 are uniformly bounded in λ. Now, we will choose M P N ˚such that pM `1qρ lr ě ζ `θ ´1. By a simple computation, we can see that p´1q M`1 pHpF q `mq ´1 `Vlr pH 0 pF q `mq ´1˘M `1 xqy 1´ζ´θ xpy ´1 and xpy ´1xqy 1´ζ´θ p´1q M`1 `pH 0 pF q `mq ´1V lr ˘M`1 pHpF q `mq ´1 are uniformly bounded.

By taking the power l ą 0, we have pHpF q `mq ´l " ˆpH 0 pF q `mq ´1 `M ÿ k"1 p´1q k `pH 0 pF q `mq ´1V lr ˘k pH 0 pF q `mq ´1˙l `xpy ´1xqy 1´ζ´θ B 1 1 " ˆpH 0 pF q `mq ´1 `M ÿ k"1 p´1q k pH 0 pF q `mq ´1 `Vlr pH 0 pF q `mq ´1˘k ˙l `B1 2 xqy 1´ζ´θ xpy ´1 with B 1 1 , B 1 2 are uniformly bounded in λ. Notice that V lr xpy ´2xpy 2 pH 0 pF q `mq ´1 is bounded. By a simple computation, we can remark that xqyrV lr , xpy ´2s is bounded. In particular, we can write V lr pH 0 pF q `mq ´1 " xpy ´2V lr xpy 2 pH 0 pF q `mq ´1 `xqy ´1B 3 with B 3 uniformly bounded. Similarly, we can write pH 0 pF q `mq ´1V lr " pH 0 pF q `mq ´1xpy 2 V lr xpy ´2 `B4 xqy where B is uniformly bounded in λ. By taking l large enough such that xpy ´2l qW ζθ xpy ´2l is bounded, we show that pHpF q `mq ´lqW ζθ uppqpHpF q `mq ´l is uniformly bounded in λ. This implies that pΨ λ , rV, iA u sΨ λ q is uniformly bounded in λ and we infer the polynomial bounds. Using a similar proof with F as in (4.6), we prove the sub-exponential bounds (point (2) of Proposition 6.3).

To prove that this sub-exponential bounds are unlimited, we only have to show that the Mourre estimate is true on all compact subset of p0, `8q. Let χ P C 8 c supported on a compact subset of p0, `8q. Suppose that ζ `θ ą 3{2. Then there is a ą 0 such that: χpHqrH, iA u sχpHq " χpH 0 qr∆, iA u sχpH 0 q `pχpHq ´χpH 0 qqr∆, iA u sχpH 0 q `χpH 0 qr∆, iA u spχpHq ´χpH 0 qq `pχpHq ´χpH 0 qqr∆, iA u spχpHq ´χpH 0 qq `χpHqrW ζθ , iA u sχpHq ě aχpH 0 q 2 `pχpHq ´χpH 0 qqr∆, iA u sχpH 0 q `χpH 0 qr∆, iA u spχpHq ´χpH 0 qq `pχpHq ´χpH 0 qqr∆, iA u spχpHq ´χpH 0 qq `χpHqrW ζθ , iA u sχpHq.

Remark that since H is a compact perturbation of H 0 " ∆, pχpHq ´χpH 0 qq is compact on H 1 to H ´1. In particular the second, the third and the fourth terms of the r.h.s. of the previous inequality are compact. Moreover, since χpHqpH `mq l is bounded for all l ą 0, using that xP y ´1QW ζθ pQqxP y ´1xQy 1´θ´ζ is compact if ζ `θ ą 3{2 and using a similar proof than in the previous point, we can show that χpHqrW ζθ , iA u sχpHq is compact. So there is a ą 0 and K compact such that χpHqrH, iA u sχpHq ě aχpHq 2 `K. (6.8)

Let λ 0 P p0, `8q and I an open real set containing λ 0 such that the closure of I is included in p0, `8q. Take χ as previously such that χ " 1 on I. Remark that χpHqEpIq " EpIqχpHq " EpIq. Thus, by multiplying on the left and on the right of (6.8) by EpIq, we obtain the Mourre estimate at λ 0 w.r. In particular, if ˇˇw kζ ˇˇă ǫc 8 , for all C ą 0, we can find ǫ ą 0 small enough such that ´ˆCǫ `4 ˇˇˇw kζ ˇˇˇ˙´4 ˇˇˇw kζ ˇˇˇ`ǫ c ´2 ą ´2.

