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Achieving high accuracy in orthology inference is essential 
for many comparative, evolutionary and functional genomic 
analyses, yet the true evolutionary history of genes is generally 
unknown and orthologs are used for very different applications 
across phyla, requiring different precision–recall trade-offs.  
As a result, it is difficult to assess the performance of orthology 
inference methods. Here, we present a community effort to 
establish standards and an automated web-based service to  
facilitate orthology benchmarking. Using this service, we  
characterize 15 well-established inference methods and  
resources on a battery of 20 different benchmarks. Standardized  
benchmarking provides a way for users to identify the most 
effective methods for the problem at hand, sets a minimum 
requirement for new tools and resources, and guides the 
development of more accurate orthology inference methods.

Evolutionarily related genes (homologs) across different species 
are often divided into gene pairs that originated through specia-
tion events (orthologs) and gene pairs that originated through 
duplication events (paralogs)1. This distinction is useful in a 
broad range of contexts, including phylogenetic tree inference, 
genome annotation, comparative genomics and gene function 
prediction2–4. Accordingly, dozens of methods5 and resources6–8 
for orthology inference have been developed.

Because the true evolutionary history of genes is typically 
unknown, assessing the performance of these orthology infer-
ence methods is not straightforward. Several indirect approaches 
have been proposed. Based on the notion that orthologs tend 
to be functionally more similar than paralogs (a notion now 
referred to as the ortholog conjecture9–12), Hulsen et al.13 used 
several measures of functional conservation (coexpression levels,  
protein–protein interactions and protein domain conservation) to 
benchmark orthology inference methods. Chen et al.14 proposed 
an unsupervised learning approach based on consensus among 
different orthology methods. Altenhoff and Dessimoz15 intro-
duced a phylogenetic benchmark measuring the concordance 
between gene trees reconstructed from putative orthologs and 
undisputed species trees. More recently, several ‘gold standard’ 
reference sets, either manually curated16,17 or derived from trusted 
resources18, have been used as benchmarks. Finally, Dalquen  
et al.19 used simulated genomes to assess orthology inference 
in the presence of varying amounts of duplication, lateral gene  
transfer and sequencing artifacts.

This wide array of benchmarking approaches poses consider-
able challenges to developers and users of orthology methods. 
Conceptually, the choice of an appropriate benchmark strongly 
depends on the application at hand. Practically, most methods are 
not available as stand-alone programs and thus cannot easily be 
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compared on a common set of data. Likewise, some benchmarks 
rely on complex pipelines that may be difficult to implement. If 
public results are available as part of a publication or a resource, 
inconsistent genome releases or identifiers severely complicate 
comparisons. Some methods or benchmarks can also be compu-
tationally costly to run. As a result, users cannot easily identify 
appropriate tools, and methodological progress is hampered.

Here, we report on a community effort to standardize and 
facilitate orthology benchmarking. For this effort, we estab-
lished a shared reference data set and developed a web-based 
service for automatic orthology benchmarking (http://orthology.
benchmarkservice.org). We then used these resources to run a 
community experiment to assess 15 well-established orthology 
inference methods and resources on a wide array of phylogenetic 
and functional benchmarks. By providing a way to automatically 
include new methods and disseminate results publicly, we hope to 
maintain an up-to-date and comprehensive assessment of state-
of-the-art orthology tools.

RESULTS
Here, we provide an overview of the benchmark service and 
orthology inference methods and then present benchmarking 
results in three categories: species discordance tests, reference 
gene trees and functional tests. The benchmark service alone 
required the evaluation of 70,390,701 orthologous relationships 
and the inference of 233,000 phylogenetic trees.

Benchmark service
To automate ortholog benchmarking on a broad range of tests 
(detailed below), we developed a publicly accessible web service 
(Fig. 1). Using this workflow, an orthology method developer first 
infers orthologs using the Quest for Orthologs (QfO) reference 
proteome data set. Orthology inference methods vary in the kind 
of output they provide—e.g., labeled gene trees and orthologous 
groups—but it is usually possible to reduce these to orthologous 
pairs, which thus constitute a natural ‘common denominator’ for 
benchmarking. The benchmark service accepts these pairwise 
orthologs predictions in OrthoXML20 or tab-delimited format. 
As the OrthoXML format also supports InParanoid-style clusters 
and hierarchical orthologous groups, the service can automati-
cally convert these to pairwise relationships.

