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Abstract 27 

Field-collected specimens of invertebrates are regularly killed and preserved in ethanol, prior 28 

to DNA extraction from the specimens, while the ethanol fraction is usually discarded. 29 

However, DNA may be released from the specimens into the ethanol, which can potentially 30 

be exploited to study species diversity in the sample without the need for DNA extraction 31 

from tissue. We used shallow shotgun sequencing of the total DNA to characterize the 32 

preservative ethanol from two pools of insects (from a freshwater and terrestrial habitat) to 33 

evaluate the efficiency of DNA transfer from the specimens to the ethanol. In parallel, the 34 

specimens themselves were subjected to bulk DNA extraction and shotgun sequencing, 35 

followed by assembly of mitochondrial genomes for 39 of 40 species in the two pools. 36 

Shotgun sequencing from the ethanol fraction and read-matching to the mitogenomes detected 37 

~40% of the arthropod species in the ethanol, confirming the transfer of DNA whose quantity 38 

was correlated to the biomass of specimens. The comparison of diversity profiles of 39 

microbiota in specimen and ethanol samples showed that ‘closed association’ (internal tissue) 40 

bacterial species tend to be more abundant in DNA extracted from the specimens, while ‘open 41 

association’ symbionts were enriched in the preservative fluid. The vomiting reflex of many 42 

insects also ensures that gut content is released into the ethanol, which provides easy access to 43 

DNA from prey items. Shotgun sequencing of DNA from preservative ethanol provides novel 44 

opportunities for characterising the functional or ecological components of an ecosystem and 45 

their trophic interactions. 46 

47 
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Introduction 48 

The exploration of biodiversity using high-throughput sequencing (HTS) opens a path to new 49 

questions and novel empirical approaches. Although initially focusing on microbial diversity 50 

(Sogin et al. 2011), more recent HTS studies have tackled the characterisation of complex 51 

communities of macroscopic organisms (e.g. Fonseca et al. 2010; Ji et al. 2013; Andújar et al. 52 

2015). The high sensitivity of these methods also permits the study of DNA isolated directly 53 

from the environment (eDNA), such as soil (e.g. Andersen et al. 2012) and water (e.g. Jerde 54 

et al. 2011; Thomsen et al. 2012), or ingested DNA from the gut of predators (Paula et al. 55 

2014) or blood-sucking invertebrates (iDNA) (e.g. Schnell et al. 2012). Most studies have 56 

used PCR amplification for targeting particular gene regions and taxonomic groups 57 

(metabarcoding), and result in a set of sequences used for profiling the species mixture (Ji et 58 

al. 2013). As an alternative to metabarcoding, the DNA of such mixtures can also be 59 

characterised by metagenomic shotgun sequencing, in a procedure commonly referred to as 60 

‘genome skimming’ (GS) (Straub et al. 2012) and its extension to metagenomes 61 

(‘metagenome skimming’, MGS) (Linard et al. 2015). Shallow sequencing of the total DNA 62 

and subsequent assembly of reads with genome assemblers preferentially extracts the high-63 

copy number fraction of a sample including the mitochondrial genomes (Gillett et al. 2014; 64 

Andújar et al. 2015; Crampton-Platt et al. 2015; Tang et al. 2015). In addition, MGS can 65 

provide useful information about the species’ nuclear genomes and concomitant biodiversity 66 

such as bacterial symbionts or gut content (e.g. Paula et al. 2014; Linard et al. 2015). 67 

Assemblages of invertebrates, which may be a primary target of such HTS efforts, are 68 

frequently collected into ethanol as preservative in the field until DNA extraction is 69 

performed at some later point. Frequently, multiple conspecific or heterospecific individuals 70 
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and even complete communities are stored together in a single container, under the 71 

assumption that cross-contamination is too low to be detectable in the Sanger sequencing of 72 

the individual specimens. However, reports of PCR amplification of arthropod genes from 73 

ethanol and even from alcoholic beverages indicate that traces of DNA are transferred from 74 

the specimen to the preservative (e.g. Shokralla et al. 2010; Hajibabaei et al. 2012), and with 75 

the much greater sensitivity of single-molecule sequencing, the question about the magnitude 76 

of cross-contamination takes on a new significance. In addition, detecting low concentration 77 

DNAs in the preservative opens exciting new opportunities for the study of bulk biodiversity 78 

samples, as extractions directly from the ethanol may avoid the need for tissue preparations 79 

and the resulting damage to specimens caused by standard methods. This would be 80 

particularly useful for the sequencing of spirit-preserved collections in the world’s natural 81 

history museums. 82 

In a recent metabarcoding study of benthic arthropods, the set of species obtained directly 83 

from the specimen mixture were reported to be detectable also in the ethanol in which these 84 

specimens had been stored (Hajibabaei et al., 2012). However, these PCR-based studies did 85 

not provide a quantitative measure of the amount of transferred DNA. The great sequencing 86 

depth achievable with Illumina sequencing now permits a more direct approach to address the 87 

question about DNA transfer to the ethanol with PCR-free methods by shotgun sequencing of 88 