Therefore, by Corollary 6.2, Theorem 2.4 applies and we prove this part of the Proposition. Using the assumption (2.2') instead of (2.2) in Theorem 2.4, we can remark that it suffices to have ˇˇw kζ ˇˇă ǫc 6 .

Suppose that ζ `θ ą 2. In this case, γ " ζ `θ ´1 ą 1. In particular, |q| Wζγ vanishes at infinity. So, for all ǫ ą 0, we can find χ P C 8 c , such that χptq " 1 if |t| ă 1, 0 ď χ ď 1 and }p1 ´χpqqq|q|W } ă ǫ. Thus, by Corollary 6.2, for ǫ small enough, (2.2) is satisfied and Theorem 2.4 applies (point (5) of Proposition 6.3). l 6.3. A potential with high oscillations. Let

V pxq " wp1 ´κp|x|qq expp3|x|{4q sinpexpp|x|qq with w P R, κ P C 8 c pR, Rq, 0 ď κ ď 1 and κp|x|q " 1 if |x| ă 1. For all w P R, we have the following:

In the general case, the rest of the previous expansion is difficult to calculate. So we will give an estimate of this rest. In particular, if ρ ă 0, and if we choose s 1 near 0, we have xBy s I k pϕqxBy s 1 bounded, for all s ă k ´s1 ´ρ.

  Proposition A.3 ([GJ07] and[START_REF] Møller | An abstract radiation condition and applications to n-body systems[END_REF]). Let T P C k pAq be a self-adjoint and bounded operator. Let ϕ P S ρ with ρ ă k. LetI k pϕq " ż C Bϕ C Bz pz ´Bq ´k ad k B pT qpz ´Bq ´1dz ^dz be the rest of the development of order k in (A.4). Let s, s 1 ą 0 such that s 1 ă 1, s ă k and ρ `s `s1 ă k. Then xBy s I k pϕqxBy s 1 is bounded.

´1{2 rV, iA u sp∆ `1q ´1{2

  bounded with relative bound less than one, by the KLMN Theorem, H can be considered as a form with form domain H 1 and is associated to a self-adjoint operator.(b) Let u P U. Since the unitary group generated by A u leaves invariant the Sobolev space H 1 , V P C 1 pA u , H 1 , H ´1q if and only if

	p∆ `1q ´1{2 rV, iA u sp∆ `1q ´1{2
	is bounded. Thus, in this case, we can replace the assumption on
	p∆ `1q ´1{2 rV, iA u sp∆ `1q ´1{2
	in Theorem 2.2 by an assumption of regularity.
	(c) If V : H 1 Ñ H ´1 is compact and if V P C 1 u pA u , H 1 , H ´1q, then
	p∆ `1q

  ´nqq, is compact on H 1 to H ´1 and of class C 1,1 pA u , H 1 , H ´1q for an appropriate u. Remark that all examples we gave are central potentials. But it is not necessary to have this property and we gave only examples which are central because it is easier.

	Moreover, we can show that this potential is neither ∆-bounded, neither of class
	C 1 pA D , H 1 , H ´1q (see [Mar17, Lemma 5.10]). In particular, Theorems 1.1 and 2.1
	do not apply with this potential.
	(g)

  it is of Zygmund class, i.e. }F pt `εq `F pt ´εq ´2F ptq} ď Cε for all real t and ε ą 0. If s ą 1, let us write s " k `σ with k ě 1 integer and

  Moreover, since f P S ρ , xxy ´ρ`1 ∇f pxq is bounded, and we conclude that xqy ´ρq ¨∇f pqq is bounded. Since, by assumptions, divpuqppq and ∇divpuqppq are bounded, by sum, xqy ´ρrf pqq, iA u s is bounded.

