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OPTIMAL EXTINCTION RATES FOR THE FAST DIFFUSION EQUATION

WITH STRONG ABSORPTION

RAZVAN GABRIEL IAGAR AND PHILIPPE LAURENÇOT

Abstract. Optimal extinction rates near the extinction time are derived for non-negative solutions
to a fast diffusion equation with strong absorption, the power of the absorption exceeding that of the
diffusion.

1. Introduction

Given m ∈ (0,∞), q ∈ (0, 1), and a non-negative initial condition u0 in BC(RN), u0 6≡ 0, it is
well-known that the initial value problem

∂tu−∆um + uq = 0 , (t, x) ∈ (0,∞)× R
N , (1.1a)

u(0) = u0 , x ∈ R
N , (1.1b)

has a unique non-negative (weak) solution u which vanishes identically after a finite time, a phenom-
enon usually referred to as finite time extinction [19–21]. More precisely, introducing the extinction
time

Te := sup{t > 0 : u(t) 6≡ 0} > 0 , (1.2)

then Te is finite and satisfies Te ≤ ‖u0‖
(1−q)
∞ /(1− q), the latter upper bound being a straightforward

consequence of (1.1) and the comparison principle. Moreover, there holds

u(t) 6≡ 0 for t ∈ [0, Te) and u(t) ≡ 0 for t ≥ Te . (1.3)

When q < m and u0(x) → 0 as |x| → ∞, finite time extinction is accompanied by an even more
striking phenomenon, the instantaneous shrinking of the support, that is, the positivity set P(t) :=
{x ∈ R

N : u(t, x) > 0} of u at time t is a relatively compact subset of RN for all t ∈ (0, Te), even
if P(0) = R

N initially [1, 5, 7, 19]. Observe that the inequality q < m is always satisfied when the
diffusion is linear (m = 1) or slow (m > 1). Additional information on the behaviour of P(t) as
t → Te is also available when m ≥ 1 and N = 1 [6, 10–14].
Once finite time extinction is known to take place, gaining further insight into the underlying

mechanism requires to identify the behaviour of u(t) as t → Te, a preliminary step being to determine
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the relevant space and time scales. Simple scaling arguments predict that, for r ∈ [1,∞] and
u0 ∈ Lr(RN), there is a constant γr > 0 (depending on N , m, q, u0, and r) such that

‖u(t)‖r ∼ γr(Te − t)α−(Nβ/r) , (1.4)

where

α :=
1

1− q
> 0 , β :=

q −m

2(1− q)
∈ R . (1.5)

As already observed by several authors [9, 12, 15], a rather simple comparison argument provides a
lower bound for the L∞-norm of the form (1.4). Indeed, consider t ∈ (0, Te) and let x(t) ∈ R

N be a
point where u(t) reaches its maximum value, that is, u(t, x(t)) = ‖u(t)‖∞. Then u(t)m also attains
its maximum value at this point, so that ∆um(t, x(t)) ≤ 0 and we infer from (1.1a) that (at least
formally)

d

dt
‖u(t)‖∞ = ∂tu(t, x(t)) ≤ −u(t, x(t))q = −‖u(t)‖q∞ .

Integrating the above differential inequality over (t, Te) gives the expected lower bound

‖u(t)‖∞ ≥ [(1− q)(Te − t)]1/(1−q) , t ∈ [0, Te) . (1.6)

The derivation of an upper bound of the form (1.4) turns out to be more involved and the results
obtained so far are rather sparse: in one space dimension, the upper bound

‖u(t)‖∞ ≤ C∞(Te − t)1/(1−q) , t ∈ [0, Te) , (1.7)

is shown in [17, Proposition 2.2] for m = 1 and in [9, Lemma 5.2, Lemma 7.2 & Lemma 9.2] for
m ∈ (0, 1), the latter being valid only for compactly supported initial data. The proofs are however
of a completely different nature: in [17], properties of the linear heat equation are used while the
approach in [9] relies on the intersection-comparison technique, which requires in particular the
compactness of the support of the initial condition. Still for m = 1 but in any space dimension,
the upper bound (1.7) is derived in [12, Lemma 2.1] for radially symmetric initial data u0 having a
non-increasing profile and satisfying ∆u0 + µuq

0 ≥ 0 in R
N for some µ > 0. The last case for which

(1.7) is proved corresponds to the choice m = 2− q > 1 and the proof relies on the derivation of an
Aronson-Bénilan estimate, which seems to be only available for this specific choice of the parameters
m and q [15].
The purpose of this note is to contribute to the validity of (1.4) and derive optimal upper and

lower bounds near the extinction time when the parameters m and q range in

(N − 2)+
N

< m < q < 1 . (1.8)

Recalling that a lower bound in L∞ is already available, see (1.6), we begin with upper bounds.