Next, the service ensures that only predictions among valid  
reference proteomes are provided (with scoring implicitly assum-
ing that the uploaded inferences are complete). Benchmarks are 
then selected and run in parallel; some may take up to several 
hours. Finally, statistical analyses determine the method’s per-
formance on each benchmark data set. Where possible, perform-
ance is measured in terms of precision (i.e., positive predictive 
value: the proportion of ortholog predictions that are correct) 
and recall (i.e., sensitivity, or true positive rate: the proportion 
of actual orthologs that are correctly predicted). Raw data and 
results are stored and provided to the submitter, who can choose 

to make the results publicly available. In order to achieve trans-
parency and encourage improvements, we have released source 
code under an open source license (Mozilla Public License 
Version 2.0) at https://github.com/qfo/benchmark-webservice 
(also Supplementary Software).

Methods investigated
We investigated a broad array of well-established methods, includ-
ing three tree-based methods: Ensembl Compara21, PANTHER 
8.0 (ref. 22) and PhylomeDB23; seven graph-based methods (i.e., 
based on pairwise comparisons): Best Reciprocal Hits24, Reciprocal 
Smallest Distance (RSD)25, EggNOG26, Hieranoid27, InParanoid28, 
OMA29, OrthoInspector30 and a meta-method incorporating both 
tree- and graph-based methods, MetaPhOrs31. For some methods, 
multiple variants are included in the analysis (Online Methods). 
Each method inferred orthologs on the 754,149 protein sequences 
from 66 reference genomes except for MetaPhOrs, which inferred 
orthologs on all but three prokaryotes (Online Methods).

Generalized species tree discordance test
Orthology was first defined in the context of species tree  
inference, which requires genes related through speciation1. The 
species tree discordance test exploits this relationship by assessing 
the accuracy of orthologs in terms of the accuracy of the species 
tree that can be reconstructed from them15. The original proto-
col was limited to species tree ‘comb’ topology (a specific type 
of tree in which all bifurcations occur along a single path) and 
a small number of taxa (up to six). Here we overcome these two 
limitations by generalizing the orthology sampling procedure to 
any tree topology and employing larger reference trees from the 
SwissTree initiative. Furthermore, to minimize the possibility of 
gene–species tree discordance due to incomplete lineage sorting,  
we avoided sampling orthologs among species separated by 
branches shorter than 10 million years (myr) (Online Methods 
and Supplementary Fig. 1).

We observed different trade-offs between average discordance 
(Robinson–Foulds32 distance, as a proxy for the false discovery 
rate, the complement of precision) and the number of trees that 
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Figure 1 | The Orthology Benchmark service facilitates assessment and 
comparison of orthology inference methods. Orthology method developers 
run their methods on a reference proteome set and submit the inferred 
orthologs to the service. The predictions are subjected to a battery of 
phylogenetic and functional tests, and the results are returned to the 
method developer, who can choose to disclose them publicly.
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can be sampled (proxy for recall) across all methods (Fig. 2). 
An ideal method would be placed in the lower right corner of  
Figure 2. When considering eukaryotes, results with the highest 
precision and lowest recall were obtained with OMA groups. At the 
other extreme, PANTHER 8.0 (all) tended to yield the highest recall 
and lowest precision results. Among the more balanced methods, 
no method consistently obtained a better balance than the other 
methods across all data sets, but Orthoinspector, InParanoid and 
PANTHER (LDO only) performed well overall. In terms of broad 
categories, there is no obvious systematic difference in perform-
ance between tree-based (Ensembl, PANTHER and PhylomeDB) 
and graph-based methods (the rest) or between methods rely-
ing on species tree (Ensembl, PANTHER, PhylomeDB, OMA 
GETHOGs, Hieranoid and EggNOG) and methods that do not.  
The latter point is perhaps unexpected, as one could expect 
knowledge of the species tree to provide an ‘unfair’ advantage in 
this particular benchmark. If there is any such effect, our results 
indicate that it is small.

