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Abstract

Multiple comparison or alignmentof protein sequences has become a fundamental tool in many different domains in
modern molecular biology, from evolutionary studies to prediction of 2D/3D structure, molecular function and inter-
molecular interactions etc. By placing the sequence in the framework of the overall family, multiple alignments can be used
to identify conserved features and to highlight differences or specificities. In this paper, we describe a comprehensive
evaluation of many of the most popular methods for multiple sequence alignment (MSA), based on a new benchmark test
set. The benchmark is designed to represent typical problems encountered when aligning the large protein sequence sets
that result from today’s high throughput biotechnologies. We show that alignmentmethods have significantly progressed
and can now identify most of the shared sequence features that determine the broad molecular function(s) of a protein
family, even for divergent sequences. However,we have identified a number of important challenges. First, the locally
conserved regions, that reflect functional specificities or that modulate a protein’s function in a given cellular context,are
less well aligned. Second, motifs in natively disordered regions are often misaligned. Third, the badly predicted or
fragmentary protein sequences, which make up a large proportion of today’s databases, lead to a significant number of
alignment errors. Based on this study, we demonstrate that the existing MSA methods can be exploited in combination to
improve alignment accuracy, although novel approaches will still be needed to fully explore the most difficult regions. We
then propose knowledge-enabled, dynamic solutions that will hopefully pave the way to enhanced alignment construction
and exploitation in future evolutionary systems biology studies.
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Introduction

Evolutionary theory provides a unifying framework for

analysing genomics data and for studying various phenomena in

molecular, cell, or developmental biology [1]. Thus, evolutionary-

based inference systems are playing an increasingly important role

in diverse areas, such as elucidation of the tree of life [2], studies of

epidemiology and virulence [3], drug design [4], human genetics

[5], cancer [6] or biodiversity [7]. Essential prerequisites for such

evolutionary-based studies are the multiple sequence alignment

(MSA) and its subsequent analysis [8,9,10]. By placing the

sequence in the framework of the overall family, MSAs can be

used to characterise important features thatdetermine the broad

molecular function(s) of the protein, such as the 3-dimensional

structure or catalytic sites, and that have been conserved

throughout evolution.However, most proteins act in complex,

dynamic networks that are dependent on the biological context,

for example subcellular localisation, temporal and spatial expres-

sion patterns, or environment. Here, MSAs will alsohave a crucial

role to play in identifying the specific features, also known as

‘‘specificity determining positions’’ (SDPs), that modulate a

protein’s function in a given context, for example, interaction

domains, regions or sites, targeting signals in the different cell

machineries, pathways orcompartments, or post-translational

modification sites(phosphorylation, cleavage, etc.) [11,12,13].

MSA algorithms have been an active area of research since the

1980s. Traditionally the most popular approach has been the

progressive alignment procedure [14], which exploits the fact that

homologous sequences are evolutionarily related. A multiple

sequence alignment is built up gradually using a series of pairwise

alignments, following the branching order in a phylogenetic tree.

A number of different alignment programs based on this method

have been developed, includingboth global and local approaches.

A global MSA algorithm is defined here as one that tries to align

the full length sequences from one end to the other. Once the

global alignment has been constructed, other methods are often

used to identify the more conserved or reliable regions within the

alignment. A local algorithm attempts to identify subsequences

sharing high similarity. The unreliable or low similarity regions are

then either excluded from the alignment, or are differentiated, for

example, by the use of upper/lower case characters. Comparisons

of many of these methods based on ‘gold standard’ benchmarks
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[15,16] showed that none of the existing algorithms were capable

of providing accurate alignments for all the test cases. As a

consequence, iterative algorithms were developed to construct

more reliable multiple alignments, using for example iterative

refinement strategies [17], Hidden Markov Models [18] or

Genetic Algorithms [19]. These methods were shown to be more

successful at aligning the most conserved regions for a wide variety

of test cases, although some accuracy was lost for distantly related

sequences, in the ‘twilight zone’ of evolutionary relatedness

[20,21].

In the post-genomic era,the growing complexity of the multiple

alignment problem has lead to the development of novel methods

that use a combination of different alignment algorithms

[22,23,24,25] or that incorporate biological information other

than the sequence itself [26,27]. A number of specific MSA

problems have also been addressed by programs such as POA [28]

for the alignment of non-linear sequences or PRANK [10] for the

detailed evolutionary analysis of more closely related sequences.

These new MSA construction methods are generally evaluated

using one or more alignment benchmarks, for example, BAliBASE

[15], OxBench [29] or PREFAB [24], and it is clear that this

benchmarking has had a positive effect on their development [30].

Most of the widely used MSA benchmarks were compared in [21]

and are also discussed in [31]. The use of objective benchmarks

leads to a better understanding of the problems underlying poor

performance, by highlighting specific weak points or bottlenecks.

Thus, benchmarking can help the developer improve the

performance of his software. In turn, the software improvements

imply that the benchmarks must continually evolve, if they are to

represent the current problems and challenges in the domain [31].