Theorem 1.1 (Upper bounds). Assume that m and q satisfy (1.8) and consider a non-negative

initial condition u0 ∈ BC(RN), u0 6≡ 0, for which there is κ0 > 0 such that

u0(x) ≤ κ0|x|
−2/(q−m) , x ∈ R

N . (1.9)
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Given r ∈ [1,∞], there is Cr > 0 depending only on N , m, q, u0, and r such that the solution u to

(1.1a)-(1.1b) satisfies

‖u(t)‖r ≤ Cr(Te − t)α−(Nβ/r) , t ∈ (0, Te) , (1.10)

the extinction time Te being defined in (1.2).

Theorem 1.1 thus extends the validity of the upper bound (1.7) established in [9] for N = 1 and
r = ∞ to any space dimension N ≥ 1 and r ∈ [1,∞], while relaxing the assumption of compact
support required in [9]. It is worth mentioning that the validity of (1.10) for r ∈ [1,∞) does not
seem to be a simple consequence of (1.10) for r = ∞ since u(t) is positive everywhere in R

N for all
t ∈ (0, Te) even if u0 is compactly supported, see [9, Lemma 2.5] and Proposition 1.4 below.
To be able to cope with higher space dimensions and non-compactly supported initial data, the

proof of Theorem 1.1 takes a different route from that in [9] and is carried out in two steps: we first
show that the algebraic decay at infinity (1.9) enjoyed by u0 remains true throughout time evolution
and combine it with (1.1a) to prove (1.10) for r = 1. We next use self-similar variables and Moser’s
interation technique to derive (1.10) for all r ∈ (1,∞].
As a consequence of (1.6) and Theorem 1.1 for r = ∞, the correct time scale for the extinction

phenomenon is identified. We now supplement the lower bound (1.6) in L∞ with another one in Lm+1.
On the one hand, it allows us to identify the right space scale. On the other hand, its derivation
does not rely on the comparison principle but on energy estimates, a technique which is more likely
to extend to other problems for which the former might not be available.

Theorem 1.2 (Lower bound in Lm+1). Assume that m and q satisfy (1.8) and consider a non-

negative initial condition u0 ∈ BC(RN), u0 6≡ 0, such that u0 ∈ Lm+1(RN). There is cm+1 > 0
depending only on N , m, q, and u0 such that the solution u to (1.1a)-(1.1b) satisfies

‖u(t)‖m+1 ≥ cm+1(Te − t)α−(Nβ/(m+1)) , t ∈ (0, Te) , (1.11)

the extinction time Te being defined in (1.2).

Observing that Theorems 1.1 and 1.2 are shown without using the L∞-lower bound (1.6), the
latter may be recovered from these two results by Hölder’s inequality, with a less explicit constant
though.

Corollary 1.3. Assume that m and q satisfy (1.8) and consider a non-negative initial condition

u0 ∈ BC(RN), u0 6≡ 0, enjoying the decay property (1.9). For r ∈ (m + 1,∞], there is cr > 0
depending only N , m, q, u0, and r such that the solution u to (1.1a)-(1.1b) satisfies

‖u(t)‖r ≥ cr(Te − t)α−(Nβ/r) , t ∈ (0, Te) . (1.12)

Summarizing the outcome of Theorem 1.1, Theorem 1.2, and Corollary 1.3, we have shown that,
for all non-negative initial data u0 ∈ BC(RN ), u0 6≡ 0, enjoying the decay property (1.9), the
corresponding solution u to (1.1a)-(1.1b) is bounded in Lr(RN), r ∈ [m+1,∞], from above and from
below at time t ∈ (0, Te) by the same power of Te − t. Such estimates pave the way towards a more
precise description of the behaviour of u(t) as t → Te, which is expected to be self-similar. That this
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is indeed the case is shown in [8,9] in one space dimension, another building block of the proof being
the uniqueness of self-similar solutions [8].
We end up this note with the already mentioned everywhere positivity of solutions to (1.1a)-(1.1b)

for positive times prior to the extinction time. As we shall see below, this property holds true for a
wider range of the parametersm and q, namely 0<m ≤ q < 1. It is already observed in [9, Lemma 2.5]
in one space dimension and we extend it herein to any space dimension. It is worth emphasizing that
it includes the case q = m and contrasts markedly with the instantaneous shrinking of the support
occurring when q < m.