These trends persisted when we measured recall in terms of the 
number of inferred orthologs (Supplementary Fig. 2) or when 
we focused on other clades (Supplementary Figs. 3–5). Among 
vertebrates, the results were largely consistent, but we noted 
minor differences in the ranking of individual methods, with 
InParanoid Core yielding the highest precision and MetaPhOrs 
the highest recall (Supplementary Fig. 3). We also benchmarked 
the methods for their ability to recover ortholog relationships 
among ‘universal’ genes by applying the species discordance 
test on a tree spanning across archaea, bacteria and eukaryotes. 
Once again, there were slight variations in the precise ranking 
of methods, but the overall trends were very similar to what was 
observed for eukaryotes only (Supplementary Fig. 5). Finally, if 
we included (high-confidence) short branches as well, the average 
concordance of reconstructed trees substantially decreased, both 
because short branches tend to be harder to infer and because of 
potential incomplete lineage sorting around them; however, the 

relative position of the methods remained practically unchanged, 
which was a further indication of the robustness of the benchmark 
(Supplementary Fig. 6).

Reference gene trees
The second series of orthology benchmarks employs evolution-
ary relationships of gene pairs derived from annotated high-
quality gene trees. Such reference trees are inferred through a 
careful combination of computational inference and expert cura-
tion: results obtained at each step of the tree inference pipeline 
(homolog identification, alignment, tree inference and gene– 
species tree reconciliation) are individually inspected, poor-quality  
sequences are excluded from the analysis and results are typi-
cally assessed using multiple models. This manual oversight is 
expected to yield gene phylogenies with high statistical support 
and topological consistency.

Concordance of orthology predictions was assessed with two 
sets of trees. The first was SwissTree16,33, a small collection of 
large- and high-confidence gene family phylogenies with different 
types of challenges for orthology prediction and species from all 
domains. The second, TreeFam-A34, consisted of a larger set of 
metazoan gene trees and thus covered a taxonomically restricted 
but wider range of protein families. Results obtained from the two 

benchmarks were quite similar (Fig. 3). On 
these benchmarks, virtually no trade-off 
between precision and recall appeared to 
be necessary. The best-performing meth-
ods were the ones that adopted a balanced 
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precision–recall strategy, with MetaPhOrs 
doing particularly well. Methods with a 
more skewed precision–recall strategy (in 
particular, stringent OMA groups and per-
missive PANTHER (all)) fared poorly in 
comparison. This may be due in part to the 
nature of the reference gene tree data set, which focuses on gene 
families with a tractable evolutionary history. On ambiguous phyl-
ogenies, mistakes would become unavoidable and a skewed strategy  
could become preferable, depending on the application.

Functional benchmarks
The third series of benchmarks evaluated orthology in terms 
of functional similarity. Although orthology is an evolutionary 
and not a functional relationship, we chose to include functional 
benchmarks for two reasons. First, for similar levels of sequence 
divergence, orthologs have been shown to be moderately (but 
significantly) more conserved than paralogs in terms of Gene 
Ontology (GO) annotation similarity11. For a given evolution-
ary distance, more accurate orthology inference is thus likely to 
be correlated with more functionally similar gene pairs. Second, 
many users are interested in using orthologs to identify function-
ally conserved genes; for this purpose, functional benchmarks are 
directly relevant.

We assessed functional similarity based on experimentally 
backed annotations from the UniProt–Gene Ontology Annotation 
(GOA) database35 and Enzyme Commission (EC) numbers from 
the ENZYME database36. Though the two benchmarks con-
sider different aspects of gene function, the results were largely  
consistent. In both cases, orthology inference methods showed 
a clear trade-off between precision (measured as the average 
Schlicker semantic similarity37 of functional annotations asso-
ciated with orthologs) and recall (measured as the number of 
ortholog relationships predicted; Fig. 4). The only exception was 
with the EC number benchmark, where MetaPhOrs falls beneath 
the ‘Pareto frontier’ (the frontier defined by the methods that are 
not outperformed by any other method in both precision and 
recall). However, MetaPhOrs is also the only method with missing 
taxa, and the three missing taxa contain a substantial number of 
genes with EC annotations (827 in total). This lack of EC annota-
tions has a negative effect on the recall.

DISCUSSION
The Orthology Benchmark service overcomes many of the  
practical complications previously associated with orthology 
benchmarking. It enables systematic comparison of a new method 
with state-of-the-art approaches on to a wide range of bench-
marks. It replaces current practice, which typically includes fewer 
methods, fewer tests and less empirical data.

