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Optimal extinction rates near the extinction time are derived for non-negative solutions to a fast diffusion equation with strong absorption, the power of the absorption exceeding that of the diffusion.

Introduction

Given m ∈ (0, ∞), q ∈ (0, 1), and a non-negative initial condition u 0 in BC(R N ), u 0 ≡ 0, it is well-known that the initial value problem

∂ t u -∆u m + u q = 0 , (t, x) ∈ (0, ∞) × R N , (1.1a) 
u(0) = u 0 , x ∈ R N , (1.1b) 
has a unique non-negative (weak) solution u which vanishes identically after a finite time, a phenomenon usually referred to as finite time extinction [START_REF] Kalashnikov | The nature of the propagation of perturbations in problems of nonlinear heat conduction with absorption[END_REF][START_REF]Some problems of the qualitative theory of second-order nonlinear degenerate parabolic equations[END_REF][START_REF] Kersner | Nonlinear heat conduction with absorption: space localization and extinction in finite time[END_REF]. More precisely, introducing the extinction time T e := sup{t > 0 : u(t) ≡ 0} > 0 ,

then T e is finite and satisfies T e ≤ u 0

(1-q) ∞ /(1 -q), the latter upper bound being a straightforward consequence of (1.1) and the comparison principle. Moreover, there holds u(t) ≡ 0 for t ∈ [0, T e ) and u(t) ≡ 0 for t ≥ T e .

(

When q < m and u 0 (x) → 0 as |x| → ∞, finite time extinction is accompanied by an even more striking phenomenon, the instantaneous shrinking of the support, that is, the positivity set P(t) := {x ∈ R N : u(t, x) > 0} of u at time t is a relatively compact subset of R N for all t ∈ (0, T e ), even if P(0) = R N initially [START_REF] Abdullaev | Instantaneous shrinking of the support of a solution of a nonlinear degenerate parabolic equation[END_REF][START_REF] Borelli | The fast diffusion equation with strong absorption: the instantaneous shrinking phenomenon[END_REF][START_REF] Evans | Instantaneous shrinking of the support of nonnegative solutions to certain nonlinear parabolic equations and variational inequalities[END_REF][START_REF] Kalashnikov | The nature of the propagation of perturbations in problems of nonlinear heat conduction with absorption[END_REF]. Observe that the inequality q < m is always satisfied when the diffusion is linear (m = 1) or slow (m > 1). Additional information on the behaviour of P(t) as t → T e is also available when m ≥ 1 and N = 1 [START_REF] Chen | Finite-point extinction and continuity of interfaces in a nonlinear diffusion equation with strong absorption[END_REF][START_REF] Foster | Self-similar solutions for reversing interfaces in the slow diffusion equation with strong absorption[END_REF][START_REF] Foster | The reversing of interfaces in slow diffusion processes with strong absorption[END_REF][START_REF] Friedman | Extinction properties of semilinear heat equations with strong absorption[END_REF][START_REF] Galaktionov | Regularity of interfaces in diffusion processes under the influence of strong absorption[END_REF][START_REF] Galaktionov | Behaviour of interfaces in a diffusion-absorption equation with critical exponents[END_REF].

Once finite time extinction is known to take place, gaining further insight into the underlying mechanism requires to identify the behaviour of u(t) as t → T e , a preliminary step being to determine the relevant space and time scales. Simple scaling arguments predict that, for r ∈ [1, ∞] and u 0 ∈ L r (R N ), there is a constant γ r > 0 (depending on N, m, q, u 0 , and r) such that u(t) r ∼ γ r (T e -t) α-(N β/r) , (1.4) where

α := 1 1 -q > 0 , β := q -m 2(1 -q) ∈ R . (1.5) 
As already observed by several authors [START_REF] Ferreira | Extinction behaviour for fast diffusion equations with absorption[END_REF][START_REF] Friedman | Extinction properties of semilinear heat equations with strong absorption[END_REF][START_REF] Galaktionov | Extinction for a quasilinear heat equation with absorption. I. Technique of intersection comparison[END_REF], a rather simple comparison argument provides a lower bound for the L ∞ -norm of the form (1.4). Indeed, consider t ∈ (0, T e ) and let x(t) ∈ R N be a point where u(t) reaches its maximum value, that is, u(t, x(t)) = u(t) ∞ . Then u(t) m also attains its maximum value at this point, so that ∆u m (t, x(t)) ≤ 0 and we infer from (1.1a) that (at least formally)

d dt u(t) ∞ = ∂ t u(t, x(t)) ≤ -u(t, x(t)) q = -u(t) q ∞ .
Integrating the above differential inequality over (t, T e ) gives the expected lower bound

u(t) ∞ ≥ [(1 -q)(T e -t)] 1/(1-q) , t ∈ [0, T e ) . (1.6) 
The derivation of an upper bound of the form (1.4) turns out to be more involved and the results obtained so far are rather sparse: in one space dimension, the upper bound