Proposition 1.4 (Everywhere positivity). Consider 0 < m ≤ q < 1. Let u0 ∈ BC(RN) be a non-

negative initial condition, u0 6≡ 0, and denote the corresponding solution to (1.1a)-(1.1b) by u with

extinction time Te. For t ∈ (0, Te), there holds

P(t) := {x ∈ R
N : u(t, x) > 0} = R

N . (1.13)

Before proving the results stated above, we point out once more that the energy techniques devel-
oped herein seem to be rather flexible and are expected to have a wider range of applicability. For
instance, a related approach is used in the companion paper [18], where optimal (lower and upper)
bounds near the extinction time are established for a different fast diffusion equation (featuring the
p-Laplacian operator, p ∈ (1, 2)) with a gradient absorption term.

2. Upper bounds near the extinction time

Throughout this section, we assume that m and q satisfy (1.8) and consider a non-negative initial
condition u0 ∈ BC(RN), u0 6≡ 0, enjoying the decay property (1.9). Let u be the corresponding
solution to (1.1a)-(1.1b).

2.1. L1-estimate. We begin with the propagation throughout time evolution of the algebraic decay
(1.9) and set

κ∗ :=

(

2m(m+ q)

(q −m)2

)1/(q−m)

. (2.1)

Lemma 2.1. For t ∈ [0,∞) and x ∈ R
N \ {0}, there holds

u(t, x) ≤ max{κ0, κ∗}|x|
−2/(q−m) .

Proof. Set Σκ(x) := κ|x|−2/(q−m) for x ∈ R
N \{0}, where κ is a positive constant yet to be determined.

We note that

−∆Σm(x) + Σ(x)q = −κm

[

2m(m+ q)

(q −m)2
|x|−2q/(q−m) −

2m(N − 1)

(q −m)
|x|−2q/(q−m)

]

+ κq|x|−2q/(q−m)

≥ κm
(

κq−m − κq−m
∗

)

|x|−2q/(q−m)

for x ∈ R
N \ {0}, so that Σκ is a supersolution to (1.1a) in R

N \ {0} for all κ ≥ κ∗. We then choose
κ = max{κ0, κ∗} and use the comparison principle to complete the proof of Lemma 2.1. �
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We are now in a position to derive the claimed upper bound near the extinction time for r = 1.

Proof of Theorem 1.1: r = 1. Let t ∈ [0, Te). Integrating (1.1a) over (t, Te)× R
N gives

‖u(t)‖1 =

∫ Te

t

∫

RN

u(s, x)q dxds . (2.2)

Owing to (1.8), there holds 2q/(q −m) > N and we infer from Lemma 2.1 and Hölder’s inequality
that, for s ∈ (t, Te) and R > 0,

∫

RN

u(s, x)q dx =

∫

B(0,R)

u(s, x)q dx+

∫

RN\B(0,R)

u(s, x)q dx

≤ CRN(1−q)‖u(s)‖q1 + (max{κ0, κ∗})
q|SN−1|

∫ ∞

R

rN−1−(2q/(q−m)) dr

≤ C
(

RN(1−q)‖u(s)‖q1 +R(N(q−m)−2q)/(q−m)
)

.

We next optimize in R in the previous inequality by setting R(s) := ‖u(s)‖
−(q−m)/(N(m−q)+2)
1 , which

satisfies

R(s)N(1−q)‖u(s)‖q1 = R(s)(N(q−m)−2q)/(q−m) = ‖u(s)‖
(N(m−q)+2q)/(N(m−q)+2)
1 .