Today, new high throughout biotechnologies are providing us

with enough data to build complete evolutionary histories of large

sets of genes [32]. For the first time, it will be possible to compare

sequences from hundreds of diverse organisms, both present and

extinct, to perform detailed studies of the evolutionary patterns

and forces that shaped extant genes and to reconstruct the genetic

changes that are responsible for the phenotypic differences

between organisms. Although the current flood of data clearly

provides unique opportunities for systems-level studies, it also

poses many new challenges, in addition to the obvious scalability

issues. First, although the range of organisms studied has increased

recently, a relatively small number of model organisms still

dominate the public databases. Second, the protein families

represented in today’s sequence databases are often more

complex, with multidomain architectures, large unstructured

(natively disordered) regions, numerous splicing variants, etc.

Third, the new sequences are mostly predicted by automatic

methods and thus, contain a significant number of sequence errors

[33,34]. For example, the EGASP assessment of gene prediction

algorithms showed that the best gene prediction systems are able

to predict entirely correct sequences for protein transcripts in the

human genome only 50% of the time [35]. The problem has been

further exacerbated by the next generation (massively parallel)

DNA sequencing instruments that can sequence up to one billion

bases in a single day at low cost [36]. These new technologies

produce read lengths as short as 35–40 nucleotides, resulting in

fragmentary protein sequences that pose problems for bioinfor-

matics analyses [37].If MSA methodology is tokeep pace with the

new challengespresented by this complex and often ‘noisy’

sequence data, the alignment benchmarks used for evaluation

must now evolve to reflect this changing biological sequence space.

Here, we describe a new protein sequence alignment bench-

mark designed to reproduce today’s sequence exploration

requirements and a comprehensive assessment of the performance

of some of the most popular MSA programs. Our study was

motivated by two major observations. First, most of the existing

MSA benchmarks - and as a consequence, most MSA construction

algorithms - have focused on the patterns conserved in the

majority of the sequences and not enough attention has been paid

to the less frequent patterns, or SDPs, that might indicate

subfamily-specific or context-specific functions. Second, current

MSA programs for protein sequences generally model globular

domain structure and evolution. Nevertheless, many proteins,

particularly in eukaryotes, are unstructured (natively disordered)

or contain large unstructured regions.These regions frequently

contain motifs, such as signalling sequences or sites of posttrans-

lational modifications, that are involved in the regulatory functions

of a cell [38,39]. While this complexity alone represents a

significant challenge for today’s MSA algorithms, another major

goal of our study was to investigate the effect of the ‘noisy’ data,

including fragmentary or otherwise erroneous sequences, on MSA

program performance.

Our benchmark, representing 218 large, complex protein

families, has been incorporated in the BAliBASE benchmark suite

and provides a complementary test to the existing reference sets.

While the previous sets included mainly alignments of shared,

structured domains, the reference set described here focuses on (i)

subfamily specific features, (ii) motifs in disordered regions, (iii) the

effect of fragmentary or otherwise erroneous sequences on MSA

quality. The new benchmark tests were then used to evaluate the

quality of the alignments produced by some of the most widely

used programs for MSA construction. This comparative study

allowed us to evaluate the recent progress achieved and to

highlight a number of specific strengths and weaknesses of the

different approaches. Finally, we propose new directions for the

future development of multiple alignment construction and

analysis methods.

Results

Benchmark alignments
The BAliBASE benchmark suite contains multiple sequence

alignments, organised into 9 Reference Sets representing specific

MSA problems, including small numbers of sequences, unequal

phylogenetic distributions, large N/C-terminal extensions or

internal insertions, repeats, inverted domains and transmembrane

regions. Here, we have constructed a new BAliBASE test set,

Reference 10, composed of 218 reference alignments and

containing a total of 17892 protein sequences, which were

obtained using a query-based database search protocol. Details

of the benchmark alignments are provided in the Methods section.

For each reference alignment, we then identified the locally

conserved regions, or ‘blocks’, using an automatic method. This

led to the definition of 9131 blocks, covering on average 46% of

the total multiple alignment. The remaining regions of the

reference alignments, corresponding to the unalignable or unstable

segments, were excluded from the analyses performed in this work.

The resulting benchmark alignments reflect some of the problems

specific to aligning large sets of complex protein sequences. For

example, many of the protein families (.64% of the alignments)

have multidomain architectures and their members often share

only a single domain. Another important feature of the alignments

is linked to the distribution of the conserved blocks. The alignment

of the highly studied P53/P63/P73 family (Figure 1A), illustrates

this conceptwith only 18% of the blocks present in most (.90%) of

the aligned sequences, while 30% are found in less than 10%.

These ‘rare’ segments or patterns are often characteristic of

context-specific functions, e.g. substrate binding sites, protein-

Multiple sequence alignment methods
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protein interactions or post-translational modification sites.Finally,

the alignments have a high proportion of sequences with

‘discrepancies’,i.e. unexpected or discordant extensions, insertions

or deletions, as shown in Figure 2. These discrepancies may

correspondto naturally occurring variants or may be the result of

artifacts, including PDB sequences (typically covering a single

structural domain), proteins translated from partially sequenced

genomes or ESTs, or badly predicted protein sequences.In the

alignment in Figure 1A, 45% of the aligned sequences (61 out of

134) contain one or more of these discrepancies.

MSA program evaluation: overall alignment quality
For each of the 218 reference alignments in the benchmark, we

applied eight alignment programs, resulting in a total of 1744

automatically constructed MSAs. The overall quality of these

automatic alignments was measured using the Column Score (CS)

described in Methods. This initialexperiment generally confirmed

previous findings, in terms of program ranking (Figure 3).