DNA from the preservative ethanol. This approach could be a straightforward, non-89 

destructive way to study bulk-collected arthropods. In addition, the non-targeted sequencing 90 

of total DNA could also be used to explore specific fractions of the associated biodiversity 91 

that are released into the preservative, e.g. from the gut or attached to the exoskeleton, which 92 

may be different in composition from the directly sequenced specimen. Therefore, shallow 93 
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metagenomic sequencing of preservative ethanol could be used as an alternative tool to study 94 

species diversity and biotic associations. 95 

Here, we conducted shotgun sequencing on DNA extracted from ethanol used as a killing 96 

agent and preservative in field collecting of mixed arthropods (one freshwater and one 97 

terrestrial pool). We also extracted DNA from the ethanol-preserved specimens and 98 

assembled complete mitochondrial genome sequences from shotgun sequencing thereof. 99 

These assemblies served as reference sequences to map the reads from the ethanol fraction, as 100 

a measure of the magnitude of DNA transfer from the specimens to the preservative medium. 101 

In addition, we extensively explored the concomitant biodiversity detectable in the 102 

preservative fluid, with special attention to potential gut content released from the live 103 

specimens when placed in the ethanol. The collection fluid therefore may be enriched for food 104 

items and gut bacteria, but may be impoverished for internal parasites and bacterial 105 

endosymbionts if compared with specimen DNA extractions. Considering that field collection 106 

of bulk arthropod communities into preservative ethanol remains the primary step in most 107 

biodiversity surveys, sequencing of ethanol-derived DNA may be a powerful approach for the 108 

study of species diversity and ecology. 109 

 110 

Materials and Methods 111 

Specimen collection 112 

Two arthropod pools were generated with specimens collected from terrestrial and aquatic 113 

environments in Richmond Park, Surrey, UK (coordinates: 51.456083, -0.264840). Aquatic 114 

arthropods were collected along the edge of a pond using a 5 mm mesh. Live specimens were 115 



 

6 

transferred to a 100 ml sterile vial containing 80 ml of 100% (pure) ethanol to generate a 116 

pooled 'aquatic' sample (Figure 1A). A 'terrestrial' sample was obtained by hand collection of 117 

beetles under stones and logs in the area surrounding the pond. Both were conserved for less 118 

than a day at ambient temperature and maintained at -18ºC for two weeks before DNA 119 

extraction was performed. The specimens occupied up to half of the volume of the collecting 120 

vial, reducing the final concentration of the ethanol to an unknown degree. 121 

Mitochondrial metagenomics of voucher specimens 122 

Specimens from each pool (vouchers) were individually removed from the ethanol using 123 

sterilised forceps, identified to genus level, grouped by morphospecies, and their body length 124 

measured (Figure 1B). Individual non-destructive DNA extraction was performed on up to 125 

four specimens of each morphospecies using the DNeasy Blood & Tissue Spin-Column Kit 126 

(Qiagen). The 5' half of the cox1 gene (barcode fragment) was PCR amplified using the FoldF 127 

and FoldR primers (see Suppl. File S1 for details) and the PCR products were Sanger 128 

sequenced with ABI technology. Morphological identifications were validated by BLAST 129 

searches against the NCBI and BOLD databases (accessed on 29-04-2015). DNA 130 

concentrations of specimen extractions were estimated using the Qubit dsDNA HS Assay Kit 131 

(Invitrogen) and equimolar pooled aliquots were used to prepare two specimen pools: 132 

Terrestrial Vouchers (TV) and Aquatic Vouchers (AV). Two Illumina TruSeq DNA PCR-free 133 

libraries were prepared and sequenced on an Illumina MiSeq sequencer (2 x 250 bp paired-134 

end reads). 135 

Raw paired reads were trimmed to remove residual library adaptors with Trimmomatic v0.32 136 

(Bolger et al. 2014), and Prinseq v0.20.4 (Schmieder & Edwards 2011) was used for filtering 137 

low-quality reads. Filtered reads from each pool were then assembled using four different 138 
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assemblers; Celera Assembler v7.0 (Myers 2000), IDBA-UD v1.1.1 (Peng et al. 2012), 139 

Newbler v2.7 (Miller et al. 2010) and Ray-meta v1.6.5 (Boisvert et al. 2012). Contigs with 140 

regions of high similarity produced by the different assemblers were merged with the 'De 141 

Novo Assembly' function of Geneious v7.1.8 (minimum overlap = 500 bp; minimum overlap 142 

identity = 99%). The resulting mitogenomes were first annotated with the MITOS server 143 

(Bernt et al. 2013), then manually curated to validate all protein-coding, rRNA and tRNA 144 

genes. Finally, mitogenomes were matched with the corresponding Sanger cox1 sequences for 145 

species assignment. For further details on the mitochondrial metagenomics pipeline see 146 

Crampton-Platt et al. (2015) and Suppl. File S1. 147 

Metagenomics of voucher specimens and preservative ethanol 148 

The preservative ethanol from the terrestrial and aquatic pools was decanted and centrifuged 149 

(Figure 1C) at 14000 g for 30 min at 6ºC to allow for sedimentation of precipitated DNA 150 

(Tréguier et al. 2014). The supernatant was discarded, the precipitate was dried, and DNA 151 

was extracted using the DNeasy Blood & Tissue Spin-Column Kit (Qiagen). Concentrations 152 

of total DNA extracts were estimated using the Qubit dsDNA HS Assay Kit (Invitrogen) and 153 

the two pools representing the terrestrial and aquatic specimens, respectively, in equal 154 

concentrations were used to prepare TruSeq DNA PCR-free libraries, referred to as 155 