Consequently, taking R = R(s) in the previous inequality, we obtain
∫

RN

u(s, x)q dx ≤ C‖u(s)‖
(N(m−q)+2q)/(N(m−q)+2)
1 ,

which gives, together with (2.2), the positivity of N(m − q) + 2q, and the time monotonicity of
s 7→ ‖u(s)‖1,

‖u(t)‖1 ≤ C

∫ Te

t

‖u(s)‖
(N(m−q)+2q)/(N(m−q)+2)
1 ds

≤ C(Te − t)‖u(t)‖
(N(m−q)+2q)/(N(m−q)+2)
1 ,

from which (1.10) for r = 1 readily follows. �

2.2. Scaling variables and Lr-estimates, r ∈ (1,∞]. The next step is to take advantage of the
just derived L1-upper bound to derive the corresponding ones in Lr for r ∈ (1,∞]. To this end, we
introduce the scaling variables

s := ln

(

Te

Te − t

)

, y := x(Te − t)β , (t, x) ∈ [0, Te)× R
N , (2.3)

and the new unknown function v defined by

u(t, x) = (Te − t)αv
(

ln(Te)− ln(Te − t), x(Te − t)β
)

, (t, x) ∈ [0, Te)× R
N , (2.4)

or, equivalently,

v(s, y) = T−α
e eαsu

(

Te(1− e−s), yT−β
e eβs

)

, (s, y) ∈ [0,∞)× R
N . (2.5)
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It readily follows from (1.1a)-(1.1b) that v solves

∂sv(s, y) = αv(s, y) + βy · ∇v(s, y) + ∆vm(s, y)− v(s, y)q , (s, y) ∈ (0,∞)× R
N , (2.6)

v(0, y) = v0(y) := T−α
e u0

(

yT−β
e

)

, y ∈ R
N . (2.7)

Since
‖u(t)‖r = (Te − t)α−(Nβ/r)‖v(s)‖r , t ∈ (0, Te) , (2.8)

for all r ∈ [1,∞], we realize that an upper bound such as (1.10) on ‖u(t)‖r for t ∈ (0, Te) obviously
follows from a uniform upper bound on ‖v(s)‖r for s ≥ 0, the converse being true as well. In
particular, it follows from (2.8) and Theorem 1.1 for r = 1 that

‖v(s)‖1 ≤ C1 , s ≥ 0 , (2.9)

and we may assume without loss of generality that C1 ≥ 1.
We now aim at using a bootstrap argument to deduce from (2.6) and (2.9) that v belongs to

L∞(0,∞;Lr(RN)) for all r ∈ (1,∞]. To this end, Moser’s iteration technique is a suitable tool and
the way we apply it is inspired from [2, Theorem 3.1]. But since [2, Theorem 3.1] is devoted to the
slow diffusion case m > 1, some technical aspects of its proof do not seem to apply directly here and
we borrow additional arguments from the proof of [3, Proposition 2].

Lemma 2.2. Let r ∈ (0,∞]. There is Cr+1 > 0 depending only on N , m, q, u0, and r such that

‖v(s)‖r+1 ≤ Cr+1 , s ≥ 0 .

Proof. Let r ∈ [2 − m,∞). Multiplying (2.6) by vr, integrating over R
N , and using integration by

parts, we obtain

1

r + 1

d

ds
‖v‖r+1

r+1 + rm

∫

RN

vr+m−2|∇v|2 dy +

∫

RN

vr+q dy =

(

α−
Nβ

r + 1

)

‖v‖r+1
r+1 ,

d

ds
‖v‖r+1

r+1 +
4mr(r + 1)

(m+ r)2
∥

∥∇v(m+r)/2
∥

∥

2

2
≤ α(r + 1)‖v‖r+1

r+1 .

Since 4mr(r + 1) ≥ 2m(m+ r)2, we end up with

d

ds
‖v‖r+1

r+1 + 2m
∥

∥∇v(m+r)/2
∥

∥

2

2
≤ α(r + 1)‖v‖r+1

r+1 . (2.10)

We next fix ζ ∈ (2/m, 2∗) where 2∗ := 2N/(N − 2)+ (with 2∗ = ∞ for N = 1, 2). On the one
hand, it follows from the Gagliardo-Nirenberg inequality that

∥

∥v(m+r)/2
∥

∥

ζ
≤ C

∥

∥∇v(m+r)/2
∥

∥

θ

2

∥

∥v(m+r)/2
∥

∥

1−θ

1
, (2.11)

with

θ :=
2N(ζ − 1)

(N + 2)ζ
.