Probcons, TCoffeeand the most recent version of Mafft (linsi)

(version 6.815) achieved the highestaverage scores (79.4% and

81.6% respectively).Nevertheless, Probcons and TCoffee took over

2.7 days to compute all the alignments, while Mafft (linsi) took

1.2 hours.The fastest program, Kalign, required only 3.0 minute-

scomputation time, although some loss of accuracy was observed

(74.3%). As expected, the more recent methods incorporating both

local and global algorithms were generally more accurate than

older methods, based on global (ClustalW: 64.4%) or local

(Dialign-tx: 73.8%) algorithms alone. Individual alignment

accuracy was highly variable even for the best programs (with a

standard deviation of 19.6, 19.1and 18.9 for Probcons, TCoffee

and Mafft (linsi) respectively). This is in agreement with previous

observations showing that some alignments are more difficult than

others [10,20].

To investigate in more detail the factors affecting the

performance of each program, we characterized each alignment

using a number of ‘global’ attributes describing the overall full-

length alignment, including the number of sequences to be

aligned, their length, an MSA objective function (norMD) [40]

and the percentage of the alignment covered by the blocks.

Figure 4(A–D) shows the distributions of the overall alignment

quality scores obtained by each MSA program for each global

attribute. These distributions, together with a correlation analysis

(Figure 4E), showed that more closely related sequences were

generally aligned better (positive correlation for all programs with

the norMD and percent coverage by blocks), as might be expected.

For the more difficult alignment tests, e.g. with norMD,0.2, the

mean CS scores were less than 0.5 for all the aligners included in

this study. The length of the sequences had less effect on alignment

quality, although longer sequences tended to be less well aligned.

In contrast to some previous studies [20,21], we observed a

negative correlation with the number of sequences in these

alignments, i.e. the alignments with a larger number of sequences

were less well aligned. For alignments with more than 80

sequences, only Mafft (linsi) achieved CS scores higher than 0.7.

Effect of sequence discrepancies on alignment quality
To study the effect of the new sequences resulting from high

throughput biotechnologies, we identified sequence discrepancies

that might be due to fragmentary or erroneous sequences using an

empirical rule-based approach (described in Methods). The

method exploits information from the reference alignments to

classify the sequences in each alignment into a number of

subfamilies and to construct a representative model for each

protein subfamily, including characteristic conserved blocks and

typical start/stop sites. Each subfamily sequence was then

compared to the model in turn, in order to identify ‘outlier’

sequences, with one or more discrepancies. The discrepancies we

considered included: (i) divergence of the sequence from conserved

core blocks that might indicate badly predicted exons, (ii)

insertions that may be due to introns predicted to be coding, (iii)

deletions that may be due to missing exons and (iv) potential start

and stop site mispredictions. Although the method used here to

detect sequence discrepancies may also identify a number of

naturally occurring proteins, such as splicing variants, our main

goal was to construct a set of reliable sequences for use in the

following experiments.

In the first experiment, all the sequences (the reliable sequences

and those with discrepancies) were used as input for each MSA

program. The alignment quality scores were then calculated based

only on the reliable sequences (ignoring the sequences with

discrepancies) and compared to the scores obtained in the previous

test for all sequences (Figure 5). Significant differences (one-tailed

student t-test)were observed for all the MSA programs tested,

implying that sequences with discrepancies are aligned less well

than reliable sequences.

In the second experiment, the sequences with discrepancies

were excluded from the benchmark test sets and each sequence set

was realigned using the eight MSA programs.The quality of the

resulting alignments was again measured using the CS score

(Figure 5). No significant differences were observed for the

alignment scores based on the reliable sequences, when sequences

with discrepancies were included or excluded from the MSA.

Based on these two experiments, we conclude that the MSA

programs tested are capable of accurately aligning the reliable

sequences, even in the presence of a large proportion of sequences

with discrepancies. Nevertheless, it is important to note that, in the

presence of sequences with discrepancies, the subsequent exploi-

tation of the MSA and in particular the identification of family-

wide or context-specific motifs, is more complicated. In order to

exploit the full potential of the new sequence resources, it is clearly

necessary to characterise precisely the conserved segments within

these sequences.

MSA program evaluation: alignment of locally conserved
motifs

To investigate the ability of the MSA programs to identify

context-specific or locally conserved motifs, we typified each

individual block in the reference alignments using a number of

different features: block length, sequence similarity in the block,

the frequency with which the block is observed in thealignment,

and the percentage of the block found in a natively disordered

region. The alignment quality for each individual block was then

measured using the Block Column Score (BCS) described in

Methods. Figure 6(A–D) shows the distributions of the block

scores obtained by each MSA program for each block attribute.

BCSgenerally increased with increasing block length and

increasing sequence similarity, as might be expected.Neverthe-

less, a correlation analysis (Figure 6A) showed that the programs

did not respond in the same way to the different block features.

For example, the scores obtained with the program Probcons

were highly correlated with the frequency of the blocks, which

implies that the blocks found in a small proportion of the

sequences were aligned less well than those found in the majority

of the sequences. In fact, for blocks found in less than 20% of the

sequences, the mean BCS score for Probcons is 0.33, compared

to 0.80 for blocks occurring in more than 80% of the sequences.

