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We introduce a multi-factorial, multi-level approach to build and explore evolutionary 

scenarios of complex protein networks. EvoKEN combines a unique formalism for 

integrating multiple types of data associated with network molecular components and 

knowledge extraction techniques for detecting cohesive/anomalous evolutionary 

processes. We analyzed known human pathway maps and identified perturbations or 

specializations at the local topology level that reveal important evolutionary and 

functional aspects of these cellular systems. 

 

The dynamic molecular machinery underlying cellular systems is often represented by 

complex, hierarchical networks of interactions between the cell’s constituents, such as 

proteins, DNA, RNA and small molecules. Ultimately, phenotypic traits and diseases can be 

described in terms of the complex intracellular and intercellular networks that link tissue and 

organ systems1,2. The structures of these networks, including metabolic, signaling or 

transcription regulatory networks, often share similar features even in distantly related 

species3.  Understanding the evolution of these networks is therefore essential to 
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reconstruct the history of life, but also to better understand how the network structures 

correlate with the functioning of organisms at different granularity levels4,5.  

 

Application of evolutionary based methods in complex networks is challenging6  and requires 

integration of multiple factors, such as gene spatial/temporal expression, protein sequence 

conservation, cellular localization signals, 3D structure, or binding/interaction sites7. In this 

context, we have developed an original formalism, called the evolutionary barcode or 

EvoluCode8, to allow the integration of different parameters (e.g. genome context, protein 

organization, conservation patterns) in a common framework and to summarize the 

evolutionary history of a gene that leads to its current state in a given organism 

(Supplementary Fig. 1). EvoluCode thus facilitates the application of formal data mining and 

knowledge extraction techniques in evolutionary analyses. We previously used this approach 

to barcode all human protein-coding genes using 10 evolutionary data types from 17 

vertebrate proteomes. Our systematic comparison of the human barcodes revealed protein 

function-evolution relationships that could not be observed by using only one or two 

biological parameters, for example using only sequence conservation8.  

Here, we introduce a unique protocol, called EvoKEN (Evolutionary Knowledge Extraction in 

Networks), that combines the EvoluCode formalism with knowledge extraction techniques, 

in order to study the evolution of genes in the context of their complex biological networks. 

We show how EvoKEN can be used at the pathway level to identify local topological motifs 

that have evolved cohesively and to highlight ‘outlier’ genes whose evolutionary history 

deviates from the local neighbors, suggesting different underlying evolutionary processes. 
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We then extend our work to investigate unusual evolutionary scenarios at the inter-pathway 

or ‘cellular’ level. 

Our protocol can be applied to any biological system, where we define a system as a set of 

genes implicated in a common process or phenomenon (genetic information processing, 

signal transduction, metabolism, disease response, etc.) and mapped onto a molecular 

network. We demonstrate the utility of our approach by constructing and exploring 

evolutionary scenarios for the complete set of human pathway maps in the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) knowledge base9. First, we mapped our 

EvoluCodes for the human proteome to the KEGG maps, thus producing pathway-level 

evolutionary maps (Fig. 1) for a total of 248 biological systems (available at 

lbgi.igbmc.fr/barcodes). We then applied a knowledge extraction algorithm (Online 

Methods) on each individual map in order to estimate its evolutionary cohesiveness and to 

identify genes with anomalous, ‘outlier’ barcodes that might reflect unusual evolutionary 

pressures within the system. Here, we used the Local Outlier Factor (LOF)10, a powerful 

anomaly detection algorithm which is related to density-based clustering and is suitable for 

analyzing large-scale, multidimensional datasets where the underlying data distribution is 

unknown. The LOF method identified a total of 1147 outlier genes in 248 KEGG maps 

(lbgi.igbmc.fr/barcodes and Supplementary Fig. 2). The most cohesive pathways, i.e. those 

with the least outliers (Supplementary Fig. 3 and Supplementary Table 1), were typically 

involved in universal biological processes such as translation or cell growth/death, in line 

with previous observations11.  

To further investigate the biological significance of genes with anomalous evolutionary 

histories, we measured the correlations between the EvoKEN outliers and their local 
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topology in the corresponding networks. We focused on the metabolic pathways in KEGG, 

where the nodes in the networks represent metabolites (substrates, products and 

intermediates) that are linked by a reaction, associated with one or more genes/proteins. 

Within these networks, we manually defined 6 classes of local topological motifs based on 2 

key node properties, redundancy and connectivity (Fig. 2a and Online Methods). The outlier 

genes from 20 metabolic pathways were then assigned to the different topology classes (Fig. 

2b). We found that the cohesiveness of a gene in its network context depends on the local 

topological structure: for instance, the smallest proportion of outliers was found at the 

nodes involved in linear paths in the networks, particularly in non-redundant paths (class F). 

In contrast, more outliers were found at the start/end points of a pathway (class D), and at 

the interface between pathways, so called ‘hubs’ in the networks (class C). The correlation 

we observe between gene conservation and local network topology may be due to specific 

selection pressures, for instance on essential genes12. 