On the other hand, since (m+ r)/2 ∈ [1, ζ(m+ r)/2] for r ≥ 2−m, we infer from Hölder’s inequality
that

‖v‖
(m+r)/2
(m+r)/2 ≤ ‖v‖

ζ(m+r)(m+r−2)/2[ζ(m+r)−2]
ζ(m+r)/2 ‖v‖

(ζ−1)(m+r)/[ζ(m+r)−2]
1 . (2.12)
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We deduce from (2.11) and (2.12) that

‖v‖
(m+r)/2
ζ(m+r)/2 =

∥

∥v(m+r)/2
∥

∥

ζ
≤ C‖∇v(m+r)/2‖θ2

(

‖v‖
(m+r)/2
(m+r)/2

)1−θ

≤ C
∥

∥∇v(m+r)/2
∥

∥

θ

2

[

‖v‖
ζ(m+r)(m+r−2)/2[ζ(m+r)−2]
ζ(m+r)/2 ‖v‖

(ζ−1)(m+r)/[ζ(m+r)−2]
1

]1−θ

,

hence

‖v‖
ζ(m+r)[N(m+r)+2−N ]/N [ζ(m+r)−2]
ζ(m+r)/2 ≤ C

∥

∥∇v(m+r)/2
∥

∥

2

2
‖v‖

[2N−(N−2)ζ](m+r)/N [ζ(m+r)−2]
1 . (2.13)

Moreover, since ζ > 2/m and m < 1, we have 2r ≤ m[ζ(m+ r)− 2], hence

[2N − (N − 2)ζ ](m+ r)

N [ζ(m+ r)− 2]
≤

[2N − (N − 2)ζ ]

N

m(m+ r)

2r

≤
m[2N − (N − 2)ζ ]

N
,

so that

‖v‖
[2N−(N−2)ζ](m+r)/N [ζ(m+r)−2]
1 ≤ C

[2N−(N−2)ζ](m+r)/N [ζ(m+r)−2]
1

≤ C
m[2N−(N−2)ζ]/N
1 . (2.14)

Also,

1−
N [ζ(m+ r)− 2]

ζ [N(m+ r) + 2−N ]
=

2N − ζ(N − 2)

ζ [N(m+ r) + 2−N ]
> 0 ,

and we infer from (2.13), (2.14), and Young’s inequality that

‖v‖m+r
ζ(m+r)/2 ≤

N [ζ(m+ r)− 2]

ζ [N(m+ r) + 2−N ]
‖v‖

ζ(m+r)[N(m+r)+2−N ]/N [ζ(m+r)−2]
ζ(m+r)/2

+
2N − ζ(N − 2)

ζ [N(m+ r) + 2−N ]

≤ C
∥

∥∇v(m+r)/2
∥

∥

2

2
+ 1 .

Therefore, there is ν ∈ (0, 1) depending only on N , m, q, and u0 such that

ν
(

‖v‖m+r
ζ(m+r)/2 − 1

)

≤
∥

∥∇v(m+r)/2
∥

∥

2

2
. (2.15)
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Moreover, since r + 1 ∈ [1, ζ(m+ r)/2], it follows from (2.9) and Hölder’s and Young’s inequalities
that

‖v‖r+1
r+1 ≤ ‖v‖

ζr(r+m)/[ζ(r+m)−2]
ζ(m+r)/2 ‖v‖

[(ζ−2)r+ζm−2]/(ζr+ζm−2)
1

≤ C
[(ζ−2)r+ζm−2]/(ζr+ζm−2)
1 ‖v‖

ζr(r+m)/[ζ(r+m)−2]
ζ(m+r)/2

≤ C1‖v‖
ζr(r+m)/[ζ(r+m)−2]
ζ(m+r)/2

≤
ζm− 2

ζ(m+ r)− 2
C

[ζ(m+r)−2]/(ζm−2)
1 +

ζr

ζ(m+ r)− 2
‖v‖m+r

ζ(m+r)/2

≤ C
[ζ(m+r)−2]/(ζm−2)
1 + ‖v‖m+r

ζ(m+r)/2 (2.16)

Next, let σ > 1 to be chosen appropriately later on and set

Ir(s) :=

∫

RN

v(s, y)ζ[r+m+σ(1−m)]/[σ(ζ−2)+2] dy , s ≥ 0 .