This may be due to the probabilistic consistency-based objective

function used in Probcons, which incorporates multiple sequence

Multiple sequence alignment methods
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conservation information during the alignment of pairs of

sequences. The defaultversion of Muscle and TCoffee were also

affected by the frequency of the blocks. In the case of Muscle, this

may be related to the iterative refinement stage, since the fast

version with only 2 iterations was less sensitive. In contrast,

Probcons and Muscle (default) were less sensitive than the other

programs to the similarity of the blocks. The localization of the

block in a natively disordered region had an adverse effect on the

scores obtained by all the programs tested. Thus, blocks with

more than 20% of the residues in natively disordered segments

were aligned with BCS scores less than 0.5 by all aligners. This is

in agreement with our original observation that most MSA

programs available today are designed to align the globular,

folded domains in proteins.

Figure 1. An example benchmark alignment. (A) Reference alignment of representative sequences of the p53/p63/p73 family, with the domain
organization shown above the alignment (AD: activation domain, Oligo: oligomerization, SAM: sterile alpha motif). Colored blocks indicate conserved
regions. The grey regions correspond to sequence segments that could not be reliably aligned and white regions indicate gaps in the alignment. (B)
Different MSA programs produce different alignments, especially in the N-terminal region (boxed in red in A) containing rare motifs and a disordered
proline-rich domain.
doi:10.1371/journal.pone.0018093.g001

Multiple sequence alignment methods
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Improving local alignment quality by combining
methods

The experiments described above demonstrated some of the

strengths and weaknesses of the different MSA construction

methods. For a given set of sequences, different MSA programs

often provide very different solutions, particularly outside the most

conserved regions, as illustrated in Figure 1B. In order to test

whether these differences could be exploited to improve local

alignment accuracy, we determined a new score for each block,

corresponding to the highest score obtained by any of the

programs. This combined score was then compared to the block

scores for each program individually (Figure 7). Of course, our

combined score is a theoretical maximum, since it incorporates

knowledge about the blocks from the reference alignment.

Identifying ab initio conserved regions in different alignments and

combining them in a single consensus alignment is more

complicated. Nevertheless, the combined score represents a

significant improvement over all the individual methods, with an

increase in accuracy of almost 20%.

Based on these combined scores, we posed the following

question: can we model or predict the ‘alignability’ of specific

blocks based on the attributes we have defined here? In other

words, can we use these attributes to distinguish the blocks that can

be aligned from those that cannot? The good news is that, by

exploiting the individual capabilities of the recent algorithmic

developments, a new milestone is attained where the globular

domains present in a majority of the sequences can be accurately

aligned (Figure 8). Even short blocks (,10 residues)with low

similarity (,0.5) can be aligned with 40–60% accuracy (Figure 8A).

However, the frequency of occurrence in the alignment plays an

important role. Blocks that occur in a majority of the sequences,

even very divergent ones, are generally well aligned (Figure 8B).

Short blocks (,10 residues) that occur in a majority of the

sequences are also well aligned (Figure 8C). Blocks in natively

disordered regions are generally less well aligned than those in

folded regions, and short, divergent blocks are misaligned by all

programs (Figure 8D–F).

Discussion

We have used a new alignment benchmark to investigate

whether MSA programs are capable of constructing high quality

alignments for the sequences resulting from modern biotechnol-

ogies. The overall alignment quality scores obtained by the

different programs generally confirmed the trends observed in

previous benchmark studies. One notable exception was the fact

that increasing the number of sequences in the alignment did not

lead to more accurate alignments on average. We hypothesize that

this is due to the greater complexity of the large alignments,

generally representing divergent protein families with complex

domain organisations and an increased number of fragmentary

and erroneous sequences.

A more detailed study of local alignment quality then allowed us

to highlight a number of differences in the MSA methods tested.

For example, for very divergent blocks, Mafft (linsi), TCoffee and

Probcons were more successful. The local alignment method,

Dialign-tx, and Kalign performed better for blocks that were

conserved in small subsets of the sequences, while Mafft (linsi)

achieved the highest scores for short blocks less than 10 residues

long. Based on these results, we demonstrated that better

alignment accuracy could be achieved by combining the strengths

of the different programs. Unfortunately, the alignment accuracy

still decreases when the domains are found less frequently in the

alignment.In the future, new approaches will be needed to

Figure 2. Examples of sequence discrepancies detected. Four types of sequence discrepancies are identified and highlighted by red boxes in
the subfamily alignments. A. Potential mispredicted exons are predicted based on the scores of the conserved core blocks (blue boxes) in the
subfamily alignment. Here, the ninth sequence contains a segment ‘outlier’ that scores below the defined threshold for the central core block. The
region of the sequence identified as a discrepancy is extended to the nearest core blocks in which the sequence is correctly aligned. B. Potential start
and stop site errors are predicted based on the distribution of the positions of the N/C-terminal residues. C. Identification of a potential inserted
intron, based on the presence of a single sequence with the insertion in a given subfamily. D. Identification of a potential missing exon, based on the
presence of a single sequence with a deletion in a given subfamily.
doi:10.1371/journal.pone.0018093.g002

Multiple sequence alignment methods
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specifically address the problems of identifying the subfamily- or

context-specific motifs and other blocks that occur less frequently

in the alignment, and to handle the noise introduced by the

numerousfragmentary and erroneous sequences.