pqq, uppqs " i∇f pqqdivpuqppq `I2 (4.11) where I 2 is the rest of the development of order 2 in (A.4). Similarly, rf pqq, divpuqppqs " i∇f pqq∇divpuqppq `I1 2 (4.12) So, from (4.10), we have rf pqq, iA u s " ´q ¨∇f pqqdivpuqppq ´q ¨I2 `i 2 ∇f pqq∇divpuqppq `I1 2 (4.13) From Proposition A.3, we deduce, since f P S ρ , that xqy s I 2 and xqy s I 1 2 are bounded if s ă ´ρ `2. l Proof. [Theorem 2.1] Suppose that E R E u pHq.

  rH, iA u sΨ τ ˙ď 0. 2}∇F ¨∇Ψ τ } `}∆F Ψ τ }. Since |∇F |pxq ď b 3 xxy β´1 and |∆F |pxq ď b 4 xxy β´2 , The form version. If we only suppose that V : H 1 Ñ H ´1 is bounded with bound less than one, we have the following Proof. [Theorem 2.2] Suppose that E R E u pHq. We denote C i ą 0 constant independant of ǫ.Let F pxq " τ lnpxxyp1 `ǫxxyq ´1q and Ψ ǫ " ψ F {}ψ F }. As in[START_REF] Froese | Exponential bounds and absence of positive eigenvalues for n-body Schrödinger operators[END_REF], we can prove that for any bounded set B So, for any bounded set B, since ∇F and e F are uniformly bounded in ǫ on B, we have

				A. MARTIN
	Thus, we deduce that		
	lim sup τ Ñ8 ˆΨτ , As in [FH82], we have
	lim sup τ Ñ`8	› › pH ´E ´p∇F q 2 qΨ τ	› › " lim sup τ Ñ`8	}pp ¨∇F `∇F ¨pqΨ τ }
	and by a simple computation, we have
		p ¨∇F `∇F ¨p " 2∇F ¨p `i∆F
	and we have			
	}p2∇F ¨p `i∆F qΨ τ } ď lim sup τ Ñ`8 }pH ´E ´p∇F q 2 qΨ τ } " 0
	which implies that			
		lim sup τ Ñ`8	}pH ´E ´α2 qΨ (4.18)
	Moreover, since			
	lim sup τ Ñ8 pΨ we have
	lim sup τ Ñ8 pΨ Thus the theorem is proved.			l
	ǫÑ0 4.2. lim	ż

τ } ď b 5 γ By following [FH82, equations (2.37) to (2.41)], we deduce that lim inf τ Ñ8

pΨ τ , EpIqrH, iA u sEpIqΨ τ q ě c 0 p1 ´pb 6 γq 2 q. τ , rH, iA u sΨ τ q ď 0, τ , EpIqrH, iA u sEpIqΨ τ q ď b 7 γ.

(4.19)

From (4.18) and (4.19), we have c 0 p1 ´pb 6 γq 2 q ď b 7 γ.

Since c 0 is a fixed positive number, we have a contradiction for all small enough γ ą 0.

B |Ψ ǫ | 2 d n x " 0.

By a simple calculus, we have ∇ψ F " ∇F ψ F `eF ∇ψ.

  bounded with bound less than one, we have

		H `1 " xpyp1 `xpy ´1V xpy ´1qxpy
	which implies that			
	xpyψ " p1 `xpy ´1V xpy ´1q ´1xpy ´1pH `1qψ " pE `1qp1 `xpy ´1V xpy ´1q ´1xpy ´1ψ
	and so,	}∇ψ} " }	p xpy	xpyψ} ď C 3 }ψ}.