Since σ(ζ − 2) + 2 ∈ [ζ, σζ ] and

r + 1 =
σ − 1

σ
(m+ r) +

m+ r + σ(1−m)

σ
,

we deduce from (2.9) and Hölder’s and Young’s inequalities that, for δ > 0,

‖v‖r+1
r+1 ≤ ‖v‖

(σ−1)(m+r)/σ
ζ(m+r)/2 I [σ(ζ−2)+2]/σζ

r

≤
(σ − 1)δ

σ
‖v‖m+r

ζ(m+r)/2 +
1

σδσ−1
I [σ(ζ−2)+2]/ζ
r

≤ δ‖v‖m+r
ζ(m+r)/2 +

1

δσ−1
I [σ(ζ−2)+2]/ζ
r . (2.17)

Combining (2.10), (2.15), and (2.17) leads us to

d

ds
‖v‖r+1

r+1 + 2mν
(

‖v‖m+r
ζ(m+r)/2 − 1

)

≤
d

ds
‖v‖r+1

r+1 + 2m
∥

∥∇v(m+r)/2
∥

∥

2

2

≤ α(r + 1)‖v‖r+1
r+1

≤ αδ(r + 1)‖v‖m+r
ζ(m+r)/2 +

α(r + 1)

δσ−1
I [σ(ζ−2)+2]/ζ
r .

We then choose δ = mν/α(r + 1) in the above inequality to obtain

d

ds
‖v‖r+1

r+1 +mν‖v‖m+r
ζ(m+r)/2 ≤ 2mν +

ασ(r + 1)σ

(mν)σ−1
I [σ(ζ−2)+2]/ζ
r .

We finally use (2.16) to estimate from below the second term of the left-hand side of the previous
inequality and end up with

d

ds
‖v‖r+1

r+1 +mν‖v‖r+1
r+1 ≤ 2mν +mνC

[ζ(m+r)−2]/(ζm−2)
1 +

ασ(r + 1)σ

(mν)σ−1
I [σ(ζ−2)+2]/ζ
r . (2.18)
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We first choose

σ =
ζ(m+ r)− 2

ζm− 2
> 1

in (2.18) and observe that this choice guarantees that

ζ [m+ r + σ(1−m)] = σ(ζ − 2) + 2 .

Consequently, Ir = ‖v‖1 and we deduce from (2.9) and (2.18) that there is C(r) > 0 depending on
N , m, q, u0, and r such that

d

ds
‖v‖r+1

r+1 +mν‖v‖r+1
r+1 ≤ C(r) .

Integrating the previous differential inequality entails that

sup
s≥0

‖v(s)‖r+1 < ∞ . (2.19)

The validity of (2.19) extends to all r ∈ (0, 2−m) by (2.9) and Hölder’s inequality.
To complete the proof of Lemma 2.2, we are left to check the boundedness of v in L∞(RN). To

this end, we take σ = σ0 := 2(ζ − 1)/(ζ − 2) > 1 in (2.18) and obtain, after integration with respect
to time,

‖v(s)‖r+1
r+1 ≤ ‖v0‖

r+1
r+1e

−mνs + 2 + C
[ζ(m+r)−2]/(ζm−2)
1

+

(

α(r + 1)

mν

)σ0

[

sup
s∗∈[0,s]

Ir(s∗)

]2

≤ ‖v0‖1‖v0‖
r
∞ + 2 + C

[ζ(m+r)−2]/(ζm−2)
1

+

(

α(r + 1)

mν

)σ0

[

sup
s∗∈[0,s]

Ir(s∗)

]2

,

and

Ir = ‖v‖
[(r+m)+σ0(1−m)]/2
[(r+m)+σ0(1−m)]/2 .

Therefore, there are K0 > 0 and K1 > 0 depending only on N , m, q, and u0 such that

sup
s≥0

{

‖v(s)‖r+1
r+1

}

≤ K0

(

Kr+1
1 + (1 + r)σ0 sup

s≥0

{

‖v(s)‖
[(r+m)+σ0(1−m)]
[(r+m)+σ0(1−m)]/2

}

)

. (2.20)

We now define the sequence (rj)j≥0 by

1 + rj+1 = 2(1 + rj)− (1−m)(σ0 − 1) , j ≥ 0 , r0 := 2−m ,

and set

Vj := sup
s≥0

{

‖v(s)‖
rj+1
rj+1

}

, j ≥ 0 .
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For j ≥ 0, we take r = rj+1 in (2.20) and realize that

Vj+1 ≤ K0

(

K
1+rj+1

1 + (1 + rj+1)
σ0V 2

j

)

≤ K0(1 + rj+1)
σ0 max

{

K
1+rj+1

1 , V 2
j

}

, j ≥ 0 .