There are a number of alternative solutions for coping with this

additional complexity. First, assuming that the fragmentary and/

or erroneous sequences can be identified, they can be excluded

from the alignment, although this would discard a significant

amount of information. Second, the missing or erroneous portions

of the sequences can be predicted [41]. This however is difficult

without the information from the alignment itself. Third, new

algorithms and programs can be developed to handle the specific

characteristics of the new sequences. Work in this direction has

begun, with the development for example, of enhanced database

searching algorithms such as CARMA [42], or MEGAN [43] that

are more robust to the sequencing errors common in high

throughput sequencing projects. In the MSA field, some aligners,

such as Kalign, TCoffee or Probcons, provide estimators of local

alignment accuracy that could be used to identify unreliable

regions and eliminate them from subsequent analyses. The

sensitivity/specificity of these accuracy scores has not been fully

evaluated yet, although a comprehensive test could be performed

using simulated sequences, where the true homology relationships

between all sequence residues are known.

Figure 3. Overall alignment performance for each of the MSA programs tested. (A) Overall alignment quality measured using CS. Programs
are shown ranked by increasing quality scores. Error bars correspond to one standard deviation.(B) Total run time for constructing all alignments (a
log10 scale is used for display purposes).
doi:10.1371/journal.pone.0018093.g003

Multiple sequence alignment methods
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The alignment of blocks in the natively disordered regions is

even more problematic. This is probably because the default

parameters used in most MSA programs have been optimized on

alignments of globular, folded domains, and most of the

benchmarks used to evaluate the programs are based on

structural superpositions of these domains. Although the 3D fold

gives important clues to function, it does not represent the whole

protein [38,39]. The unstructured regions contain important

regulatory signals, such as cellular localization or post-transcrip-

tional modification sites, and many others waiting to be

discovered. A number of groups have recently begun to develop

new statistical models to represent many of these signals [44,45]

and it will be crucial to incorporate these models in future MSA

programs.

Figure 4. Factors affecting overall alignment quality.Average alignment quality scores (CS) for each MSA program tested and for eachglobal
alignment attribute:(A) CS versus NorMD, (B) CS versus the percentage of the alignment covered by the blocks, (C) CS versus mean sequence length,
(D) CS versus the total number of sequences.(E) Pearson correlation coefficients of overall quality scores (CS) for each program with global alignment
attributes (blue: positive correlation, red: negative correlation).
doi:10.1371/journal.pone.0018093.g004

Multiple sequence alignment methods
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So far, we have considered only the alignment of the conserved

blocks that could be identified reliably, which cover less than 50%

of the total alignment. The structural and/or functional roles of

the remaining regions (shown in grey in Figure 1A) are still largely

out of reach. We can draw parallels here with the evolving view of

the human genome. When the genome was first sequenced, less

than 5% of it was considered functional, the rest being ‘junk

DNA’. Now, it is known that this so-called ‘dark matter’ does in

fact contain numerous functional elements [46].

It is clear that the sequence alignment field now needs to evolve

to cope with the challenges posed by the overwhelming flood of

data. We have shown that the partitioning of the alignment into

well characterised blocks allows a judicious combination of

complementary methods resulting in more accurate alignments,

particularly in the less well conserved regions. These alignments

will in turn allow to highlight both conserved family signatures and

specific regions that might suggest neo- or sub-functionalization, or

other important genetic events. The next generation of MSA

methods will undoubtedly incorporate other novel approachesthat

will allow us to reveal the detailed picture of a gene’s function and

evolution in the context of their complex interaction and

regulatory networks. We propose two major directions for future

developments. First, the definition of alignment and block

attributes opens the way to the exploitation of the latest

developments in the field of statistical pattern recognition and

data mining, aimed at extracting interesting or informative

correlations (rules, regularities, patterns or constraints) from large

data sets. Some recent research in this area has focused on the

identification of rare patterns e.g.[47] and the problems of how to

differentiate valid rare patterns from noise. Second, MSA

algorithms can benefit from the new structural and functional

‘‘omics’’ data. In the same way that 2D and 3D structure

information has already been used in methods such as 3D-

COFFEE [26] or Refiner [27], or information from database

homology searches in programs such as PRALINE[48]orPRO-

MALS [49], other important data resources could be exploited to

shed light on the unstructured and other ‘grey’ regions. For

example, information about cellular localizationor specific molec-

ular interactions could be used to guide the search for specific

signals in these complex sequences.

Integration of these different algorithmic approaches and data

types in knowledge-enabled, dynamic systems will ease and improve

the complete MSA construction and analysis process; from the

selection of a suitable set of sequences, via data cleaning and

preprocessing, data mining and the evaluation of results, to the final

knowledge presentation and visualization. Such systems could then

be used to fully exploit the potential of MSAs as models of the

underlying evolutionary processes that have created and fashioned

extant genes and fine-tuned their structure, function and regulation.