Terrestrial Ethanol (TE) and Aquatic Ethanol (AE), and Illumina sequenced (2 x 250 bp 156 

paired-end reads for AE; 2 x 300 bp paired-end reads for TE) using 5 and 4% of a flow cell on 157 

the MiSeq. Adapter removal and quality control followed the same protocol as described 158 

above for the vouchers (TV and AV; also see Suppl. File S1). 159 

Voucher species recovery from the preservative ethanol 160 
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Species recovery from the preservative ethanol was assessed by matching the filtered TE and 161 

AE reads against the voucher sequences using BLAST (≥97% similarity over ≥150 bp). 162 

Sanger sequences, full-length assembled mitogenomes, and the protein-coding genes only (i.e. 163 

excluding the less variable rRNA genes) were used as references to check for differences in 164 

species recovery depending on the voucher information used. The biomass of each species in 165 

the pools was estimated using specimen length as a proxy for body size, multiplied by number 166 

of specimens, and was subsequently correlated with the number of matching reads from the 167 

ethanol libraries. 168 

Phylogenetic profile of the vouchers and the preservative ethanol 169 

The diversity of concomitant DNA (reads presumed not to be derived from the genomes of 170 

voucher specimens) was estimated for each library (Figure 1C) by (i) a general taxonomic 171 

characterisation of the paired reads and (ii) a more precise assignment of the reads to 172 

mitochondria, plastids, nuclear rRNAs and putative bacterial symbionts. The general 173 

taxonomic characterisation is based on a custom database combining the whole content of the 174 

preformatted NCBI nt (nucleotides) database and all coleopteran assemblies currently 175 

available in the NCBI wgs database (Suppl. File S1 for the reason motivating this choice). 176 

Each library was aligned to this custom database with megaBLAST from the BLAST+ 177 

package (Camacho et al. 2009), retaining only hits with a maximum E-value of 1e-15. 178 

BLAST outputs were then analysed with MEGAN 5.10.3 (Huson et al. 2007). The MEGAN 179 

LCA (Lowest Common Ancestor) clustering was set to consider paired reads as belonging to 180 

the same entity and only the top 20% of BLAST hits were considered for taxonomic 181 

assignments, with all other MEGAN clustering parameters kept at default values. Pie charts 182 
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describing the taxonomic content of the voucher and ethanol libraries were also generated 183 

with MEGAN. 184 

Assignment of reads to four specific categories of DNA markers was based on read matches 185 

to four custom reference databases, including (i) “Mitochondria” containing all complete and 186 

partial mitochondrial genomes (minimum 10 kb) from the NCBI nt database (downloaded on 187 

05-05-2015); (ii) “Plastids” obtained by retrieving all complete and fragmented plastid 188 

genomes (minimum 10 kb) from the NCBI Nucleotide database (downloaded on 04-05-2015); 189 

(iii) “Symbionts” based on all complete genomes available from NCBI for a panel of bacterial 190 

genera known for their symbiotic interactions in different arthropod lineages, including 27 191 

bacterial genera reported in Russel et al. (2012) (retrieved from the NCBI Genome database 192 

on 08-07-2014; details in Suppl. File S1); (iv) “Nuclear rRNAs” corresponding to the whole 193 

content of the SILVA database (Quast et al. 2013) (release 119, containing manually curated 194 

18S and 28S rRNAs for 2,100,000 bacteria, 49,000 archaea, 95,000 eukaryotes and 44,000 195 

unclassified cultured organisms). Reads of all libraries were aligned to these databases with 196 

megaBLAST and the taxonomic classification of the BLAST best hit was assigned based on 197 

stringent similarity thresholds (Suppl. File S1). Mitochondrial and plastid reads were then 198 

grouped according to high taxonomic levels (Arthropods, Plants, Fungi, etc.), while bacterial 199 

symbionts and rRNA reads were assigned to genera when more than 99% similar to a 200 

reference for >90% of the read. Only taxa supported by more than 5 matching reads in one of 201 

the libraries were considered for further analyses.  202 

The proportion of reads assigned to the above four classes of DNA markers in different taxa 203 

were compared between the vouchers (AV, TV) and the ethanol (AE, TE) libraries. For a 204 

single library, a marker proportion is reported as the ratio of base pairs assigned to a particular 205 
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taxon over the total number of base pairs sequenced in the library. The percentage difference 206 

(increase or decrease) of this proportion in the ethanol compared to the voucher libraries was 207 

calculated. Formally, in a library L of size S (bp) we define a pair {C, M} representing a clade 208 

C and a DNA marker M. In L, the number of bp n associated to M and identified as belonging 209 

to C is noted nL{C,M} and is then converted to a library proportion PL{C,M} with the formula: 210 

 211 

The percentage change (% change) observed for a pair {C,M} in a library L2 compared to a 212 

library L1, as well as the magnitude of change corresponding to this increase (when positive) 213 

or decrease (when negative) is then defined as: 214 

 215 

Typically, L2 will correspond to an ethanol library (E) that is compared to L1 constituting a 216 

voucher library (V) and a pair of clade and marker could be for instance {Bacterial symbiont, 217 

rRNAs}. Then, the differential recovery obtained from the ethanol is reported as the order of 218 

magnitude (log10) of the difference ∆FE⁄V in nucleotide counts between both libraries, i.e.  219 