Having established the evolutionary cohesiveness of individual pathways, we then asked 

whether we could identify unusual evolutionary behavior at the cellular level. Individual 

pathways often function in a coordinated fashion and understanding the interactions or 

crosstalk between pathways is important for deciphering complex cellular processes, such as 

the appropriate physiological responses to internal or external stimuli. To investigate these 

high-level processes, we identified a set of genes involved in the crosstalk between 155 

KEGG pathway maps, reflected by the fact that all the genes in the set were present in at 

least 3 maps. In this case, the evolutionary cohesiveness of a gene is context-dependent, i.e. 

a gene may be defined as cohesive in one of these pathways and as an outlier in another 

(Fig. 2c). Such cases of differential evolutionary conservation may indicate important events, 

such as gene duplications, rearrangements or losses and the subsequent gain or loss of 
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interactions in the network. For each pair of KEGG maps, we calculated the proportion of 

outlier genes observed in the overlapping set of genes shared between the two systems. We 

then constructed a global map of the relationships between the 155 maps, representing the 

evolutionary behavior of these pathways during vertebrate evolution (Fig. 2d and 

Supplementary Fig. 4). The exploration of this map provides a powerful and visual means of 

highlighting important events in the evolution of human biological systems.  

Two examples are highlighted in Fig. 2d. First, the genes involved in both cell cycle and 

oocyte meiosis pathways are generally cohesive with the other genes in these pathways, but 

the crosstalk with the progesterone-mediated oocyte maturation pathway contains a higher 

proportion of outlier genes (Supplementary Table 2).  In fact, cell cycle and oocyte meiosis 

pathways are conserved in most vertebrates, while the exact nature of oocyte maturation is 

more variable between species. A number of these functional specificities are highlighted by 

the EvoKEN outliers, such as the Myt1 gene coding for a cdc2-inhibitory kinase 

(PMYT1_HUMAN), which acts as a negative regulator of entry into mitosis during the cell 

cycle. Inspection of the Myt1 evolutionary barcode (Supplementary Fig. 5a) indicates a more 

divergent sequence family than is typical for this conserved pathway. This might be a result 

of the different functions of Myt1, which is implicated in control of entry into meiosis, either 

alone (as in Xenopus) or in concert with Wee1 (as in mouse oocytes)13. Other examples of 

outliers are provided in Supplementary Fig. 5. 

The second example concerns the innate immune system, where pattern recognition 

receptors, such as Toll-like receptors (TLR), RIG-I-like receptors (RLR) or NOD-like receptors 

(NLR), recognize a wide variety of pathogens and endogenous molecules and trigger 

complex, overlapping intracellular signaling cascades. Outlier genes involved in the crosstalk 
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between these pathways are described in Supplementary Table 3. We highlight one 

example: the receptor interacting protein RIP1 (RIPK1_HUMAN), which plays a crucial role in 

the cellular response to TLR and RLR signals, switching between cell survival through RIP1 

activation of NF-κB and cell death induced by caspase-8 cleavage of RIP114. The RIP1 

evolutionary barcode (Supplementary Fig. 6a) shows a typical sequence conservation in 

vertebrate evolution, but synteny is only observed in mammals and not in fishes for example 

where RIP1 plays a different role in TLR signaling15. Other examples of outliers are provided 

in Supplementary Fig. 6. Unraveling the evolutionary history of these pathways and their 

crosstalk will be important in understanding how the immune system functions and in 

developing effective therapeutic and vaccine strategies. 

It is clear that more in-depth analysis, involving phylogenetic tree and ancestor 

reconstruction would be required to describe in detail the evolutionary events identified in 

these studies. The advantage of EvoKEN is that it provides an effective framework for 

investigating the evolution of large systems at different granularity levels from local network 

motifs to the cellular level, allowing the rapid identification of interesting patterns in a 

particular biological context. Hopefully, EvoKEN will contribute to the emerging field of 

evolutionary systems biology, with the goal of understanding and modeling the topological 

and dynamic properties of the complex networks that govern the behavior of the cell. 

METHODS 

Construction of EvoluCodes for the human proteome  

The evolutionary barcodes (EvoluCodes) used in this study were constructed as described in 

8. Each protein-coding human gene is thus associated with one EvoluCode that is visualized 

as a 2D matrix. The columns of the matrix correspond to the studied organisms, which in this 
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work consist of 17 vertebrates with almost complete genomes from the Ensembl 16 database 

(version 51). The rows of the matrix correspond to different evolutionary parameters (Table 

1) that were extracted from multiple alignments 17,18, synteny analysis and orthology data19. 

For each vertebrate organism, the most closely related homolog to the human reference 

gene was identified (based on percent residue identity) and 10 parameters were calculated. 

Table 1. Evolutionary parameters included in EvoluCodes of human proteome. 