Materials and Methods

Construction of reference alignments
The protein families used as benchmark test sets were selected

to provide a variety of different multiple alignment problems

(Figure 9). Thus, the number of sequences in each alignment

ranges from 4 to 807. The mean sequence length for an alignment

ranges from 56 to 3271 and mean residue percent identity ranges

from 11 to 68. Detailed alignment statistics are available at ftp://

ftp-igbmc.u-strasbg.fr/pub/msa_reference/stats.txt.

For each family, the reference alignment was constructed using

a semi-automatic protocol similar to the one developed for the

construction of the BAliBASE [50] alignment benchmark. Briefly,

potential sequence homologs were detected by PSI-BLAST [51]

searches in the Uniprot [52] and PDB [53] databases using a given

query sequence. Of the 218 reference alignments, 122 (56%) have

at least one sequence with known structure.Sequences with known

3D structure were then aligned using the SAP [54] 3D

superposition program. Sequences with no known 3D structure

were initially aligned by (i) identifying the most conserved

segments in the PSI-BLAST HSP alignments with the Ballast

[55] program and (ii) using these conserved segments as anchors

for the progressive multiple alignment strategy implemented in

DbClustal [56]. Unrelated sequences were removed from the

Figure 5. Comparison of alignment quality scores for sequence sets with and without potential error sequences.Quality scores (CS) for
alignment of reliable sequences when discrepancies are included in the alignment set are shown in red. Quality scores for the same set of sequences
when discrepancies are removed from the alignment set are shown in green. Scores for all sequences (from figure 2) are shown (in blue) for
comparison purposes.
doi:10.1371/journal.pone.0018093.g005
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multiple alignment using the LEON [57] program and the quality

of the alignment was evaluated using the NorMD objective

function. Finally, structural and functional annotations (including

known domains from the Interpro database: www.ebi.ac.uk/

interpro/) were added using the multiple alignment information

management system (MACSIMS) [58].

The automatic alignment was then manually verified and

refined to correct any badly aligned sequences or locally

misaligned regions. The manual refinementincluded the alignment

of known secondary structure elements and functional residues.At

this stage, a subset of the complete set of sequences detected in the

database searches was selected to ensure that the benchmark

Figure 6. Factors affecting individual block alignment quality.Average block scores (BCS) for each MSA program and for each block
attribute:(A) BCS versus similarity ( = 1-MD) of the sequences in the block, (B) BCS versus block length: average residue length of the block, (C) BCS
versus frequency of occurrence of the block in the alignment, (D) BCS versus disorder: percentage of residues in natively disordered regions
compared to folded domains.(E) Correlation of individual block scores (BCS)for each program with the various block attributes.
doi:10.1371/journal.pone.0018093.g006
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contains test sets of different sizes, thus representing a wide

diversity of alignment problems. Alignments were edited with the

JalView [59] editor which allows the user to visualize alignment

conservation via various residue coloring schemes as well as

conservation and consensus plots. The conserved regions were also

explored according to the structural and functional information

available for the sequence family.

Alignment block calculation
For each reference alignment, blocks are defined that

correspond to the reliably aligned regions, using the RASCAL

[60] program. Briefly, the alignment is first divided horizontally

into sequence subfamilies using Secator [61]. For each subfamily,

sequence conservation is measured using the NorMD objective

function in a sliding window analysis (window length = 5) along the

length of the alignment. A block is then defined as a region in the

alignment consisting of at least 3 columns, in which the NorMD is

above the threshold value of 0.2. For each block in each subfamily,

a profile [62] is built from the alignment and pairwise profile-

profile comparisons are made to identify blocks shared between a

number of subfamilies. This protocol is similar to the method used

to identify blocks in the previous BAliBASE alignment benchmark

[50], although in this case only regions conserved in all the

sequences were marked as blocks.

This protocol led to the identification of 7985 blocks,

representing on average 46% of the total multiple alignment

(coverage ranged from ,20% to .80%). The remainder of the

sequence segments could not be aligned reliably based only on the

sequences and structures present in the alignment. Thus, the

blocks exclude local segments that are either (i) unalignable by

sequence alone or (ii) not biologically alignable.

Global alignment attributes
Four different attributes were calculated for each reference

alignment, which reflect the overall difficulty of the alignment:

i. the total number of sequences to be aligned,

ii. the average length of the sequences to be aligned,

iii. the norMD score which is an objective function for MSA

based on the Mean Distance (MD) scores introduced in

ClustalX [63]. A score for each column in the alignment is

calculated using the concept of continuous sequence space

introduced by Vingron and Sibbald [64] and the column

scores are then summed over the full length of the alignment.

The norMD scores also take into account the size of the

alignment by calculating the maximum score attainable

given the lengths of each of the unaligned sequences and

assuming that the sequences are all identical.

iv. the percentage of the alignment covered by the blocks.

Block attributes
Four different attributes were calculated for each block in each

reference alignment:

i. the average similarity of the sequence segments in the block

is estimated using: Similarity = 1-MD, where MD = mean

distance [40] of the sequences in the block,

ii. the length of the block, corresponding to the average number

of residues for each sequence in the block,

iii. the frequency of occurrence of the block in the alignment,

equal to the number of sequences in the block divided by the

total number of sequences in the alignment,

iv. the structural context of the block, measured by the

percentage of the residues in the block found in a predicted

natively disordered (unstructured) region. Natively disor-

dered segments were predicted using the IUPred program

[65].