 220 

For instance, for the pair {Bacterial symbiont, rRNAs} a ∆FE⁄V =2 indicates a recovery of 221 

symbionts rRNA base pairs 100 times higher in the ethanol (preservative) compared to the 222 

voucher (the specimen itself). 223 

 224 
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Results 225 

Assembly of mitogenomes from voucher specimens 226 

A total of 126 and 49 specimens were collected respectively in the aquatic and terrestrial 227 

habitats, which in total represented 38 morphospecies from the order Coleoptera and one 228 

morphospecies each of Trichoptera and Megaloptera encountered as larval stages in the 229 

freshwater pool. Representatives of all morphospecies were selected as vouchers, and 230 

depending on body size and where possible, up to four specimens were subjected to DNA 231 

extractions (to standardize the amount of DNA for improved assembly), for a total of 72 232 

specimens (see Table 1). Sanger sequencing generated successful cox1 barcodes for 37 of the 233 

40 morphospecies (Table 1). BLAST matches of these voucher cox1 sequences against the 234 

NCBI and BOLD databases showed good agreement with the morphospecies identifications 235 

(Table 1). The voucher DNA extracts were pooled in equal concentrations to generate two 236 

mixtures, one terrestrial (TV) and one aquatic (AV). Illumina MiSeq sequencing on these 237 

pools produced, respectively, 10,782,446 and 26,867,180 paired reads after quality control 238 

and resulted in successful assembly of complete or nearly complete mitochondrial genomes 239 

for 39 of the 40 morphospecies (Table 1). 240 

Metagenomics of voucher specimens and preservative ethanol 241 

Voucher species recovery from the preservative ethanol 242 

The TE and AE libraries built from the preservative ethanol produced a total of 1,960,740 and 243 

1,772,094 paired reads, respectively. Matching these reads against the voucher cox1 244 

sequences recovered only 4 species, while using the full-length and protein-coding genes of 245 

the assembled mitogenomes recovered 15 and 13 species. The species with highest recovery 246 
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were those with high biomass in the samples, including the larval specimens of Sialis sp. 247 

(Neuroptera) and Dorcus sp. (Coleoptera:Lucanidae) (see Table 1), and a strong correlation 248 

was found between the log transformed number of reads in the preservative ethanol and the 249 

estimated biomass of each species (Pearson R = 0.88, p-value = 0.0001; Figure 2). 250 

Phylogenetic profile of the vouchers and the preservative ethanol 251 

The general taxonomic characterisation of the paired reads showed that in all libraries a large 252 

proportion of reads has no BLAST hits to our custom reference databases, with 95.3, 95.5, 253 

93.0 and 95.2% of reads unmatched in AV, TV, AE and TE, respectively. The inclusion of 254 

coleopteran genome assemblies (from NCBI wgs data) in the reference database contributed 255 

significantly to the MEGAN identification of arthropod nuclear DNA (compared to using 256 

NCBI Nucleotide reference set alone; see Suppl. File S2). This was particularly striking for 257 

the aquatic pool, for which the number of identified coleopteran reads increased by a factor 258 

4.4 in AV and 14.1 in AE, while this factor was 1.8 and 1.3 in the terrestrial TV and TE pools.  259 

Identified reads showed different profiles in the voucher and ethanol libraries, but also 260 

between the two habitats (Figure 3). In the voucher libraries the great majority of these reads 261 

were apparently derived from the target specimens, with 78.6 and 77.4% identified as 262 

arthropod reads in AV and TV. This proportion was reduced in the ethanol libraries to 17.2 263 

and 7.1% in AE and TE. Other DNAs were present in low proportions in the vouchers but 264 

dominant in the preservative ethanol. In both voucher libraries, Proteobacteria were the 2nd 265 

most dominant clade. In AV, Proteobacteria are followed by Nematoda, Platyhelminthes and 266 

Chordata reads in decreasing proportions, with more than half of the Chordata reads identified 267 

as sequences of Cyprinus carpio (common Eurasian carp). Within Plathyhelminthes, 10,158 268 

reads were assigned at the species level to the tapeworm Hymenolepsis diminuta. No species-269 
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level identifications were obtained for Nematoda, which produced scattered matches to 270 

numerous sub-taxa. TV showed a similar profile with a dominance of Proteobacteria, 271 

followed by a more diverse pattern of various bacterial phyla. 272 

The ethanol libraries were characterized by a high diversity of bacterial taxa. Again, 273 

Proteobacteria were prevalent but the TE sample clearly differed from all others by showing a 274 

large proportion of reads matching Firmicutes (36.5%). In addition, a high diversity of 275 

eukaryotic clades was recovered. Ascomycota (fungi) were observed in both habitats with a 276 

greater prevalence in TE (6.2%). Chordata and Streptophyta (land plants and green algae) 277 

were identified in AE.  278 

Further analyses allowed the assignment of the reads to three main groups, including (i) 279 

arthropods, (ii) taxa potentially associated to the gut or the environment, and (iii) bacterial 280 

endosymbionts. Their relative proportion was compared in the voucher and ethanol libraries 281 