Parameter name Description Source 

length length of the vertebrate sequence Multiple alignment 

length_difference difference in length between the human 

reference and vertebrate sequences 

Multiple alignment 

no_of_regions number of conserved regions shared 

between the human reference and 

vertebrate sequences 

Multiple alignment 

sequence_identity percent residue identity shared between 

the human reference and vertebrate 

sequences 

Multiple alignment 

no_of_domains number of known protein domains (from 

the Pfam20 database) in the vertebrate 

sequence 

Multiple alignment 

domain_conservation parameter indicating domain structure 

conservation between the human reference 

and vertebrate sequences: unchanged 

domain structure/domain gains/domain 

losses/domain shuffling 

Multiple alignment 

hydrophilicity average hydrophilicity of the vertebrate 

sequence 

Multiple alignment 

inparalog number of human inparalogs with respect 

to the vertebrate species. This parameter 

represents the duplicability of a human 

gene compared to the other species 

Ortholog/paralog 

database 

co-ortholog number of co-orthologs in the vertebrate 

species with respect to human. This 

parameter reflects gene duplications in the 

non human lineage 

Ortholog/paralog 

database 

Synteny parameter indicating conservation of Synteny database 
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genome neighborhood: synteny on both 

sides of the gene / synteny either 

downstream or upstream of the gene / no 

synteny 

 

To facilitate visualization of the EvoluCode, a color is assigned to each matrix cell 

representing typical or atypical parameter values. To do this, the distribution of each 

parameter in each organism is first described by the sample percentiles, using the Emerson-

Strenio formulas 21 implemented in the R software and color gradients are assigned to three 

intervals:  

 Interval 1 represents values that are lower than what is generally observed for a specific 

parameter in a specific organism and is assigned a blue-to-green gradient 

 Interval 2 represents values that correspond to what is generally observed for a specific 

parameter in a specific organism and is assigned a green color 

 Interval 3 represents values that are higher than what is generally observed for a specific 

parameter in a specific organism and is assigned a green-to-red gradient.  

By compiling several evolutionary parameters extracted from different biological levels, from 

residue data to phylum data, EvoluCodes incorporate an evolutionary systems biology point 

of view. Consequently, EvoluCodes can highlight important evolutionary events that could 

not be discovered using a single evolutionary parameter such as sequence conservation or 

domain composition. The complete set of 19778 human EvoluCodes can be visualized online 

at: lbgi.igbmc.fr/barcodes. 
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Analysis of human pathway data and definition of cohesive/outlier genes 

We based our analysis on pathway data from the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) knowledge base. We analyzed 248 human pathways with the help of the KEGG SOAP 

server (http://www.kegg.jp/kegg/soap/). A total of 5849 EvoluCodes could be mapped to the 

genes in these pathways. 

For each pathway, we then identified ‘outlier’ genes, i.e. genes with an unusual evolutionary 

history (EvoluCode) compared to the other genes in the pathway. We determined outliers 

using an anomaly detection algorithm called Local Outlier Factor (LOF) 22. The basic concept 

of LOF is the local density, where locality is given by k nearest neighbors. By comparing the 

local density of an evolutionary barcode to the local densities of its neighbors, we identify 

regions of similar density, as well as barcodes that have a substantially lower density than 

their neighbors. These are considered to be outliers. The local density is estimated by the 

typical distance at which a barcode can be "reached" from its neighbors.  

First, the 2D matrix representing an EvoluCode, consisting of 10 rows and 17 columns, is 

redimensioned to a 1D vector of length, n=170. Then, if A and B are 2 EvoluCodes in 

Euclidean n-space, with A = (a1, a2,...,an) and B = (b1, b2,...,bn), the distance between A and B 

is: 

𝑑(𝐴, 𝐵) =  √∑(𝑏𝑖 − 𝑎𝑖)2

𝑛

𝑖=1

 

The Euclidean distance between the EvoluCode A and its k nearest neighbors is denoted 

kdist(A) and the set of k nearest neighbors is Nk(A). The reachability distance is then 

calculated as: 
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𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑑𝑖𝑠𝑡𝑘 (𝐴, 𝐵) = max{𝑘𝑑𝑖𝑠𝑡(𝐵), 𝑑(𝐴, 𝐵)} 

The local reachability density (lrd) of EvoluCode A is defined as: 

lrdk(A) =  1 / (
∑ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑑𝑖𝑠𝑡𝑘 (𝐴,𝐵)𝐵∈𝑁𝑘(𝐴)  

|𝑁𝑘(𝐴)|
) 

And the local reachability densities are then compared with those of the neighbors using: 

LOFk(A) = (
∑

lrd(B)

lrd(A)
B∈Nk(A)   

|Nk(A)|
)  

The LOF score thus represents the cohesiveness of the EvoluCode associated with each gene 

in the context of its pathway. The authors of the LOF algorithm consider that a score less 

than 1 indicates a clear inlier object, i.e. a cohesive barcode. Genes with a LOF score 

significantly greater than 1 are considered as outliers. However, the threshold determining a 

clear outlier depends on the dataset. Here, we defined the outlier threshold value as the 

upper quartile for the LOF scores of the EvoluCodes in the context of the 248 human 

pathways, which was 1.037. 

Analysis of metabolic pathways  

The KEGG database currently contains pathway data for 84 human KEGG metabolic 

pathways, where the nodes in the networks represent metabolites (substrates, 

intermediates and products). The edges between nodes represent reactions that are 

associated with one or more genes/proteins. For our experiment, we selected all pathways 

with more than 20 human genes, giving us an initial set of 20 pathways, containing a total of 

875 different reactions, of which 671 reactions were associated with cohesive genes and 204 
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reactions with outlier genes. We defined 6 classes of local topological motifs within these 

pathways, based on node redundancy and connectivity (Table 2).  

Table 2. Definition of local network topology classes. 