Although the benchmark test sets are designed to represent

many different alignment problems, the sampling of the four

attributes described here is not always homogeneous. For example,

the test sets contain few blocks in disordered regions, which are

also long or which occur frequently in the alignments. This results

Figure 7. Comparison of block scores obtained by the different alignment programs. Mean block scores for the individual programs vary
between 0.49 and 0.65. Combining the results from each program leads to an increased mean score of 0.81.Error bars correspond to one standard
deviation. Asterisks indicate significant differences between the scores according to pairwise t-tests (significance level 0.05).
doi:10.1371/journal.pone.0018093.g007
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in some heterogeneity in the subsequent analyses, such as the

results shown in figure 3 in the main text.

Detection of sequence discrepancies
The sequences in the benchmark test sets were extracted from

the public protein databases and may contain errors resulting from

inaccurate gene structure prediction. Different types of prediction

error were considered, such as excluding coding exons, including

introns as part of the coding sequence, or wrongly predicting start

and termination sites. We used the information in the reference

multiple alignment to build a model of the protein family and

sequences that deviated from this model were annotated as having

potential sequence errors.

The sequences in the complete alignment were first divided into

more related subfamilies using the Secator program [61]. Then,

for each subfamily, sequences with discrepancies that might

indicate errors in the corresponding gene structure, were identified

using an empirical rule-based approach:

1. Badly predicted exons are identified using the RASCAL

algorithm [60] as ‘outlier’ sequence segments. The method is

summarized here and in Figure 2A. First, conserved ‘core

blocks’ are identified for the subfamily, representing the

sequence segments that are reliably aligned in the majority of

the sequences within the subfamily. Then, for each core block,

a weighted profile is built from the alignment and each

sequence within the subfamily is assigned a score against the

profile. Finally, a threshold score for each core block is defined

based on the upper and lower quartiles of the sequence scores.

Sequence segment outliers that score below the threshold are

annotated as ‘discrepancies’ or potential errors.

2. Badly predicted start or stop sites are identified by considering

the positions of the N/C-terminal residues for each sequence in

the subfamily alignment (Figure 2B). For each sequence, the

position of the terminal residue in the alignment is noted. A

window, W, of ‘normal’ values is then determined, as follows:

Q1-10,W,Q3+10, where Q1 and Q3 are the lower and upper

quartiles respectively of the distribution of terminal positions.

Sequences with terminal positions outside this window are

annotated as potential deletion/extension errors.

3. Inserted introns (Figure 2C)are detected using the following

rule: a potential inserted intron is detected if two subfamily

alignment columns (i,j) exist such that ((ni = Ni) AND (nj = Nj)

AND (Nk = 1 for i,k,j) AND (j-i. = 10)), where Ni is the total

number of sequences in the subfamily (excluding fragments at

column i), ni is the number of residues in column i.

4. Missing exons (Figure 2D)are detected using the following rule:

a potential missing exon is detected if two subfamily alignment

columns (i,j) exist such that ((ni = Ni) AND (nj = Nj) AND

(Nk = N-1 for i,k,j) AND (j-i. = 10)), where Ni is the total

number of sequences in the subfamily (excluding fragments at

column i), ni is the number of residues in column i.

Multiple alignment programs evaluated
The latest versions of 8 different multiple alignment programs

(see below) were used to construct an alignment for each of the

benchmark test sets. The programs were run using the default

options for protein alignment, except for Mafft and Muscle. Mafft

is a suite of programs offering various multiple alignment

strategies, of which two complementary versions were tested: a

rapid, less accurate version (fftns2) and an iterative refinement

(linsi). For Muscle, two versions were tested: a fast, average

accuracy version that limits the refinement to a maximum of 2

iterations (iters = 2), and the default options, which limits the

refinement to a maximum of 16 iterations. The parallel version of

TCoffee was run on 8 processors. Thus, a total of eight different

versions of the alignment programs were tested (Table 1).

All programs were run on a Sun Enterprise V40z server (4

Opteron processors with 4616 Gb memory) under RedHat

Enterprise Linux.

Evaluation procedure
Overall alignment quality scores. The alignments

obtained from each of the 8 programs were compared to the

corresponding reference alignments. Suppose we have a test

alignment of N sequences and M blocks. For each block, b in the

Figure 8. Alignability of blocks depends on various attributes.
By combining 8 different MSA programs, a majority of blocks can be
well aligned (red regions in the heat maps), but certain blocks remain
problematic (blue, green regions). (A) Short blocks (,10 residues) with
low similarity (,0.5) are aligned with 40–60% accuracy. (B) The
frequency of occurrence in the alignment plays an important role.
Blocks that occur in a majority of the sequences, even very divergent
ones, are generally well aligned. (C) Short blocks (,10 residues) that
occur in a majority of the sequences are also well aligned. (D to F)
Blocks in natively disordered regions are generally less well aligned than
those in folded regions, and short, divergent blocks are misaligned by
all programs (blue regions).
doi:10.1371/journal.pone.0018093.g008
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alignment containing nb sequences and mb columns, the ith

column of the block is assigned a score Cbi = 1 if all the residues in

the column are aligned correctly, otherwise Cbi = 0. The score for

each block ( = Cbi averaged over its columns) is then weighted by

the number of sequences in the block. The overall alignment

quality, or Column Score (CS), is then:

CS~

XM

b~1

nb

Xmb

i~1

Cbi

mb

XM

b~1

nb

Block alignment quality scores. For each block, b in the

alignment containing nb sequences and mb columns, the ith

column of the block is again assigned a score Cbi = 1 if all the

residues in the column are aligned correctly, otherwise Cbi = 0.