By relying on a common set of data for all methods, the 
benchmark service ensures that the results obtained by different  

methods are directly comparable. Previous benchmarking 
efforts required painstaking and error-prone mapping of pro-
teins between different sources, releases and choice of alternative  
splicing variants. In contrast, by relying on a common set of data 
for all methods, the benchmark service ensures that the results 
obtained by different methods are directly comparable. The only 
caveat is that, since proteomes vary in quality and analytical  
difficulty, the results on the benchmark data set may not entirely 
reflect the quality of the orthology assignments otherwise  
provided by each resource. The choice of species included in the 
QfO reference proteomes (Online Methods) requires a compro-
mise between (i) increasing the number of proteomes to make 
the benchmark set more representative of current resources and  
(ii) keeping the number of proteomes low to facilitate and encour-
age new submissions to the benchmark.

Submissions performed on a subset of the proteomes are discour-
aged, as all missing predictions are counted as false negatives. This 
provides an incentive for submitters to analyze the entire reference 
proteome data set. We considered alternative ways of handling 
submissions on partial data, but these approaches had major flaws. 
For example, one alternative was to extrapolate scores obtained 
on the subset of proteomes considered in a particular submission 
to all data. However, this approach could introduce a bias in the 
analyses (e.g., some methods only predict orthologs for ‘easy’ pairs 
of proteomes). Another alternative was to restrict comparisons to 
the intersection of proteomes analyzed by all methods. However, 
this approach results in an excessive waste of information, as the 
intersection can only decrease with each additional method.

Overall, results obtained across multiple phylogenetic and  
functional tests corroborated previous observations that the main 
difference among the established orthology inference methods  
lies in the trade-off they produce in terms of precision and 
recall13,15,17. However, this trade-off was not present in the refer-
ence gene tree test, perhaps because sequences with ambiguous 
location are typically excluded from these hand-curated trees. On 
these reference trees, the meta-method MetaPhOrs performed 
particularly well. The analysis also confirmed that the widely used 
reciprocal best hit approach has a relatively high precision but a 
relatively low recall38,39. Other methods fill different niches, with 
OMA group and PANTHER (all) often lying at the two extremes 
of the precision–recall trade-off. Among the more balanced 
approaches, InParanoid, Hieranoid and OrthoInspector showed 
solid performance in most benchmarks.

The decision of whether to favor a skewed or a balanced 
approach to the precision–recall trade-off strongly depends on 
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the application. For instance, hypothesis-generating analyses may 
favor a high recall, while phylogenomic species tree inference 
typically requires high precision. Because of this, we refrained 
from computing a combined score, which would necessarily entail 
a statement of preference with respect to this trade-off.

To be deemed competitive, a method should ideally reach or 
exceed the Pareto frontier in at least a subset of the benchmarks. 
If it does not, the benchmark service may help uncover bugs or 
deeper flaws. Analogous to unit testing in software engineering, 
benchmarking can also provide quality control for new releases 
of established resources. In the course of the present community 
benchmarking effort, over a hundred sets of predictions were sub-
mitted to the service. Many submitters did not make their results 
publicly available, presumably after discovering poor outcome in 
some of the benchmarks. This clearly demonstrates the effective-
ness of the benchmark service for quality control.

The bane of benchmarking is circularity. Despite our best efforts, 
not all circularity could be avoided. Some methods used knowl-
edge of the species tree in their inference; however, this potentially 
unfair advantage produced a negligible difference in performance 
for these methods. More generally, many methods were trained 
or fine-tuned using some of the benchmarks considered here. 
For instance, parameters of the meta-method MetaPhOrs were 
in part trained using TreeFam-A31. Similarly, the latest versions 
of InParanoid28 and PhylomeDB23 used the benchmark service 
for parameter fine-tuning. As for the functional benchmarks, 
although GO annotations derived from sequence comparisons 
were excluded, experiments are often guided by sequence similar-
ity to proteins with known function. Thus, even when restricting 
analyses to experimentally backed GO annotations, we cannot 
avoid circularity entirely. However, because the benchmarks are 
collectively underpinned by a large amount of data from a broad 
range of species (tens of thousands of trees and hundreds of thou-
sands of pairs of functional annotations), the risk of overfitting 
seems low, and this potential risk will be monitored by the QfO 
benchmarking working group. New benchmarks may be intro-
duced over time to detect and discourage overfitting.