Class Redundancy Connectivity Description 

A yes N/A Alternative gene 

for same reaction step 

B yes N/A Alternative path 

for n>1 reactions 

C N/A Inter-pathway Pathway interface 

D N/A 1 intra-pathway Start/end of pathway, single 

substrate/product 

E N/A >2 intra-pathway Multiple substrates and/or 

products 

F No 2 intra-pathway Other: mostly linear paths, 

plus a small number of 

exceptions, such as unlinked 

genes  

 

We then determined the topological localization of all biological reactions associated with 

the outlier genes. For each class, we calculated the proportion of cases where the reaction 

was associated with an outlier gene. In cases where a reaction was associated with more 

than one gene (protein complexes, genes with similar biochemical functions, etc.), we used 

the gene with the lowest LOF score. This choice reduced the number of reactions that are 

considered as outliers and only reactions with a clear outlier status were included for 

analysis. 

Construction of the cellular level evolutionary map 

We constructed a cellular level map, representing the evolutionary histories of the pathways 

in the KEGG database. For the 200 human KEGG pathways, we identified the genes shared 

.CC-BY-NC 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/098285doi: bioRxiv preprint first posted online Jan. 5, 2017; 

http://dx.doi.org/10.1101/098285
http://creativecommons.org/licenses/by-nc/4.0/


EvoKen  B. Linard et al. 

12 
 

by each pair of pathways. We then focused our analysis on the pathway pairs sharing at least 

3 genes, representing 155 KEGG pathways, which describe mainly cellular processes and 

signal transductions. In the evolutionary map, each node represents a specific KEGG 

pathway and the edge joining 2 nodes represents the genes shared by the two pathways. 

The node diameter is proportional to the number of genes implicated in the pathway. Each 

node is assigned a color representing the homogeneity of the EvoluCodes associated with 

the genes. The cohesiveness of the pathway evolution is estimated based on LOF value 

dispersion, using the IQR (interquartile range, IQR = Q3 − Q1). A low IQR indicates more 

cohesive barcodes associated with a given node.  

Pathways with high cohesiveness are indicated by dark blue and pathways with low 

cohesiveness are light blue. The edge thickness is proportional to the number of genes 

shared by the 2 nodes, while the edge color indicates the proportion of shared genes 

identified as outliers in one or both linked pathways. A green edge links pathways that do 

not share any outlier genes. A red edge links pathways where all shared genes are outliers in 

at least one of the maps. Intermediate values are assigned a green to red color gradient.  

 

SUPPLEMENTARY INFORMATION 

Supplementary Figures 1-6 and Supplementary Tables 1-3 are are available in the second half 

of the document. For cytoscape files: contact Thompson(at)unistra(dot)fr 
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FIGURES 
 

Figure 1 | Framework to construct and explore multi-level evolutionary networks. 

Evolutionary barcodes, known as EvoluCodes, are assigned to individual genes and then 

mapped onto a known gene network, such as a KEGG pathway map. At the system level, the 

resulting evolutionary map provides a context for differentiating genes with ‘cohesive’ or 

‘outlier’ (highlighted in red) evolutionary histories. At the cellular level, systems and inter-

system crosstalk can be analyzed in terms of the cohesiveness of the underlying gene 

evolution. 

  
Figure 2 | Characterization of outlier genes at the system and cellular levels. (a) Definition 

of 6 classes of local topological motifs in metabolic pathways, depending on the redundancy 

and connectivity of the reactions (and associated genes) in the network. (b) Identification of 

outlier genes and their distribution in the local topology classes. (c) The crosstalk between 2 

systems is characterized by the proportion of shared outlier genes, indicated by a color 

gradient from green (all cohesive) to red (all outlier). (d) An integrated evolutionary map of 

selected human pathways showing the number and cohesiveness of the gene evolutionary 

histories, associated with individual pathways (nodes) and pathway crosstalk (edges). 
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Supplementary figure 1: Examples of EvoluCode evolutionary barcodes, representing 5 

genes with different evolutionary histories. 
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Supplementary figure 2: Histogram of percentage of genes with anomalous, outlier 

EvoluCodes in 248 human metabolic pathways from the KEGG database.  
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Supplementary figure 3: Boxplots (minimum, maximum, lower and upper quartiles) of 

percentage of genes with anomalous, outlier EvoluCodes in 248 human metabolic pathways 

from KEGG, classified by functional groups. Pathways with a larger number of outlier genes 

have less cohesive evolutionary histories, e.g. some genes are more or less well conserved 

than the majority of genes in the pathway. 
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Supplementary Figure 4: An integrated evolutionary map of 155 human pathways showing 

the number and cohesiveness of the gene evolutionary histories, associated with individual 

pathways (nodes) and pathway crosstalk (edges). Nodes and edges are colored as in Fig. 2 in 

main text. Map is visualized using Cytoscape. 
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Supplementary Figure 5: Example outlier EvoluCodes.  

a. Myt1 is an outlier in the cell cycle pathway. The Myt1 gene and its evolutionary barcode 

are described in the main text.  

b. Mos is an outlier in the progesterone-mediated oocyte maturation pathway. The Mos 

gene is a key regulator of oocyte meiotic maturation, arresting the unfertilized oocyte at 

various meiotic stages depending on the species1. Inspection of the Mos evolutionary 

barcode shows that the protein sequences are generally conserved among vertebrates, 

however the patterns of synteny and paralogy are more divergent amongst species.  