(Figure 4, Suppl. Table S3). Generally, DNA reads were recovered, in decreasing order of 282 

abundance, from plastids, mitochondria and rRNA genes in eukaryotes, and from complete 283 

genomes and rRNAs in bacterial symbionts, reflecting that longer markers produced more 284 

read matches. In agreement with Figure 3, the proportion of Arthropoda reads in the ethanol 285 

was much lower than in the vouchers for both habitats. On average, a two-orders of 286 

magnitude (F=2.0) loss was observed for both the mitochondrial and the rRNA sequences 287 

(Figure 4A). In contrast, read numbers for some taxa potentially associated with the 288 

environment and gut content (Figure 4B) were increased in the ethanol by between 2.2 (Fungi 289 

rRNA) to 4.6 (Annelida rRNA) orders of magnitude. Following Douglas et al. (2015), the 290 

symbiont species were divided into those with “closed associations” representing strict 291 

bacterial symbionts confined to bacteriocytes or specific host tissues, and those in “open 292 
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associations” representing bacterial infections, loose symbiotic interactions or commensals of 293 

the gut. All genera in closed associations (Wolbachia, Rickettsia, Regiella) showed a lower 294 

recovery from the ethanol compared to the vouchers, and Wolbachia and Rickettsia, 295 

respectively, were absent altogether in TE and AE, despite their strong signal in the vouchers 296 

(Figure 4C). On the other hand, symbiont genera with open associations showed more 297 

complex patterns, but in general recovery was higher or at least at similar levels in the ethanol 298 

than in the vouchers. Interestingly, in both TV and TE we noticed the presence of rRNA 299 

genes from endosymbionts typically associated with Collembola, possibly providing indirect 300 

evidence for predation on arthropod microfauna in some of the voucher specimens of the 301 

terrestrial pool (Figure 4C). 302 

 303 

Discussion 304 

Species recovery and shotgun metagenomic sequencing from preservative ethanol 305 

Earlier PCR-based studies have demonstrated that specimen DNA can be obtained from the 306 

preservative ethanol (e.g. Shokralla et al. 2010; Hajibabaei et al. 2012), while here we 307 

established the power of direct shotgun sequencing, for a broader characterisation of the 308 

sampled specimens. PCR-based approaches are effective for detection of low DNA 309 

concentration templates, and thus have been successful for generating fairly complete species 310 

inventories from the ethanol fraction (Hajibabaei et al. 2012). We show that the number of 311 

DNA reads pertaining to the specimens themselves is rather low and, at the selected 312 

sequencing depth, less than half of species present in the samples could be identified from the 313 

reads, despite the availability of complete reference mitogenomes. If it is the aim of a study to 314 
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detect all species in the sample, PCR amplification may be the more efficient approach, but 315 

with the proviso that the specific primers used in the assay limit the outcome of the detected 316 

taxa (only cox1 was used in previous studies). Alternatively, a combination of primer sets 317 

(Hajibabaei et al. 2012) can be used but holds the risk of cross-sample contamination, in 318 

particular if samples differ greatly in the concentration of DNA. In addition, the PCR 319 

approach may not be universally successful. In our attempts to replicate the cox1 results on 320 

the ethanol samples generated here, we experienced a complete failure of amplification 321 

despite the use of various primers and PCR protocols (data not shown). The DNA 322 

concentration and level of preservation were sufficient for metagenomic libraries, which 323 

generally requires much more DNA template than the PCR, ruling out issues affecting the 324 

quality or quantity of the template for PCR failure. Instead, PCR inhibitors from the 325 

environment or the gut may be enriched in the ethanol fraction, which apparently affects the 326 

PCR, but less so the library construction and direct sequencing of the DNA.  327 

In addition, the shotgun approach provides a better quantitative measure of the DNA 328 

concentrations for each species, as it is not affected by uneven amplification of templates in 329 

the mixture. We find that the DNA pool was dominated by two large-bodied species present 330 

in multiple individuals (Dorcus sp. in TE and Sialis sp. in AE) that accounted for >23% of all 331 

mitochondrial reads. Both species were encountered in the larval stages, whose soft cuticle 332 

may have facilitated the release of DNA into the ethanol. Some species with low biomass 333 

(body size x specimen number) or hard cuticle remainin below the detection limit but should 334 

be recovered with deeper sequencing of ethanol libraries beyond the ~5% of a MiSeq flow 335 

cell used here. Similarly, recovery of low-biomass species could be improved if great 336 

differences in DNA concentration are avoided by sorting according to body size or life stage 337 

during field collecting.  338 
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The availability of reference sequences was a key requirement for the shotgun approach. We 339 

generated an almost-complete reference set of mitogenomes following an established protocol 340 

(Crampton-Platt et al. 2015, 2016). At the read depth used here (approximately 1% of a 341 