The ability of the programs to align a specific block was estimated

Figure 9. General statistics computed for the benchmark alignments. In the box-and-whisker plots, boxes indicate lower and upper
quartiles, and whiskers represent minimum and maximum values. Blue boxes correspond to the alignment of all sequences. Red boxes correspond to
the alignments containing only reliable sequences, with no identified sequence discrepancies.
doi:10.1371/journal.pone.0018093.g009

Table 1. Multiple sequence alignment programs used in this
study.

Program version Availability

ClustalW[67] 2.0.12 www.clustal.org

Dialign-tx [68] 1.0.2 dialign-tx.gobics.de

Kalign [69] 2.03 msa.cgb.ki.se

Mafft (fftns2) [70] 6.815 align.bmr.kyushu-u.ac.jp/mafft/
software

Mafft (linsi) [70] 6.815 align.bmr.kyushu-u.ac.jp/mafft/
software

Muscle (iters = 2) [71] 3.8.31 www.drive5.com/muscle

Muscle (default) [71] 3.8.31 www.drive5.com/muscle

T-Coffee (parallel)[72] 8.99 www.tcoffee.org

Probcons [73] 1.12 probcons.stanford.edu

doi:10.1371/journal.pone.0018093.t001
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by calculating the block column score, (BCS) = mean column

score in the block:

BCS~

Xmb

i~1

Cbi

mb

In this case, the block column scores are not weighted by the

number of sequences in the block. Instead, each block has a

maximum score of 1, regardless of the frequency with which it is

observed in the alignment.

Combining block alignment quality scores for different
programs

For each reference alignment, a ‘‘combined score’’ was

calculated corresponding to the maximal score possible if all

correctly aligned blocks from each program were combined in a

single alignment. For each block in the reference alignment, the

maximum score obtained by any of the programs was selected and

these maximal block scores were then averaged over the whole

alignment.

Availability
Unaligned sequences for all the reference alignments are

available in FASTA format from ftp://ftp-igbmc.u-strasbg.fr/

pub/msa_reference/msa_reference.tar.gz. The annotated align-

ments, including the block definitions, are provided in an XML

format based on the MAO Multiple Alignment Ontology [66] and

used by the MACSIMS systems [56]. The source code for the

scoring schemes used here is available from ftp://ftp-igbmc.u-

strasbg.fr/pub/msa_reference/bali_score_src_v4.tar.gz.
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51. Schäffer A, Aravind L, Madden T, Shavirin S, Spouge J, et al. (2001) Improving

the accuracy of PSI-BLAST protein database searches with composition-based
statistics and other refinements. Nucleic Acids Res 29: 2994–3005.

52. The UniProt Consortium (2009) The Universal Protein Resource (UniProt) in
2010. Nucleic Acids Res. In press.

53. Berman HM (2008) The Protein Data Bank: a historical perspective. Acta Cryst

A64: 88–95.
54. Taylor WR (2000) Protein structure comparison using SAP. Methods Mol Biol

143: 19–32.
55. Plewniak F, Thompson JD, Poch O (2000) Ballast: blast post-processing based

on locally conserved segments. Bioinformatics 16: 750–759.
56. Thompson J, Plewniak F, Thierry J, Poch, O (2000) DbClustal: rapid and

reliable global multiple alignments of protein sequences detected by database

searches. Nucleic Acids Res 28: 2919–2926.
57. Thompson JD, Prigent V, Poch O (2004) LEON: multiple aLignment

Evaluation Of Neighbours. Nucleic Acids Res 32: 1298–1307.

58. Thompson JD, Muller A, Waterhouse A, Procter J, Barton GJ, et al. (2006)

MACSIMS: multiple alignment of complete sequences information manage-

ment system. BMC Bioinformatics 7: 318.

59. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview

Version 2—a multiple sequence alignment editor and analysis workbench.

Bioinformatics 25: 1189–1191.

60. Thompson JD, Thierry JC, Poch O (2003) RASCAL: rapid scanning and

correction of multiple sequence alignments. Bioinformatics 19: 1155–1161.

61. Wicker N, Perrin GR, Thierry JC, Poch O (2001) Secator: a program for

inferring protein subfamilies from phylogenetic trees. Mol Biol Evol 18:

1435–1441.

62. Gribskov M, McLachlan AD, Eisenberg D (1987) Profile analysis: detection of

distantly related proteins. Proc Natl Acad Sci USA 84: 4355–4358.

63. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The

CLUSTAL_X windows interface: flexible strategies for multiple sequence

alignment aided by quality analysis tools. Nucl Acids Res 25: 4876–4882.

64. Vingron M, Sibbald PR (1993) Weighting in sequence space: a comparison of

methods in terms of generalized sequences. Proc Natl Acad Sci USA 90:

8777–8781.
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