c. Cdk2 is an outlier in the progesterone-mediated oocyte maturation pathway. The cdk2 

gene codes for a cyclin-dependent kinase that functions in the cell cycle in S phase 

progression2. It also plays an alternative role in the regulation of progesterone receptor (PR) 

signaling. PR and its coactivators are phosphoproteins. Cyclin A/Cdk2 phosphorylates several 

of the PR phosphorylation sites in vitro and there is evidence that it participates in PR 

phosphorylation in vivo3. Cdk2 is dispensable for the mitotic cell cycle, but it is crucial for the 

first meiotic division of male and female germ cells, and it has been suggested that Cdk2 

might have evolved primarily as a meiotic kinase with a secondary role in the mitotic cell 

cycle 4. Although the EvoluCode shows conservation in most vertebrates studied here, a 

perturbation is highlighted in Monodelphis domestica (opossum), Ornithorhynchus anatinus 

(platypus) and Gallus gallus (chicken) with lower sequence identity, loss of synteny and 

fewer inparalog/co-ortholog relationships. 

a. Myt1 
 

b. Mos 
 

c.Cdk2 
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Supplementary Figure 6: Example outlier EvoluCodes. 

a. Rip1 is an outlier in the RIG-I-like receptor signaling pathway. The rip1 gene and its 

evolutionary barcode are described in the main text. 

b. IL1B is an outlier in all 3 pathways where it is present. IL1B (interleukin-1 beta) is a 

cytokine that plays a crucial role in mediation and amplification of the innate immune 

response to bacterial pathogens. It is produced as an inactive precursor, termed pro-IL-1β, in 

response to molecular motifs carried by pathogens. After processing, the active IL-1β molecule is 

secreted. Given the similarity between the genomic organization of pro-IL-1a and pro-IL-1b genes, it 

has been hypothesized that pro-IL-1b may have arisen by a reverse transcriptase mediated 

duplication of the related alpha gene5. The EvoluCode of IL1B shows low conservation in terms of 

sequence identity, domain organization and synteny and is an outlier in the 3 innate immune 

system pathways where it is present. 

c. M3K7 is an outlier in the Toll-like and NOD-like receptor signaling pathways. M3K7 

(mitogen-activated protein kinase kinase kinase 7, also known as TAK1) is a serine/threonine 

kinase, which acts as an essential component of the MAPK signal transduction pathway. The 

EvoluCode associated with M3K7 shows unusually high sequence identity, but a complex 

synteny pattern. 

 

a. Rip1 b. IL1B c. M3k7 
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Supplementary table 1: Outliers detected in KEGG pathway maps. Only maps with at least 10 

genes genes mapped to Uniprot proteins are shown, since outliers cannot be determined 

accurately for smaller sets of genes. 

KEGG functional group KEGG pathway No. Genes No. 
Outliers 

% 
Outliers 

Amino Acid Metabolism hsa00280 29 4 13.8 

Amino Acid Metabolism hsa00270 20 3 15 

Amino Acid Metabolism hsa00250 23 4 17.4 

Amino Acid Metabolism hsa00380 23 4 17.4 

Amino Acid Metabolism hsa00330 36 7 19.4 

Amino Acid Metabolism hsa00310 15 3 20 

Amino Acid Metabolism hsa00260 29 6 20.7 

Amino Acid Metabolism hsa00350 23 5 21.7 

Amino Acid Metabolism hsa00340 15 4 26.7 

Cancers hsa05220 39 4 10.3 

Cancers hsa05214 28 3 10.7 

Cancers hsa05215 39 5 12.8 

Cancers hsa05212 38 5 13.2 

Cancers hsa05200 162 22 13.6 

Cancers hsa05202 146 20 13.7 

Cancers hsa05211 36 5 13.9 

Cancers hsa05216 13 2 15.4 

Cancers hsa05221 30 5 16.7 

Cancers hsa05222 36 6 16.7 

Cancers hsa05213 29 5 17.2 

Cancers hsa05217 17 3 17.6 

Cancers hsa05219 26 5 19.2 

Cancers hsa05210 36 7 19.4 

Cancers hsa05218 20 4 20 

Cancers hsa05223 32 7 21.9 

Carbohydrate Metabolism hsa00020 16 1 6.3 

Carbohydrate Metabolism hsa00500 22 2 9.1 

Carbohydrate Metabolism hsa00052 16 2 12.5 

Carbohydrate Metabolism hsa00562 26 4 15.4 

Carbohydrate Metabolism hsa00030 17 3 17.6 

Carbohydrate Metabolism hsa00640 16 3 18.8 

Carbohydrate Metabolism hsa00520 33 7 21.2 

Carbohydrate Metabolism hsa00010 27 6 22.2 

Carbohydrate Metabolism hsa00051 17 4 23.5 
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Carbohydrate Metabolism hsa00620 21 5 23.8 