Presently, the benchmark service uses orthologous gene pairs as 
‘common denominators’ among all the methods. However, many 
resources provide richer outputs—such as reconciled gene trees or 
hierarchical orthologous groups—and may indeed be optimized 
for these. The performance on pairwise data is thus not entirely 
representative of what the data offer. In the future, however, the 
benchmark service could be extended to evaluate these richer, 
more specific orthology formats as well. Similarly, the benchmark 
service could also be extended to take into account confidence 
scores or posterior probabilities, which are particularly relevant 
to likelihood-based orthology inference methods40,41.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Quest for orthologs reference proteomes and species tree. The 
QfO consortium has defined a consensus data set of proteomes 
and common file formats6,7 to be used by diverse orthology  
inference methods, allowing for standardized benchmarks 
and aiding integration of multiple ortholog sources. The QfO 
Reference Proteomes data sets were created as a collection of data 
providing a representative protein for each gene in the genome of 
selected species. Such data sets have been generated annually from 
the UniProt Knowledgebase (UniProtKB) database42 for the past 
five years. To this end, a gene-centric pipeline has been developed 
and enhanced over these years by UniProt. The QfO Reference 
Proteomes are a manually compiled subset of the UniProt refer-
ence proteomes, comprising well-annotated model organisms and 
organisms of interest for biomedical research and phylogeny, with 
the intention to provide broad coverage of the tree of life. These 
complete, nonredundant reference proteomes are publicly avail-
able at ftp://ftp.ebi.ac.uk/pub/databases/reference_proteomes/
QfO. The data sets are provided either in SeqXML20 format or as 
a collection of FASTA files.

The benchmarking effort reported here uses the reference 
proteomes data set released in 2011, which comprises 754,149 
nonredundant protein sequences from 66 species (40 eukaryotes 
and 26 bacteria–archaea).

The reference species tree used in this study was produced by 
the QfO species tree working group, which surveyed the literature 
to establish a well-supported tree topology for the 66 species43 
(Supplementary Fig. 1). The internal nodes of this reference spe-
cies tree have assigned confidence levels based on the agreement 
among the resources surveyed (L90: congruent, significant branch 
support; L70: congruent; L50: one alternative species tree topol-
ogy; L30: default level; L10: two or more alternative species tree 
topologies have been reported; for more detail, see Boeckmann  
et al.43). The latest version of the tree can be retrieved from 
http://swisstree.vital-it.ch/species_tree. To minimize the chance 
of including cases of incomplete lineage sorting in the species tree 
discordance benchmark, we estimated the evolutionary times of 
all internal branches using the timetree resource44 and collapsed 
branches that were shorter than 10 myr.

Orthology databases and methods. EggNOG26 (http://eggnogdb.
embl.de) is a database of Orthologous Groups (OGs) and func-
tional annotation covering prokaryotic and eukaryotic species. 
Since version 4.1, the EggNOG method is also capable of produc-
ing fine-grained (for example, pairwise) orthology predictions 
based on the automated analysis of phylogenetic trees. For this  
study, the complete set of 66 reference proteomes was independ-
ently analyzed using the EggNOG pipeline, which involved  
1) joining proteins into inparalogous groups from closely related 
species and 2) de novo reconstruction of 38,513 OGs by cluster-
ing the obtained inparalogous groups based on triangles of their 
reciprocal best hits45. Phylogenetic analysis and automated tree 
interpretation for each OG was subsequently performed using the 
workflow described in PhylomeDB22 as implemented in the ETE 
Toolkit v2.3 (ref. 46). The phylogenetic approach used included 
testing three aligners (MAFFT47 v6.861b, Muscle48 v3.8.31 and 
Clustal Omega49 v1.2.1) and five evolutionary models (LG, WAG, 
JTT, VT and MtREV); applying alignment consensus and soft 
trimming techniques (M-Coffee50 v10, trimAl51 v1.3); and using 

maximum likelihood tree inference (PhyML52 v3). This workflow 
is labeled as eggnog41 when using the ETE-build command and 
was applied in a per-OG basis. Pairwise orthology predictions 
were derived from each tree using the species overlap algorithm53 
after rooting trees to midpoint. The predictions were submitted 
to the benchmark service in July 2015.