  6.1)Proof. [Lemma 6.1] To begin, remark that since |q|W is bounded, W vanishes at infinity. Thus, by writing ∇W " rp, iW s, we can show that |q| ´1q ¨∇W : H 1 Ñ H ´1 is compact and, by sum, that V :H 1 Ñ H ´1 is compact.Let ǫ ą 0. To simplify notations, we denote by C, D ǫ possibly different constants independent of α, β, where D ǫ may depends on ǫ. As in the proof of Theorem 2.2, we can show that ∇ψ F P L 2 for all α ą 0, 0 ă β ă 1. Recall that for a, b P H, η ą 0, we have Since κp|q|q|q|∇W `qB `rp1 ´κp|q|qq|q|, psW is bounded, by (6.2), we can see that the third term on the r.h.s. is less or equal to a term of the form ǫ}∇ψ F } 2 `Dǫ }ψ F } 2 .

		2|pa, bq| ď 2}a} ¨}b}
				ď η}a} 2 `η´1 }b} 2 .	(6.2)
	Since |q|V " q ¨∇W `|q|B `|q|V L , we can write qV " |q|∇W `qB `qV L . Let
	κ P C 8 c pR, Rq such that κptq " 1 if |t| ă 1, 0 ď κ ď 1.
	ˇˇˇ2 ℜ ˆqV ψ F , ∇ψ F	˙ˇˇˇď	2 ˇˇˇℜ ˆpκp|q|q `p1 ´κp|q|qqq|q|∇W ψ F , ∇ψ F	˙ˇˇ2
				ˇˇˇℜ ˆqB `qV L ψ F , ∇ψ F	˙ˇˇˇ,
	and using ∇W " rp, iW s,		
	ˇˇˇ2 ℜ ˆqV ψ F , ∇ψ F	˙ˇˇď
	2 ˇˇˇˆp 1 ´κp|q|qq|q|W ∇ψ F , ∇ψ F	˙ˇˇˇ`2	ˇˇˇˆp 1 ´κp|q|qq|q|W ψ F , ∆ψ F	˙ˇˇ2
	ˇˇˇˆp κp|q|q|q|∇W `qB `rp1 ´κp|q|qq|q|, psW qψ F , ∇ψ F	˙ˇˇ2
	ℜ ˆqV L ψ F , ∇ψ F	˙ˇˇˇ.	(6.3)

  Corollary 6.2. Let W be a bounded real valued function such that |q|W is bounded (W is of short range type for example) and the distributionnal ∇W is locally in L 8 . Let V " |q| ´1q ¨∇W `B `VL with B a bounded real valued function such that qB is bounded and V L a bounded real valued function such that q∇V L is bounded. If }|q|W } is small enough, we can choose ǫ ą 0 small enough such that V satisfies (2.1) and (2.2).

  Remark that, in[START_REF] Denis | Schrödinger operators with rapidly oscillating central potentials[END_REF], Schrödinger operators with oscillating potentials are studied, and it was used that potentials are central. But in our case, we do not suppose that other parts of the potential are central. So, we can observe that p1 ´κp|x|qqp1 ´κp|x|qq " p1 ´κp|x|qq for all x P R ν . For γ P R, let ´1 is compact (V c is compactly suport), we can show that all the terms of the potential has enough regularity to satisfies assumptions of Theorem 2.2.If 3{2 ď ζ `θ ď 2, we will adapt the proof of [JM17, Proposition 7.1] to our context.

								JM17,
	Proposition 3.2].						
	(6) Wζγ pxq " wp1 ´κp|x|qq	cospk|x| ζ q |x| γ	.		(6.6)
	For x P R ν ,						
	W ζθ pxq " ´p1 ´κp|x|qq	1 kζ	x |x|	¨∇ Wζγ pxq ´p1 ´κp|x|qqγ	1 kζ|x|	Wζγ pxq	(6.7)