Carbohydrate Metabolism hsa00650 15 4 26.7 

Carbohydrate Metabolism hsa00040 11 3 27.3 

Cardiovascular Diseases hsa05410 31 3 9.7 

Cardiovascular Diseases hsa05416 28 3 10.7 

Cardiovascular Diseases hsa05412 25 4 16 

Cardiovascular Diseases hsa05414 30 5 16.7 

Cell Communication hsa04520 49 2 4.1 

Cell Communication hsa04530 50 6 12 

Cell Communication hsa04510 59 9 15.3 

Cell Communication hsa04540 34 7 20.6 

Cell Growth and Death hsa04110 74 9 12.2 

Cell Growth and Death hsa04114 45 6 13.3 

Cell Growth and Death hsa04115 52 8 15.4 

Cell Growth and Death hsa04210 46 8 17.4 

Cell Mobility hsa04810 64 10 15.6 

Ciculatory System hsa04270 37 7 18.9 

Ciculatory System hsa04260 13 3 23.1 

Development hsa04380 68 5 7.4 

Development hsa04320 13 2 15.4 

Development hsa04360 60 11 18.3 

Digestive System hsa04976 48 4 8.3 

Digestive System hsa04970 33 3 9.1 

Digestive System hsa04974 22 3 13.6 

Digestive System hsa04975 19 3 15.8 

Digestive System hsa04972 40 7 17.5 

Digestive System hsa04978 30 6 20 

Digestive System hsa04971 27 6 22.2 

Digestive System hsa04973 19 5 26.3 

Endocrine and Metabolic Diseases hsa04930 20 2 10 

Endocrine and Metabolic Diseases hsa04940 19 3 15.8 

Endocrine and Metabolic Diseases hsa04950 25 4 16 

Endocrine System hsa03320 47 3 6.4 

Endocrine System hsa04916 31 4 12.9 

Endocrine System hsa04910 61 9 14.8 

Endocrine System hsa04914 29 5 17.2 

Endocrine System hsa04920 35 7 20 

Endocrine System hsa04912 40 8 20 

Energy Metabolism hsa00190 57 12 21.1 

Environmental Adaptation hsa04710 11 2 18.2 
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Excretory system hsa04961 21 3 14.3 

Excretory system hsa04960 18 3 16.7 

Excretory system hsa04962 16 3 18.8 

Excretory system hsa04964 12 3 25 

Folding,Sorting and Degradation hsa03050 43 4 9.3 

Folding,Sorting and Degradation hsa03018 52 5 9.6 

Folding,Sorting and Degradation hsa04120 96 13 13.5 

Folding,Sorting and Degradation hsa03060 21 3 14.3 

Folding,Sorting and Degradation hsa04141 82 12 14.6 

Folding,Sorting and Degradation hsa04130 24 5 20.8 

Glycan Biosynthesis and Metabolism hsa00601 13 1 7.7 

Glycan Biosynthesis and Metabolism hsa00510 32 3 9.4 

Glycan Biosynthesis and Metabolism hsa00563 24 3 12.5 

Glycan Biosynthesis and Metabolism hsa00534 14 2 14.3 

Glycan Biosynthesis and Metabolism hsa00514 15 4 26.7 

Immune Diseases hsa05323 42 4 9.5 

Immune Diseases hsa05330 16 3 18.8 

Immune Diseases hsa05320 20 4 20 

Immune Diseases hsa05340 34 7 20.6 

Immune Diseases hsa05322 29 6 20.7 

Immune Diseases hsa05332 13 3 23.1 

Immune system hsa04623 28 2 7.1 

Immune system hsa04622 47 4 8.5 

Immune system hsa04670 56 5 8.9 

Immune system hsa04610 57 6 10.5 

Immune system hsa04621 45 5 11.1 

Immune system hsa04666 44 5 11.4 

Immune system hsa04062 49 7 14.3 

Immune system hsa04620 67 10 14.9 

Immune system hsa04612 25 4 16 

Immune system hsa04672 31 5 16.1 

Immune system hsa04650 69 13 18.8 

Immune system hsa04660 62 12 19.4 

Immune system hsa04664 35 7 20 

Immune system hsa04662 43 9 20.9 

Immune system hsa04640 65 15 23.1 

Infectious Diseases hsa05160 62 5 8.1 

Infectious Diseases hsa05145 52 5 9.6 

Infectious Diseases hsa05168 91 9 9.9 

Infectious Diseases hsa05130 27 3 11.1 
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Infectious Diseases hsa05166 109 13 11.9 