Ensembl Compara21 uses a gene–species tree reconcilia-
tion pipeline. The predictions were run using the code released  
in version 81 of the Ensembl (July 2015). However, Treebest  
(the software used to build phylogenetic trees) had to be adapted 
to accept alignments of protein sequences. Treebest makes a  
consensus out of trees built with various phylogenetic methods 
and some of them required nucleotide sequences, which were not 
provided in the QfO data set. The list of maximum-likelihood  
models and distance methods (used for neighbor joining) 
was thus updated to: WAG, JTT and Dayhoff instead of WAG  
and HKY (for maximum likelihood), and JTT, Kimura and mixed 
amino acid models instead of dN, dS and mixed nucleotide  
models (for neighbor joining). The predictions were submitted to 
the benchmark service in June 2015. An older submission based 
on version 66 of the Ensembl code (June 2011) is also present on 
the benchmark service.

Hieranoid27 performs pairwise orthology analysis using 
InParanoid at each node in a guide (species) tree as it progresses 
from its leaves to the root. This concept reduces the total runtime 
complexity from a quadratic to a linear function of the number of 
species. We ran Hieranoid 2.0. Hieranoid outputs ortholog groups 
structured as species trees with orthologs at all levels, hence there 
can be many outparalogs within an ortholog group. The trees were 
therefore parsed to extract ortholog pairs only at the last common 
ancestor of two species, for all species pairs. The predictions were 
submitted to the benchmark service in April 2015.

InParanoid28 is a graph-based algorithm that aims to generate 
orthologous groups that include all inparalogs but no outpara-
logs between species pairs. Version 4.1 of the algorithm was run 
with default parameters. Two variants were tested in this study: 
the regular InParanoid output containing all predicted pairs of 
orthologs (labeled InParanoid in the plots) and a high-confidence 
set including only orthologs with InParanoid’s maximum confi-
dence score of 1.0 (labeled Inparanoid (core)). The predictions 
were submitted to the benchmark service in June 2011.

MetaPhOrs31 (Meta Phylogeny-based Orthologs) is a repository 
of orthologs and paralogs that were computed using phylogenetic 
trees available in several databases or computed from graph-based 
orthologous groups. For each orthology–paralogy prediction, 
MetaPhOrs (http://orthology.phylomedb.org/) provides two 
reliability scores: Evidence Level (informing about number of 
repositories from which prediction is retrieved) and Consistency 
Score (defining overall agreement of source databases about given 
prediction). MetaPhOrs does not include predictions for the three 
reference genomes Streptomyces coelicolor, Thermotoga maritima 
and Pyrococcus kodakaraensis (strain KOD1). The predictions 
were submitted to the benchmark service in February 2013.

OMA29 (Pairs, Groups, HOGs) is a publicly available resource 
(http://omabrowser.org/) that provides orthology predictions 
among thousands of proteomes from all domains of life. OMA 
uses evolutionary distance estimates from Smith–Waterman align-
ments to infer orthologs. A distinct feature among graph-based 
methods is the witness of nonorthology step in its pipeline, where 
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cases of differential gene losses get detected. OMA provides three 
different groupings of orthologs: (i) the raw pairwise ortholog 
relationships form the OMA Pairs, a gene-centric view that lists all 
the orthologs for a given gene. (ii) OMA Groups, a very stringent 
type of grouping where all member proteins are orthologous to 
one another within a group. OMA Groups have been designed 
mainly for species tree inference purposes, as gene trees built 
from them should be congruent with the species tree. (iii) Lastly, 
we constructed hierarchical orthologous groups (OMA HOGs). 
These are nested groups that contain genes that descend from a 
single common ancestral gene within a given taxonomic range 
using the GETHOGs algorithm54. The predictions were submitted 
to the benchmark service in June 2011 (OMA pairs and groups) 
and in March 2013 (OMA HOGs).

OrthoInspector30 is a database of precomputed orthology and 
inparalogy relationships and a stand-alone package allowing large-
scale predictions of orthology between thousands of proteomes 
(http://lbgi.fr/orthoinspector/). The resource has recently under-
gone a major new release, with improved speed and visualisation 
tools, but the inference algorithm is unchanged from the initial 
graph-based method described in Linard et al.55. The predictions 
were submitted to the benchmark service in June 2011.