MiSeq flow cell per species) this procedure was highly efficient and even exceeded the 342 

species identification rate of cox1 PCR-based Sanger sequencing of the same specimens. In 343 

addition, the ethanol libraries produced many matches to arthropod nuclear DNA, including 344 

rRNA genes that could be identified against external databases (Figure 4A). Although 345 

complementing mitochondrial references with rRNA markers would greatly increase the 346 

sensitivity of species recovery, the assembly of rRNA genes remains challenging. In our tests, 347 

no unequivocal contigs were produced in both TV and AV, despite the use of four different 348 

assemblers (Suppl. Table S4). While present in high copy number in metazoan genomes, 349 

alternating highly conserved and rapidly evolving expansion segments in the primary 350 

sequence of rRNA genes (Stage & Eickbush 2007) currently prevent the assembly from short 351 

sequence reads. 352 

Exploration of concomitant biodiversity from the preservative ethanol 353 

The ethanol libraries may be considered as complex ‘environmental DNA’ (eDNA) mixtures 354 

that include the DNA released from the focal specimens, together with organisms associated 355 

with these specimens and potentially unconnected organisms carried over from the wider 356 

ecosystem (Bohmann et al. 2014). Bacteria are expected to have a high chance of recovery in 357 

the DNA reads, as they are present in high copy numbers and they are detected by read 358 

matching against full genomes. Some bacterial genera detected in the ethanol are known to be 359 

associated to specific habitats (e.g. Acinetobacter, Hydrogenophaga; Figure 4B). These were 360 

present in small proportions (Figure 3), as would be expected in specimens collected 361 
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manually from the environment, which limits these contaminants. A larger proportion of the 362 

ethanol-enriched clades seems to be associated with gut content such as Proteobacteria or 363 

Firmicutes, which are generally dominant microbiota of insect guts, followed by 364 

Bacteroidetes, Actinobacteria and Tenericutes. The libraries recovered very similar profiles to 365 

those obtained in a recent study of insect gut microbiomes (see Figure S2; Yun et al. 2014). 366 

Bacterial clades known to be gut-specific are part of this profile in both habitats, i.e. high 367 

proportions of Enterobacteriales (Proteobacteria) and “open associations” symbionts 368 

(Serratia, Rickettsiella, etc.). Hence, the vomiting of many arthropods at the moment of being 369 

immersed in the ethanol (which is seen in many insects but particularly in predatory beetles) 370 

appears to be an effective mechanism for the release of gut content to the preservative 371 

medium. These DNA profiles from specimen mixtures reflect compound microbiota that are 372 

determined by the species composition and relative abundance of the insect communities and 373 

their habitat, diet and developmental stage. A case in point are the Firmicutes that include the 374 

obligatory anaerobic Clostridiales known to be present primarily during larval stages (Yun et 375 

al. 2014). This group dominated in particular the terrestrial sample with 55% of all reads 376 

compared to 34% in the aquatic sample (Table 1, Figure 3), which is consistent with the 377 

higher biomass of larvae in the former.  378 

Other “closed association” bacterial endosymbionts show the reverse pattern, i.e. a higher 379 

DNA proportion in the vouchers than in the preservative ethanol. These species reside in the 380 

bacteriocytes, specialized intracellular compartments that are not expected to be released into 381 

the preservative medium. Specifically, Wolbachia, Regiella and Rickettsia are present in most 382 

arthropod communities (Werren et al. 2008) and in our samples are easily detectable in the 383 

voucher libraries but are poorly, if at all, recovered from the ethanol (Figure 4C). By contrast, 384 

several bacterial genera implicated in “open” symbiotic associations as commensals outside 385 
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of the bacteriocytes (Moran et al. 2005) show more mixed patterns. This category of bacteria 386 

appears to be the main candidate if one intends to use the preservative ethanol for the study of 387 

insect symbiont communities. Finally, some eukaryotic species relevant to insect biology 388 

were also detected (Figure 4). The Viridiplantae and Stramenophiles were greatly enriched in 389 

the ethanol (Figure 4) and may represent ingested food items. Potential infectious agents, such 390 

as the entomopathogenic fungus Metharizium (Jackson & Jaronski 2009) represented as much 391 

as 75% of fungal reads in TE. In contrast, the fungal genus Hymenolepis known to have 392 

parasitic life cycles using insects as intermediary hosts (Shostak 2014) is strongly detected in 393 

AV (10,160 reads identified to genus level) and its absence in AE suggests an association 394 

with internal tissues but not the gut content.  395 

The value of the preservative ethanol 396 

The increasing depth of modern sequencing technology is changing the analysis of field-397 

collected preserved samples. Each specimen can be seen as an ecosystem in its own right 398 

harbouring microbiota, parasites and ingested food. Deep sequencing therefore shifts the 399 

focus of metagenomic studies of bulk specimen samples, which were initially geared towards 400 

the analysis of species and phylogenetic diversity of a local insect community (e.g. Gómez-401 

Rodríguez et al. 2015; Andújar et al. 2015; Crampton-Platt et al. 2015; Tang et al. 2015), but 402 

now can take a holistic view that provides new opportunities for research.  403 

For bulk samples the interactions cannot be ascribed to any particular species in the mixture, 404 

but the information is still highly valuable to characterise the functional or ecological 405 

components of an ecosystem in toto, for example through the parallel study of macro- and 406 

microbiomes of bulk samples. For higher precision, the methodology can be modified to 407 

include only members of a single species or possibly individually preserved specimens, 408 
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allowing comparisons among co-distributed species for analyses of resource segregation or 409 

the turnover in feeding source for a given species or assemblage among different sites. 410 