Infectious Diseases hsa05164 96 12 12.5 

Infectious Diseases hsa05146 39 5 12.8 

Infectious Diseases hsa05140 39 5 12.8 

Infectious Diseases hsa05133 52 7 13.5 

Infectious Diseases hsa05134 43 6 14 

Infectious Diseases hsa05100 34 5 14.7 

Infectious Diseases hsa05144 34 5 14.7 

Infectious Diseases hsa05152 95 15 15.8 

Infectious Diseases hsa05162 73 12 16.4 

Infectious Diseases hsa05131 36 6 16.7 

Infectious Diseases hsa05150 30 5 16.7 

Infectious Diseases hsa05110 17 3 17.6 

Infectious Diseases hsa05120 33 6 18.2 

Infectious Diseases hsa05132 44 8 18.2 

Infectious Diseases hsa05142 55 10 18.2 

Infectious Diseases hsa05143 24 6 25 

Lipid Metabolism hsa00590 25 2 8 

Lipid Metabolism hsa00071 17 3 17.6 

Lipid Metabolism hsa00564 32 6 18.8 

Lipid Metabolism hsa00600 21 4 19 

Lipid Metabolism hsa00140 25 5 20 

Lipid Metabolism hsa00561 15 3 20 

Lipid Metabolism hsa00565 10 2 20 

Membrane Transport hsa02010 43 6 14 

Metabolism of Cofactors and 
Vitamins hsa00860 18 2 11.1 

Metabolism of Cofactors and 
Vitamins hsa00830 19 3 15.8 

Metabolism of Cofactors and 
Vitamins hsa00760 14 3 21.4 

Metabolism of Other Amino Acids hsa00480 19 3 15.8 

Metabolism of Other Amino Acids hsa00410 17 4 23.5 

Nervous System hsa04725 32 3 9.4 

Nervous System hsa04724 40 4 10 

Nervous System hsa04722 71 9 12.7 

Nervous System hsa04727 26 4 15.4 

Nervous System hsa04720 24 4 16.7 

Nervous System hsa04723 24 4 16.7 

Nervous System hsa04728 40 7 17.5 

Nervous System hsa04730 22 4 18.2 
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Nervous System hsa04726 37 7 18.9 

Nervous System hsa04721 16 4 25 

Neurodegenerative Diseases hsa05014 35 4 11.4 

Neurodegenerative Diseases hsa05016 47 6 12.8 

Neurodegenerative Diseases hsa05010 51 9 17.6 

Neurodegenerative Diseases hsa05012 26 5 19.2 

Neurodegenerative Diseases hsa05020 20 4 20 

Nucleotide Metabolism hsa00230 47 6 12.8 

Nucleotide Metabolism hsa00240 31 5 16.1 

Replication and Repair hsa03440 19 2 10.5 

Replication and Repair hsa03420 29 4 13.8 

Replication and Repair hsa03030 33 6 18.2 

Replication and Repair hsa03460 40 8 20 

Replication and Repair hsa03410 23 5 21.7 

Replication and Repair hsa03430 13 3 23.1 

Sensory System hsa04742 18 2 11.1 

Sensory System hsa04740 15 2 13.3 

Sensory System hsa04744 12 3 25 

Signal Transduction hsa04010 117 11 9.4 

Signal Transduction hsa04150 24 3 12.5 

Signal Transduction hsa04020 36 5 13.9 

Signal Transduction hsa04310 60 10 16.7 

Signal Transduction hsa04370 28 5 17.9 

Signal Transduction hsa04330 21 4 19 

Signal Transduction hsa04350 42 8 19 

Signal Transduction hsa04630 26 5 19.2 

Signal Transduction hsa04070 25 5 20 

Signal Transduction hsa04012 46 10 21.7 

Signal Transduction hsa04340 17 4 23.5 

Signaling Molecules and Interaction hsa04060 244 24 9.8 

Signaling Molecules and Interaction hsa04512 40 4 10 

Signaling Molecules and Interaction hsa04080 90 11 12.2 

Signaling Molecules and Interaction hsa04514 80 13 16.3 

Substance Dependence hsa05031 28 5 17.9 

Substance Dependence hsa05030 26 5 19.2 

Transcription hsa03040 70 9 12.9 

Transcription hsa03022 33 6 18.2 

Transcription hsa03020 28 6 21.4 

Translation hsa03008 53 2 3.8 

Translation hsa03013 94 6 6.4 
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Translation hsa00970 23 2 8.7 

Translation hsa03010 76 8 10.5 

Translation hsa03015 49 7 14.3 

Transport and Catabolism hsa04145 58 5 8.6 

Transport and Catabolism hsa04142 61 7 11.5 

Transport and Catabolism hsa04146 61 8 13.1 

Transport and Catabolism hsa04144 79 12 15.2 

Transport and Catabolism hsa04140 14 3 21.4 

Xenobiotics Biodegradation and 
Metabolism hsa00983 20 3 15 

Xenobiotics Biodegradation and 
Metabolism hsa00980 16 3 18.8 

Xenobiotics Biodegradation and 
Metabolism hsa00982 13 3 23.1 
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Supplementary table 2. Cellular level analysis of KEGG pathways: cell cycle (hsa04110), 

oocyte meiosis (hsa04114) and progesterone-mediated oocyte maturation (hsa04914)*. 

Cohesiveness of genes shared by at least 2 of the 3 pathways. Genes with cohesive 

barcodes for a given pathway are shown in green. Genes with outlier barcodes are 

highlighted in red. Genes shown in grey are not present in the pathway. 

KEGG 
Identifier 

Uniprot Identifier Cell cycle Oocyte meiosis Progesterone-
mediated oocyte 
maturation 

hsa:9088 PMYT1_HUMAN 1 0 0 

hsa:1017 CDK2_HUMAN 0 0 1 

hsa:699 BUB1_HUMAN 0 0 0 

hsa:5347 PLK1_HUMAN 0 0 0 

hsa:995 MPIP3_HUMAN 0 1 -1 

hsa:9126 SMC3_HUMAN 0 0 -1 

hsa:891 CCNB1_HUMAN 0 0 -1 

hsa:9700 ESPL1_HUMAN 0 0 -1 

hsa:4085 MD2L1_HUMAN 0 0 -1 

hsa:991 CDC20_HUMAN 0 0 -1 

hsa:898 CCNE1_HUMAN 0 0 -1 

hsa:8454 CUL1_HUMAN 0 0 -1 

hsa:64506 CPEB1_HUMAN -1 1 0 

hsa:3480 IGF1R_HUMAN -1 1 0 

hsa:3630 INS_HUMAN -1 1 0 

hsa:4342 CCNB2_HUMAN -1 0 1 

hsa:9133 MOS_HUMAN -1 0 1 

hsa:5604 MP2K1_HUMAN -1 0 0 

hsa:5241 PRGR_HUMAN -1 0 0 

hsa:993 MPIP1_HUMAN 0 -1 0 

hsa:51343 FZR_HUMAN 0 -1 1 

 