u(t) ∞ ≤ C ∞ (T e -t) 1/(1-q) , t ∈ [0, T e ) , (1.7) 
is shown in [START_REF] Herrero | Approaching an extinction point in one-dimensional semilinear heat equations with strong absorption[END_REF]Proposition 2.2] for m = 1 and in [9, Lemma 5.2, Lemma 7.2 & Lemma 9.2] for m ∈ (0, 1), the latter being valid only for compactly supported initial data. The proofs are however of a completely different nature: in [START_REF] Herrero | Approaching an extinction point in one-dimensional semilinear heat equations with strong absorption[END_REF], properties of the linear heat equation are used while the approach in [START_REF] Ferreira | Extinction behaviour for fast diffusion equations with absorption[END_REF] relies on the intersection-comparison technique, which requires in particular the compactness of the support of the initial condition. Still for m = 1 but in any space dimension, the upper bound (1.7) is derived in [START_REF] Friedman | Extinction properties of semilinear heat equations with strong absorption[END_REF]Lemma 2.1] for radially symmetric initial data u 0 having a non-increasing profile and satisfying ∆u 0 + µu q 0 ≥ 0 in R N for some µ > 0. The last case for which (1.7) is proved corresponds to the choice m = 2 -q > 1 and the proof relies on the derivation of an Aronson-Bénilan estimate, which seems to be only available for this specific choice of the parameters m and q [START_REF] Galaktionov | Extinction for a quasilinear heat equation with absorption. I. Technique of intersection comparison[END_REF].

The purpose of this note is to contribute to the validity of (1.4) and derive optimal upper and lower bounds near the extinction time when the parameters m and q range in

(N -2) + N < m < q < 1 . (1.8)
Recalling that a lower bound in L ∞ is already available, see (1.6), we begin with upper bounds.

Theorem 1.1 (Upper bounds). Assume that m and q satisfy (1.8) and consider a non-negative initial condition u 0 ∈ BC(R N ), u 0 ≡ 0, for which there is κ 0 > 0 such that

u 0 (x) ≤ κ 0 |x| -2/(q-m) , x ∈ R N . (1.9) Given r ∈ [1, ∞],
there is C r > 0 depending only on N, m, q, u 0 , and r such that the solution u to

(1.1a)-(1.1b) satisfies u(t) r ≤ C r (T e -t) α-(N β/r) , t ∈ (0, T e ) , (1.10) 
the extinction time T e being defined in (1.2).

Theorem 1.1 thus extends the validity of the upper bound (1.7) established in [START_REF] Ferreira | Extinction behaviour for fast diffusion equations with absorption[END_REF] for N = 1 and r = ∞ to any space dimension N ≥ 1 and r ∈ [1, ∞], while relaxing the assumption of compact support required in [START_REF] Ferreira | Extinction behaviour for fast diffusion equations with absorption[END_REF]. It is worth mentioning that the validity of (1.10) for r ∈ [1, ∞) does not seem to be a simple consequence of (1.10) for r = ∞ since u(t) is positive everywhere in R N for all t ∈ (0, T e ) even if u 0 is compactly supported, see [9, Lemma 2.5] and Proposition 1.4 below.

To be able to cope with higher space dimensions and non-compactly supported initial data, the proof of Theorem 1.1 takes a different route from that in [START_REF] Ferreira | Extinction behaviour for fast diffusion equations with absorption[END_REF] and is carried out in two steps: we first show that the algebraic decay at infinity (1.9) enjoyed by u 0 remains true throughout time evolution and combine it with (1.1a) to prove (1.10) for r = 1. We next use self-similar variables and Moser's interation technique to derive (1.10) for all r ∈ (1, ∞].

As a consequence of (1.6) and Theorem 1.1 for r = ∞, the correct time scale for the extinction phenomenon is identified. We now supplement the lower bound (1.6) in L ∞ with another one in L m+1 . On the one hand, it allows us to identify the right space scale. On the other hand, its derivation does not rely on the comparison principle but on energy estimates, a technique which is more likely to extend to other problems for which the former might not be available. Theorem 1.2 (Lower bound in L m+1 ). Assume that m and q satisfy (1.8) and consider a nonnegative initial condition u 0 ∈ BC(R N ), u 0 ≡ 0, such that u 0 ∈ L m+1 (R N ). There is c m+1 > 0 depending only on N, m, q, and u 0 such that the solution u to (1.1a)-(1.1b) satisfies

u(t) m+1 ≥ c m+1 (T e -t) α-(N β/(m+1)) , t ∈ (0, T e ) , (1.11) 
the extinction time T e being defined in (1.2).

Observing that Theorems 1.1 and 1.2 are shown without using the L ∞ -lower bound (1.6), the latter may be recovered from these two results by Hölder's inequality, with a less explicit constant though.