Additionally, the regurgitation of gut content into the ethanol provides a procedure for non-411 

invasive DNA isolation for identification of food items, and it overcomes the problem that the 412 

degraded DNA of the gut content makes up only a small proportion of sequence reads 413 

compared to the well-preserved gut tissue that cannot be removed even with careful 414 

dissections (e.g. Paula et al. 2014). The greatest value of these techniques lies in the 415 

possibility for making comparison of numerous samples, each of them surveyed for multiple 416 

types of trophic interactions, given a different ecological context in which the target taxa are 417 

found. The high cost of shotgun sequencing relative to PCR-based metabarcoding may be a 418 

deterrent for such studies, but due to the emergence of cheaper methods for library 419 

construction (e.g. Baym et al. 2015) and the limited amount of sequencing required (e.g. 5% 420 

of MiSeq per sample in the current study), these costs are not prohibitive. Thus, the use of the 421 

preservative ethanol extends the metasystematic approach to biodiversity assessment and 422 

environmental monitoring, for more effective analysis and management of complex 423 

ecosystems (Gibson et al. 2014). The biomass-dependence of shotgun sequencing is another 424 

strength of this approach, to provide abundance estimates for ecological studies, while also 425 

recovering rare components without PCR biases. Increased sequencing depth and/or biomass 426 

pre-processing of the samples could be useful strategies when recovering low biomass entities 427 

is required. At the same time, the extension of reference databases, including complete 428 

mitochondrial genomes or nuclear genomes, will also increase the reliability of these 429 

approaches, reducing their dependency on the completeness of existing public databases. 430 

Beyond the study of freshly collected samples, the significance of bulk sampling and 431 

preservative sequencing may arise from the molecular analysis of historical spirit collections. 432 
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Museum collections provide enormous resources as a base-line against which modern 433 

observations can be compared, helping us to build predictive models in a world increasingly 434 

influenced by human activities (Suarez & Tsutsui 2004). A holistic approach to the study of 435 

preservative ethanol (specimen + eDNA) should reconsider specimen collection and storage 436 

practices. A widespread practice to obtain ‘cleaner’ samples from field collections is the 437 

replacement of the original ethanol fraction, which is usually discarded, but this procedure 438 

loses valuable information and efforts should be made to store this initial preservative (as 439 

volume can easily be reduced through evaporation). Ethanol should also be carefully 440 

considered in the management and maintenance of these collections, such as following 441 

protocols based on a “topping-up” of the ethanol (e.g. Notton 2010) instead of replacement.  442 

Long-term microbiota characterisation appears to be a potential outcome from insect spirit 443 

collections. The ability to quantify the microbiotas in insect specimen vs. ethanol fractions 444 

can establish their relationships with the 'host' specimens, while the co-existence of similar 445 

organisms within samples from different ecosystems may uncover the pathogenic or 446 

ecological role played by the insect microbiome (Mira et al. 2010). Similarly, organisms 447 

attached to the surface of specimens, such as pollen in the leg baskets of bees or fungi 448 

contained in the mycangia of wood-boring beetles, may be present in the preservative 449 

medium. Such molecular information can complement the information associated to 450 

collection records making the ethanol metagenome itself a record from which more 451 

associations may be identified in the future when more DNA reads will be identified against 452 

the growing genome reference set. Further studies on the dynamics of DNA transfer from 453 

specimens to ethanol under different conditions and how this DNA degrades through time are 454 

needed to uncover the full potential of the preserving ethanol into which specimens are 455 

collected. But it appears that preservative ethanol is an unexpected source of molecular 456 
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knowledge: it will contain both the specimen and concomitant biodiversity and can provide 457 

valuable biological information when subjected to shallow metagenomic sequencing. 458 

459 
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Table 1. Dataset description and voucher species recovery from the preservative ethanol. Ethanol reads correspond to the number of quality 
filtered reads from the ethanol libraries matching vouchers sequences. 
 