* The cell cycle and oocyte meiosis pathways are well conserved in most animals. In 

contrast, the exact nature of oocyte maturation varies in different species, since the females 

of some species produce thousands of eggs at a time, while in others, females produce 

relatively few mature eggs6. The oocytes of most animal species arrest during meiotic 

prophase and complete meiosis in response to intercellular signaling in a process called 

meiotic maturation. Although the signals are different from species to species (e.g. steroid 

hormones in frogs and fishes, removal of a follicular inhibitor in mammals), they all 

activate signaling pathways that converge to the same target: the activation of the 

universal eukaryotic inducer of M-phase, MPF, a complex formed of the Cdk1 kinase, and 

Cyclin B1. 
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Supplementary table 3: Cellular level analysis of KEGG pathways: Toll-like receptor signaling 

(hsa4620), NOD-like receptor signaling (hsa4621), RIG-I-like receptor signaling (hsa4622) and 

cytosolic DNA sensing (hsa4623)*. Cohesiveness of genes shared by at least 2 of the 4 

pathways. Genes with cohesive barcodes for a given pathway are shown in green. Genes 

with outlier barcodes are highlighted in red. Genes shown in grey are not present in the 

pathway. 

KEGG 
Identifier 

Uniprot Identifier Toll-like NOD-like RIG-I-like DNA 
sensors 

hsa:1147 IKKA_HUMAN 1 0 0 0 

hsa:8517 NEMO_HUMAN 0 0 1 -1 

hsa:6885 M3K7_HUMAN 1 1 0 -1 

hsa:3576 IL8_HUMAN 1 0 0 -1 

hsa:7124 TNFA_HUMAN 1 0 0 -1 

hsa:841 CASP8_HUMAN 0 0 0 -1 

hsa:7189 TRAF6_HUMAN 0 0 0 -1 

hsa:3551 IKKB_HUMAN 0 0 0 -1 

hsa:3553 IL1B_HUMAN 1 1 -1 1 

hsa:6352 CCL5_HUMAN 0 1 -1 0 

hsa:5970 TF65_HUMAN 0 1 -1 0 

hsa:3569 IL6_HUMAN 0 1 -1 0 

hsa:4792 IKBA_HUMAN 0 0 -1 0 

hsa:3665 IRF7_HUMAN 0 -1 0 1 

hsa:8737 RIPK1_HUMAN 0 -1 1 0 

hsa:3627 CXL10_HUMAN 0 -1 0 0 

hsa:3661 IRF3_HUMAN,  0 -1 0 0 

hsa:29110 TBK1_HUMAN 0 -1 0 0 

hsa:9641 IKKE_HUMAN 0 -1 0 0 

hsa:3456 IFNB_HUMAN 0 -1 0 0 

hsa:10454 TAB1_HUMAN 0 0 -1 -1 

hsa:8772 FADD_HUMAN 0 -1 1 -1 

hsa:7187 TRAF3_HUMAN 1 -1 0 -1 

hsa:6300 MK12_HUMAN 0 -1 0 -1 

hsa:29108 ASC_HUMAN -1 0 -1 0 

hsa:834 CASP1_HUMAN -1 0 -1 0 

hsa:3606 IL18_HUMAN -1 0 -1 0 

hsa:340061 TM173_HUMAN -1 -1 0 0 

hsa:57506 MAVS_HUMAN -1 -1 0 0 

hsa:23586 DDX58_HUMAN -1 -1 0 0 

 

* The innate immune system relies on pattern recognition receptors (PRRs) that recognize 

different pathogens, such as viruses or bacteria, and that trigger intracellular signaling 

cascades ultimately culminating in the expression of proinflammatory molecules7. Toll-like 
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receptors are membrane-bound PRRs, located either at the cell surface where they mainly 

recognize bacterial products, or in intracellular compartments where they are involved in 

recognition of nucleic acids. Cytosolic PRRs, including RIG-I-like receptors and NOD-like 

receptors, mainly recognize intracellular RNA. Finally, cytoplasmic localization of DNA by 

cytosolic DNA sensors seems to be involved in mounting a response to both bacteria and 

DNA viruses. Three major signaling pathways responsible for mediating TLR-induced 

responses include nuclear factor kappa-B (NF-κB), mitogen-activated protein kinases (MAPKs), 

and IFN regulatory factors (IRFs). The RLR pathway involves two different signaling 

pathways, either NF-κB or IRFs. NOD protein signaling involves activation of NF-κB and 

MAPK. Regarding cytosolic DNA sensors, strong evidence suggests that these receptors 

signal to IRFs.  
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