Proof. [Proposition 6.3] Let u P U a bounded vector field. Suppose that ζ `θ ą 1. Let κ P C 8 c pR, Rq such that κp|x|q " 0 if |x| ě 1, κ " 1 on r´1{2, 1{2s and 0 ď κ ď 1. with γ " θ `ζ ´1 ą 0. Thus, by writing ∇ Wζγ " rp, i Wζγ s, we can show that W ζθ : H 1 Ñ H ´1 is compact. Remark that since Wζγ has the same form as W ζθ , by iterated this calculus, we can show that, if ζ ą 1, for all l P N, for all k P R, l ě pk ´θqpζ ´1q ´1, xpy ´lxqy k W ζθ xpy ´l is bounded. Similarly, since the derivative of v is bounded, by writing v ¨∇ Ṽsr " divpvq Ṽsr ´divpv Ṽsr q, we can show that v ¨∇ Ṽsr : H 1 Ñ H ´1 is compact. Therefore, by sum, the first point of Proposition 6.3 is proved. To prove the next point, in a first time, we can see that, by [Mar17, Lemma 5.4], if ζ `θ ą 2, W ζθ has enough regularity to satisfies assumptions of Theorem 2.2. Similarly, since qV c : H 1 Ñ H

  ´1with B 4 uniformly bounded. Repeating this computation, we can see that Since xpy ´1qW ζθ xpy ´1xqy 1´ζ´θ is bounded, we can write pHpF q `mq ´lqW ζθ uppqpHpF q `mq ´l " B 1 6 xpy ´2l qW ζθ uppqxpy ´2l B 1

	pHpF q `mq ´l		
	" xpy ´2l B 1 5 `xpy ´1xqy ´1B 1 3 `xpy ´1xqy 1´ζ´θ B 1 1
	" B 1 6 xpy ´2l `B1 4 xqy ´1xpy ´1 `B1 2 xqy 1´ζ´θ xpy	
	´l		
	" `B1 6 xpy ´2l `B1 4 xqy ´1xpy ´1 `B1 2 xqy 1´ζ´θ xpy	´1˘q	W ζθ uppq
	`xpy ´2l B 1 5 `xpy ´1xqy ´1B 1 3 `xpy ´1xqy 1´ζ´θ B 1 1	
			5	`B

´1

with pB 1 k q k"1,¨¨¨,6 uniformly bounded in λ. Thus, pHpF q `mq ´lqW ζθ uppqpHpF q `mq

  t. the conjugate operator A u (point (3) of Proposition 6.3). Now, suppose that ζ `θ ě 2. By Corollary 6.2 and (6.7), we already know that if }|q| Wζγ } is small enough, then W ζθ satisfies (2.1) and (2.2) and Theorems 2.3 and 2.4 apply. Thus we only have to show that this norm is small enough. Suppose that ζ `θ " 2 and ζ ą 1. Since xqy 1`ρsrṼsr is bounded, we can use Corollary

	6.2 on v ¨∇ Ṽsr . Remark that		
	› › › ›	|q| kζ	p1 ´κp|q|qq Wζγ pqq › › › › " ˇˇˇw kζ	ˇˇˇ.
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Proof. [Corollary 6.2] Let ψ and ψ F as in Lemma 6.1. Then pψ F , rV, iA D sψ F q " pψ F , iV q ¨pψ F q ´pψ F , iq ¨pV ψ F q " pqV ψ F , ∇ψ F q ´p∇ψ F , qV ψ F q ´νpψ F , V ψ F q " 2ℜpqV ψ F , ∇ψ F q ´νpψ F , V ψ F q.

Let κ P C 8 c pR, Rq such that κptq " 1 if |t| ă 1, 0 ď κ ď 1. For second term, we have νpψ F , V ψ F q " νpψ F , κp|q|qV ψ F q `νpψ F , p1 ´κp|q|qqV ψ F q " νpψ F , p1 ´κp|q|qqp|q| ´1 q ¨∇W `B `VL qψ F q νpψ F , κp|q|qV ψ F q. By writing ∇W " rp, iW s, since B, κp|q|qV, V L and rp1 ´κp|q|qq|q| ´1q, ps are bounded, for all ǫ ą 0, by (6.2),