PANTHER 8.022 is based on version 8.0 of the PANTHER data-
base (http://pantherdb.org), released in 2012 (the current version 
is 10.0, released in 2015). Family membership of each sequence 
is based on HMM scoring to the PANTHER ‘library’ of HMMs 
(at both the family and subfamily levels). Sequences were aligned 
with MAFFT56 and the resulting alignment was used to construct 
phylogenetic trees with the GIGA program57. GIGA (version 1.1 
was used for PANTHER version 8.0) uses a species tree to guide 
tree construction, and all nodes in the tree are labeled as specia-
tion or gene duplication events; these labeled nodes are used to 
infer orthologs (pairs of genes with a speciation event as their 
common ancestor). PANTHER predicts two types of orthologs: 
least-diverged orthologs (LDO) and other orthologs (O). LDO 
pairs can be simplistically thought of as ‘the same gene’ in two 
different species. Formally, the two genes created by each gene 
duplication event in the tree are treated asymmetrically: the least 
diverged duplicate (the one with the shortest branch immediately 
following the duplication) remains in the same LDO group as 
its ancestor, while the other duplicate founds a new LDO group. 
The benchmarking was performed on either LDO only, or all 
orthologs (including both LDO and O). The predictions were 
submitted to the benchmark service in February 2013.

PhylomeDB23 (http://phylomedb.org/) is a publicly available 
repository of phylomes, i.e., the complete collection of phylog-
enies for all genes of a given species in a predefined evolution-
ary context. PhylomeDB is unique among other repositories in 
that it follows an approach that is both gene centric and genome 
wide. PhylomeDB uses its phylogenetic trees to infer orthology 
and paralogy relationships. For the Quest for Orthologs project, 
42 phylomes were reconstructed using different combinations 
of the 66 species in the benchmark. A total of 458,108 phyloge-
netic trees were generated, which were later combined to provide 
orthology predictions for all proteins included in the benchmark. 
Briefly, each tree was scanned and only the partition of up to 30 
sequences, including the seed protein, was kept. Then, evolution-
ary relationships were computed for those protein sequences based  
on a species overlap approach. Redundant predictions across 

the 42 phylomes were unified using the Consistency Score (CS) 
as implemented in MetaPhOrs (see above). Only those predic-
tions having a Consistency Score greater or equal to 0.5 across 
the whole data set were called orthologs. The predictions were 
submitted to the benchmark service in June 2013.

RBH24 (Reciprocal best hit) is a classic method consisting of 
identifying the pairs of genes with mutually highest alignment 
score between every pair of species. Here, we use reciprocal blastp 
hits as orthologs, with minimum E-value of 1e–2, and we keep 
all hits that are ≥99% of the highest score. The predictions were 
submitted to the benchmark service in January 2016.

RSD25 infers orthology relationships by finding pairs of genes 
whose nearest gene, computed using PAML, is the other gene 
in the pair. Candidates genes are also filtered using BLAST  
E-value and multiple-sequence alignment divergence thresholds. 
This method is implemented in the database RoundUp58, a large-
scale orthology database developed by the Wall Lab. The database 
is no longer maintained, but the source code is still available at 
https://github.com/todddeluca/reciprocal_smallest_distance/.  
To identify orthologs, we ran the algorithm with divergence and 
E-value cutoffs of 0.8 and 1e–5, respectively. The predictions were 
submitted to the benchmark service in February 2012.

Benchmarks. Generalized species tree discordance. The idea 
behind the species tree discordance test is simple. Two genes are 
orthologous if they started diverging through a speciation event. 
Therefore, if we sample putative orthologous genes such that all 
resulting genes are related through speciation events, the resulting 
tree should be congruent with the species tree. Previously, we pre-
sented a sampling strategy for fully imbalanced tree topologies15. 
Here, we extend this idea to arbitrary reference trees, including 
those with soft polytomies (unresolved nodes).

The following procedure is repeated a large number of times. 
We start with a random gene in a random genome. We then 
attempt to sample a maximal path along the tree by selecting 
an orthologous gene in the ‘next’ species in the tour from the 
list of reported orthologs (Supplementary Fig. 7a). If there are 
multiple possibilities in the choice of the ‘next’ species due to soft 
polytomies, or in the choice of the orthologous counterparts due 
to one-to-many or many-to-many orthology, a choice is made 
at random. If there is no predicted ortholog at any step along 
the path, the sample is deemed unsuccessful. Alternatively, if at 
least one orthologous counterpart is predicted at each step, this 
results in a set of n sequences. Assuming that i) the reference tree 
is correct, ii) the retrieved orthologs are all correct and iii) all 
within-species variation is fixed (i.e., no incomplete lineage sort-
ing), it is easy to prove that the unrooted evolutionary tree relating 
these sequences should only contain speciation nodes and should 
therefore be congruent with the reference species tree.