Species Community Stage Total 
specimens 

Specimens 
used as 

vouchers 

Total 
estimated 
biomass 

cox1_Sanger mitogenome ethanol reads 
matching cox1 

ethanol reads matching 
complete mitogenomes 

ethanol reads matching 
protein-coding mito-genes 

Acilius sulcatus BMNH1425211 Aquatic adult 2 1 36 X X 0 0 0 
Berosus affinis BMNH1425169 Aquatic adult 3 2 13.5 X X 0 0 0 
Colymbetes fuscus BMNH1425212 Aquatic adult 5 2 90 X X 0 15 15 
Dryops luridus BMNH1425163 Aquatic adult 4 3 20 X X 0 2 1 
Haliplus immaculatus BMNH1425121 Aquatic adult 3 2 9 X X 0 0 0 
Haliplus lineatocollis BMNH1425118 Aquatic adult 5 3 15 X X 0 2 0 
Helochares sp. BMNH1425100 Aquatic adult 10 4 60 X X 0 0 0 
Hydrochus sp. BMNH1425167 Aquatic adult 2 2 6 X X 0 0 0 
Hydroporus planus BMNH1425115 Aquatic adult 1 2 4.5 X X 0 0 0 
Hydroporus discretus BMNH1425116 Aquatic adult 2 2 8 X X 0 0 0 
Hydroporus gyllenhalii BMNH1425127 Aquatic adult 2 2 7 X X 0 2 0 
Hydroporus obscurus BMNH1425129 Aquatic adult 1 2 3.5 X X 0 0 0 
Hydroporus erythrocephalus BMNH1425131 Aquatic adult 27 3 81 X X 0 2 2 
Hydropsyche pellucidulla BMNH1425186 Aquatic larva 4 2 56 X X 2 55 25 
Hygrobia hermanni BMNH1425190 Aquatic adult 3 1 30 X X 0 0 0 
Hygrotus inaequalis BMNH1425126 Aquatic adult 1 1 3 X X 0 1 1 
Hygrotus impressopunctatus BMNH1425158 Aquatic adult 5 3 25 X X 0 0 0 
Hygrotus confluens BMNH1425172 Aquatic adult 1 1 3.5 X X 0 0 0 
Liopterus haemorrhoidalis BMNH1425193 Aquatic adult 6 2 42 X X 0 0 0 
Noterus clavicornis BMNH1425090 Aquatic adult 22 3 99 X X 0 9 5 
Sialis lutaria BMNH1425199 Aquatic larva 11 2 154 NO X 24 476 432 
Abax parallelepipedus BMNH1425236 Terrestrial adult 2 1 40 X X 0 0 0 
Agriotes obscurus BMNH1425233 Terrestrial larva 2 1 30 X X 0 0 0 
Anisosticta novemdecimpunctata BMNH1425231 Terrestrial adult 1 1 3.5 NO X 0 0 0 
Athous haemorrhoidalis BMNH1425235 Terrestrial larva 1 1 9 X X 0 1 1 
Atrecus affinis sp. BMNH1425232 Terrestrial adult 1 1 7 X X 0 2 2 
Calathus melanocephalus BMNH1425227 Terrestrial adult 1 1 7 NO X 0 0 0 
Cyphon variabilis BMNH1425225 Terrestrial adult 2 2 9 X X 0 0 0 
Dorcus parallelipipedus BMNH1425260 Terrestrial larva 7 1 175 X X 17 478 360 
Melanotus villosus BMNH1425245 Terrestrial larva 8 4 45 X X 0 6 4 
Nalassus laevioctostriatus BMNH1425217 Terrestrial adult 5 2 42.5 X X 0 0 0 
Nebria brevicollis BMNH1425256 Terrestrial adult 1 1 14 X X 0 0 0 
Ocypus olens BMNH1425259 Terrestrial larva 1 1 16 X X 0 0 0 
Pterostichus niger BMNH1425241 Terrestrial adult 4 1 84 X X 0 12 5 
Pterostichus madidus BMNH1425238 Terrestrial adult 4 2 64 X X 0 2 2 
Stenus clavicornis BMNH1425222 Terrestrial adult 3 2 18 X X 0 0 0 
Stenus boops BMNH1425230 Terrestrial larva 1 1 5 X X 0 0 0 
Stomis pumicatus BMNH1425229 Terrestrial adult 1 1 6.5 X X 0 0 0 
Tasgius sp. BMNH1425251 Terrestrial adult 2 1 34 X NO 7 0 0 
Uloma sp. BMNH1425257 Terrestrial larva 2 2 26 X X 0 0 0 
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Figure 1 
 

 
 
Figure 1 Schematic representation of the experimental design and bioinformatics pipeline 
followed in this study. 
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Figure 2 
 

 
 
Figure 2 Relationship between numbers of metagenomic reads from the preservative ethanol 
for each species and its estimated biomass in the samples. 
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Figure 3 

 
 
Figure 3. Taxonomic composition of the identified DNA reads. MEGAN-based 
identifications are reported for the four libraries. The names of the most abundant taxa are 
reported while all minor taxa are grouped in the “other” fraction. The pie charts represent the 
DNA reads identified as the given taxonomic group and their percentage of the total number 
of identified reads is given in parentheses. The bars next to each pie chart indicate the number 
of reads in the library identified to a taxonomic group and their proportion of total reads in 
parentheses. 
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Fig. 4 Ethanol recovery for concomitant DNA. The number of base pairs identified for four types of 
markers (plastids, mitochondria, rRNAs and symbiont genomic DNA) in different taxa was quantified 
in the vouchers and ethanol metagenomes and normalized by library size. Taxa (1st column) are 
grouped in Arthropoda (A), Environment and Gut (B) and Bacterial symbionts categories (C) based 
on literature information about the identified taxa (‘Comment’). Circle areas represent the square root 
of the relative proportion of each taxon/marker combination detected in the vouchers library (V 
columns) and the ethanol libraries (E columns) in both habitats and their colours are matching taxa in 
Figure 3. The increased or reduced recovery in the ethanol relative to the vouchers libraries is 
indicated by green or red arrows, and the magnitude of change is given as the log10 of the factor 
change (ΔFE/V, see Methods). For instance, a F=2.0 lower recovery for a selected taxon/marker 
indicates that 100 times fewer base pairs were recovered in ethanol compared to vouchers. References 
in the last column are: a. Caspers (1986) b. Envall et al. (2006) c. Jackson & Jaronski (2009) d. 
Yoshikawa et al. (2007) e. Morales-Jiménez et al. (2009) f. L. Dijkshoorn (2008) g. Willems (2014) 
h. Carbajal-Rodríguez et al. (2011) i. Carrino-Kyker & Swanson (2008) j. Sicard et al. (2014) k. 
Moran et al. (2005) l. Caspi-Fluger et al. (2011) m. Cordaux et al. (2007) n. Tsuchida et al. (2014) o. 
Grimont & Grimont (2006) p. Koga et al. (2012) q. Gasparich et al. (2004) r. Haselkorn et al. (2009). 
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