Since σ0−1 < 1/(1−m) thanks to the constraint ζ > 2/m, one has 1+ r0− (1−m)(σ0−1) > 0 and
we are in a position to apply [22, Lemma A.1], which we recall in Lemma 2.3 below for completeness,
to conclude that there is K2 > 0 depending only on m, ζ , K0, and K1 such that

V
1/(1+rj )
j ≤ K2 , j ≥ 0 .

Equivalently,

sup
s≥0

{‖v(s)‖1+rj} ≤ K2 , j ≥ 0 ,

and letting j → ∞ entails that ‖v(s)‖∞ ≤ K2 for all s ≥ 0, thereby completing the proof of
Lemma 2.2. �

The proof of Theorem 1.1 for r ∈ (1,∞] is now a straightforward consequence of (2.8) and
Lemma 2.2.

Lemma 2.3. Let a > 1, b ≥ 0, c ∈ R, C0 ≥ 1, C1 ≥ 1, and p0 > 0 be given such that p0(a−1)+c > 0.
We define the sequence (pk)k≥0 of positive real numbers by pk+1 = apk + c for k ≥ 0 and assume that

(Qk)k≥0 is a sequence of positive real numbers satisfying

Q0 ≤ Cp0
1 , Qk+1 ≤ C0p

b
k+1max

{

C
pk+1

1 , Qa
k

}

, k ≥ 0 .

Then the sequence
(

Q
1/pk
k

)

k≥0
is bounded.

3. Lower bound near the extinction time

We now turn to the lower bound near the extinction time in Lm+1(RN).

Proof of Theorem 1.2. For t ∈ [0, Te], we define

X(t) := ‖u(t)‖m+1
m+1 and Y (t) :=

∫

RN

u(t, x)m+q dx .

Let t ∈ (0, Te). It follows from (1.1a) that

1

m+ 1

dX

dt
(t) + ‖∇um(t)‖22 + Y (t) = 0 . (3.1)

Since

1 <
m+ q

m
<

m+ 1

m
< 2∗ :=

2N

(N − 2)+
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by (1.8) we infer from the Gagliardo-Nirenberg inequality that

X(t)m/(m+1) = ‖u(t)m‖(m+1)/m ≤ C ‖∇um(t)‖θ2 ‖u(t)
m‖1−θ

(m+q)/m

≤ CY (t)m(1−θ)/(m+q) ‖∇um(t)‖θ2 ,

where

θ :=
2Nm(1 − q)

(m+ 1)[m(N + 2)− q(N − 2)]
.

Consequently, since u(t) 6≡ 0 as t ∈ (0, Te),

‖∇um(t)‖22 ≥ CX(t)2m/θ(m+1)Y (t)−2m(1−θ)/θ(m+q) ,

which gives, together with (3.1),

dX

dt
(t) + CX(t)2m/θ(m+1)Y (t)−2m(1−θ)/θ(m+q) + (m+ 1)Y (t) ≤ 0 . (3.2)

Setting

ξ := 1 +
2m(1− θ)

θ(m+ q)
> 1 and γ :=

2m

θξ(m+ 1)
,

it follows from Young’s inequality that

X(t)γ = X(t)γY (t)−(ξ−1)/ξY (t)(ξ−1)/ξ ≤
1

ξ
X(t)ξγY (t)1−ξ +

ξ − 1

ξ
Y (t)

≤ X(t)2m/θ(m+1)Y (t)−2m(1−θ)/θ(m+q) + Y (t)

Combining this inequality with (3.2) leads us to the differential inequality

dX

dt
(t) + CX(t)γ ≤ 0 , t ∈ (0, Te) . (3.3)

Now,

γ =
2m

θξ(m+ 1)
=

2m(m+ q)

(2m+ θ(q −m))(m+ 1)

=
2m(m+ q)[m(N + 2)− q(N − 2)]

2m{(m+ 1)[m(N + 2)− q(N − 2)] +N(q −m)(1− q)}

=
m(N + 2)− q(N − 2)

m(N + 2)− qN + 2
∈ (0, 1) ,

and we integrate (3.3) over (t, Te) to obtain

−X(t)1−γ + (1− γ)C(Te − t) ≤ 0 , t ∈ (0, Te) .