Using this and Lemma 6.1, we obtain (2.1) and/or (2.2) if }|q|W } and ǫ are small enough. l 6.2. A class of oscillating potential. Let v P C 1 pR n , R n q with bounded derivative. Let V lr , V sr , V c , Ṽsr such that V c is compactly support and such that there is ρ lr , ρ sr ą 0 with xqy 1`ρsr V sr , xqy 1`ρsr Ṽsr , xqy ρ lr V lr , xqy ρ lr q ¨∇V lr are bounded (V lr is a long-range potential and V sr and Ṽsr are short-range potentials). Moreover, we suppose that V c : H 1 Ñ H ´1 is compact and that there is ǫ c ą 0 and λ c P R such that, for all φ P DpHq X DpA D q, pφ, rV c , iA D sφq ě pǫ c ´2qpφ, ∆φq `λc }φ} 2 .

Let ζ, θ P R, k ą 0, w P R ˚and κ P C 8 c pR, Rq such that κ " 1 on r´1, 1s and 0 ď κ ď 1. Let W ζθ pxq " wp1 ´κp|x|qq sinpk|x| ζ q |x| θ . (6.5)

Remark that if we take ζ " θ " 1, this potential has the form of the Wigner-von Neuman potential for which we know that k 2 4 is an eigenvalue. As pointed out in [JM17], Corollary 1.2 applies with V lr `Vsr `Wζθ as potential if θ ą 0 and θ ą ζ or if θ ą 1. In [START_REF] Jecko | Limiting absorption principle for Schrödinger operators with oscillating potentials[END_REF], it is claimed that Corollary 1.2 applies when 1{2 ě θ ą 0, ζ ą 1, ζ `θ ą 2 and |w| small enough. The corresponding proof, however, is not sufficient. Here, thanks to our main result, we are able to prove the following Proposition 6.3. Let V " V lr `Vsr `v ¨∇ Ṽsr `Vc `Wζθ and let H " ∆ `V an. We will give some comments about this Proposition (1) In the case ζ `θ " 2, θ ď 1{2 and ζ ą 1, Theorems 2.2 and 2.4 apply if ˇˇw kζ ˇˇă ǫc 8 . But, by using (2.2'), we can show that the result of these Theorems stay true if ˇˇw kζ ˇˇă ǫc 6 .

Lemma 6.4. Let V as previously. Then

(1) V : H 1 Ñ H ´1 is compact;

(2) for all u P C 8 bounded with all derivatives bounded, V P C 8 pA u , H 1 , H ´1q;

(3) H " ∆ `V has no positive eigenvalues.

Remark that since V is not ∆-compact and since V is not in As previously, by writing ∇ Ṽ " rp, iV s, we can show that V :

Moreover, by [Mar17, Lemma 5.6], we already know that V P C 8 pA u , H 1 , H ´1q for all u P U bounded. Those implies that Theorem 2.2 applies. Moreover, since |q| Ṽ vanishes at infinity, as previously, for all ǫ ą 0, we can find χ P C 8 c , such that χptq " 1 if |t| ă 1, 0 ď χ ď 1 and }p1 ´χpqqq|q|W } ă ǫ. Thus, by Corollary 6.2, we can find ǫ ą 0 small enough such that (2.2) is true. Therefore Theorem 2.4 applies and H " ∆ `V has no positive eigenvalues. l APPENDIX A. THE HELFFER-SJ ÖSTRAND FORMULA Let T and B two self-adjoint operators. Let ad 1 B pT q " rT, Bs be the commutator. We denote ad p B pT q " rad p´1 B pT q, Bs the iterated commutator. Furthermore, if T is bounded, T is of class C k pBq if and only if for all 0 ď p ď k, ad p B pT q is bounded. Proposition A.1 ([DG97] and [START_REF] Møller | An abstract radiation condition and applications to n-body systems[END_REF]). Let ϕ P S ρ , ρ P R. For all l P R, there is a smooth function ϕ C : C Ñ C, called an almost-analytic extension of ϕ, such that :

suppϕ C Ă tx `iy}y| ď c 2 xxyu (A.2) ϕ C px `iyq " 0, if x R supppϕq (A.3) for constant c 1 and c 2 depending of the semi-norms of ϕ.