Proof: The n sequences sampled through the circular tour are 
sampled by starting from a random sequence and retrieving n − 1 
pairs of orthologs. By construction, these n − 1 pairs of orthologs 
belong to pairs of species that have distinct last common ancestors 
and thus coalesce in different speciation nodes in the phylogenetic 
tree of these sequences. Therefore, that tree contains at least n − 1  
distinct speciation nodes. However, the rooted, fully-resolved 
evolutionary tree of n species has exactly n − 1 internal nodes. 
Thus, all the internal nodes of the gene tree are speciation nodes. 
Since we assume that there is no incomplete lineage sorting, as 
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long as the input orthologs are correct, the tree relating these 
sequences should be congruent with the species tree.

A least-squares distance tree is reconstructed for each set of 
putative orthologous sequences. After aligning the sequences 
with MAFFT47, maximum likelihood distances and their vari-
ances (using the inverse Fisher information) are estimated using 
the EstimatePam() function in the Darwin programming envi-
ronment59 for each pair of sequences. Next, the gene tree is esti-
mated using Darwin’s MinSquareTree() function, which is a fast 
implementation of the weighted least-squares trees60 constrained 
to non-negative branch lengths61. We have previously shown that 
orthology benchmarking results obtained with such distance trees 
are consistent with more computationally demanding Maximum 
likelihood trees15. The Robinson–Foulds32 distance between  
this gene tree and the reference tree measures the false discovery 
rate, while the total number of trees is used as a proxy of recall. 
Due to the stochastic nature of the algorithm, repeated runs  
of the benchmark may lead to slightly (albeit nonsignificantly) 
different results.

Reference gene trees. Reference gene trees labeled with specia-
tion and duplication events were downloaded from SwissTree 
on March 23, 2015 (http://swisstree.vital-it.ch/) and Treefam-A 
version 7 (http://www.treefam.org/). As sequences analyzed in 
these two resources can differ from those of the QfO reference 
proteomes, sequences were mapped based on gene identifiers or 
sequence identifiers. After mapping, for each family the n(n − 1)/2  
induced pairwise evolutionary relationships were extracted and 
compared with the orthologous predictions from each orthol-
ogy prediction method as follows. Let G = {gi} be the set of all 
genes in the reference gene tree and RO = {(gi, gj) | gi ∈ G, gj ∈ G,  
gi ≠ gj, label(gi,gj) = speciation} the set of true orthologs according 
to the reference tree. Likewise, let RP be the set of nonorthologous 
relations in that family and P = {(gi, gj)}, be the set of all predic-
tions made by the orthology method. With PF = {(gi, gj) | (gi, gj) ∈  
P ∩ gi ∈ G ∩ gj ∈ G}, we denote the set of orthologs where both 
members are part of the reference gene family. Now, the true/false 
positives/negatives are simply TP = PF ∩ RO, FP = PF ∩ RP, FN 
= RO − PF and TN = RP − PF. From these values we can compute 
positive predictive values (PPV) and true positive rate (TPR): PPV 
= |TP|/(|TP| + |FP|), TPR = |TP|/(|TP| + |FN|).

We can further estimate the uncertainties of these rates by treat-
ing them as binomially distributed random variables, for example, 
σ2(PPV) = PPV(1 − PPV)/(|TP| + |FP|). Finally, we combine all 
the families by building averages of the rates. As an example, for 
the positive predictive value this results in, 
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Functional tests.We downloaded the Gene Ontology annotations62 
for all the genes in the reference genomes from the November 
2014 release of UniProt-GOA35 and excluded any annotation with 
a ‘NOT’ qualifier from this set. For the analysis shown here, we 
only use annotations with experimental evidence codes (EXP, IPI, 
IDA, IMP, IGI and IEP). Likewise, we collected the hierarchical 
EC number assignments of the ENZYME database36 maintained 
by Swiss-Prot. The computation of the functional similarities 
between gene pairs is done in the same way for both types of data, 

using the approach of Schlicker et al.37: the semantic similarity 
between annotations sim(i,j) is measured using Lin’s metric63; 
between any two genes, the most similar pairs of annotations are 
identified and averaged, i.e., 

GeneSim p p
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where pi is the set of function annotations associated with  
protein i.

Code availability. The source code is available under an open 
source license (Mozilla Public License Version 2.0) at https://
github.com/qfo/benchmark-webservice.
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