Noticing that

(m+ 1)α−Nβ =
m+ 1

1− q
−

N(q −m)

2(1− q)
=

m(N + 2)− qN + 2

2(1− q)
=

1

1− γ
,

the lower bound (1.11) readily follows from the previous inequality. �
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We end up this section with the derivation of the lower bound for r ∈ (m+1,∞] from Theorem 1.1
for r = 1 and Theorem 1.2.

Proof of Corollary 1.3. We first note that, owing to (1.8), there holds 2/(q − m) > N and (1.9)
entails that u0 ∈ L1(RN ). Since u0 also belongs to L∞(RN), we conclude that u0 ∈ Lm+1(RN).
Let r ∈ (m + 1,∞] and t ∈ (0, Te). We infer from Theorem 1.1, Theorem 1.2, and Hölder’s

inequality that

cm+1
m+1(Te − t)(m+1)α−Nβ ≤ ‖u(t)‖m+1

m+1 ≤ ‖u(t)‖rm/(r−1)
r ‖u(t)‖

(r−1−m)/(r−1)
1

≤ C1(Te − t)(α−Nβ)(r−1−m)/(r−1)‖u(t)‖rm/(r−1)
r ,

from which (1.12) readily follows. �

4. Everywhere positivity

In this section, we assume that 0 < m ≤ q < 1 and consider a non-negative initial condition
u0 ∈ BC(RN), u0 6≡ 0. We denote the corresponding solution to (1.1a)-(1.1b) by u and define its
extinction time by (1.2). As in [9], the proof relies on an upper bound for ∂tu which we establish
now.

Lemma 4.1. For t > 0 there holds

∂tu(t) ≤
u(t)

(1−m)t
in R

N .

When q = m, Lemma 4.1 is a consequence of [4, Theorem 2], the proof relying on an homogeneity
argument. Though the operator −∆um + uq is not homogeneous, we may still adapt the proof
of [4, Theorem 2] when q ≥ m.

Proof. Given a non-negative initial condition u0 ∈ BC(RN ), we denote the corresponding solution
to (1.1a)-(1.1b) at time t ≥ 0 by S(t)u0. Recall that, if u0 and v0 are two non-negative functions in
BC(RN) satisfying u0 ≥ v0, then the comparison principle entails S(t)u0 ≥ S(t)v0 for all t ≥ 0.

Step 1. We first claim that, for λ ≥ 1,

S(λt)u0 ≤ λ1/(1−m)S(t)
(

λ1/(m−1)u0

)

, t ≥ 0 . (4.1)

Indeed, setting u(t) := S(t)u0 for t ≥ 0, the function v defined by v(t) := λ1/(m−1)S(λt)u0 satisfies

∂tv(t, x)−∆vm(t, x) + v(t, x)q = λm/(m−1)∂tu(λt, x)− λm/(m−1)∆um(λt, x)

+ λq/(m−1)u(λt, x)q

=
(

λq/(m−1) − λm/(m−1)
)

u(λt, x)q ≤ 0 .

Since v(0) = λ1/(m−1)u0 ≤ u0, we infer from the comparison principle that (4.1) holds true.
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Step 2. Now, fix t > 0 and consider h > 0. Since λ = (1 + h/t) > 1 and m ∈ (0, 1), we infer from
(4.1) and the comparison principle that

S(t+ h)u0 − S(t)u0 = S(λt)u0 − S(t)u0

≤ λ1/(1−m)S(t)
(

λ1/(m−1)u0

)

− S(t)u0

≤

[

(

1 +
h

t

)1/(1−m)

− 1

]

S(t)u0 .

Dividing the above inequality by h and passing to the limit as h → 0 complete the proof. �

We now argue as in the proof of [9, Lemma 2.5] to complete the proof of Proposition 1.4.

Proof of Proposition 1.4. Fix t ∈ (0, Te) and assume for contradiction that u(t, x0) = 0 for some
x0 ∈ R

N . By (1.1a) and Lemma 4.1, there holds

−∆um(t) + u(t)q +
u(t)

(1−m)t
≥ 0 in R

N ,

so that u(t)m is a supersolution to

−∆w + dw = 0 in R
N ,

with d(x) := u(t, x)q−m+u(t, x)1−m/((1−m)t) for x ∈ R
N . Since t > 0 and m ≤ q < 1, the function

d is non-negative and bounded and we infer from the strong maximum principle [16, Theorem 8.19]
that u(t)m ≡ 0 in R

N , contradicting t < Te. Consequently, u(t)m is positive everywhere in R
N and

the proof of Proposition 1.4 is complete. �
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