Corollary 1.3. Assume that m and q satisfy (1.8) and consider a non-negative initial condition u 0 ∈ BC(R N ), u 0 ≡ 0, enjoying the decay property (1.9). For r ∈ (m + 1, ∞], there is c r > 0 depending only N, m, q, u 0 , and r such that the solution u to

(1.1a)-(1.1b) satisfies u(t) r ≥ c r (T e -t) α-(N β/r) , t ∈ (0, T e ) .
(1.12)

Summarizing the outcome of Theorem 1.1, Theorem 1.2, and Corollary 1.3, we have shown that, for all non-negative initial data u 0 ∈ BC(R N ), u 0 ≡ 0, enjoying the decay property (1.9), the corresponding solution u to

(1.1a)-(1.1b) is bounded in L r (R N ), r ∈ [m + 1, ∞]
, from above and from below at time t ∈ (0, T e ) by the same power of T e -t. Such estimates pave the way towards a more precise description of the behaviour of u(t) as t → T e , which is expected to be self-similar. That this is indeed the case is shown in [START_REF] Ferreira | Uniqueness of asymptotic profiles for an extinction problem[END_REF][START_REF] Ferreira | Extinction behaviour for fast diffusion equations with absorption[END_REF] in one space dimension, another building block of the proof being the uniqueness of self-similar solutions [START_REF] Ferreira | Uniqueness of asymptotic profiles for an extinction problem[END_REF].

We end up this note with the already mentioned everywhere positivity of solutions to (1.1a)-(1.1b) for positive times prior to the extinction time. As we shall see below, this property holds true for a wider range of the parameters m and q, namely 0<m ≤ q < 1. It is already observed in [9, Lemma 2.5] in one space dimension and we extend it herein to any space dimension. It is worth emphasizing that it includes the case q = m and contrasts markedly with the instantaneous shrinking of the support occurring when q < m. Proposition 1.4 (Everywhere positivity). Consider 0 < m ≤ q < 1. Let u 0 ∈ BC(R N ) be a nonnegative initial condition, u 0 ≡ 0, and denote the corresponding solution to (1.1a)-(1.1b) by u with extinction time T e . For t ∈ (0, T e ), there holds

P(t) := {x ∈ R N : u(t, x) > 0} = R N .
(1.13)

Before proving the results stated above, we point out once more that the energy techniques developed herein seem to be rather flexible and are expected to have a wider range of applicability. For instance, a related approach is used in the companion paper [START_REF] Iagar | Extinction for a singular diffusion equation with strong gradient absorption revisited[END_REF], where optimal (lower and upper) bounds near the extinction time are established for a different fast diffusion equation (featuring the p-Laplacian operator, p ∈ (1, 2)) with a gradient absorption term.

Upper bounds near the extinction time

Throughout this section, we assume that m and q satisfy (1.8) and consider a non-negative initial condition u 0 ∈ BC(R N ), u 0 ≡ 0, enjoying the decay property (1.9). Let u be the corresponding solution to (1.1a)-(1.1b).

2.1. L 1 -estimate. We begin with the propagation throughout time evolution of the algebraic decay (1.9) and set

κ * := 2m(m + q) (q -m) 2 1/(q-m) . (2.1) Lemma 2.1. For t ∈ [0, ∞) and x ∈ R N \ {0}, there holds u(t, x) ≤ max{κ 0 , κ * }|x| -2/(q-m) . Proof. Set Σ κ (x) := κ|x| -2/(q-m) for x ∈ R N \{0}
, where κ is a positive constant yet to be determined. We note that

-∆Σ m (x) + Σ(x) q = -κ m 2m(m + q) (q -m) 2 |x| -2q/(q-m) - 2m(N -1) (q -m) |x| -2q/(q-m) + κ q |x| -2q/(q-m) ≥ κ m κ q-m -κ q-m * |x| -2q/(q-m) for x ∈ R N \ {0}, so that Σ κ is a supersolution to (1.1a) in R N \ {0} for all κ ≥ κ * .
We then choose κ = max{κ 0 , κ * } and use the comparison principle to complete the proof of Lemma 2.1.

We are now in a position to derive the claimed upper bound near the extinction time for r = 1.

Proof of Theorem 1.1:

r = 1. Let t ∈ [0, T e ). Integrating (1.1a) over (t, T e ) × R N gives u(t) 1 = Te t R N u(s, x) q dxds . (2.2) 
Owing to (1.8), there holds 2q/(q -m) > N and we infer from Lemma 2.1 and Hölder's inequality that, for s ∈ (t, T e ) and R > 0,

R N u(s, x) q dx = B(0,R) u(s, x) q dx + R N \B(0,R) u(s, x) q dx ≤ CR N (1-q) u(s) q 1 + (max{κ 0 , κ * }) q |S N -1 | ∞ R r N -1-(2q/(q-m)) dr ≤ C R N (1-q) u(s) q 1 + R (N (q-m)-2q)/(q-m) .
We next optimize in R in the previous inequality by setting R(s) := u(s)

-(q-m)/(N (m-q)+2) 1 , which satisfies R(s) N (1-q) u(s) q 1 = R(s) (N (q-m)-2q)/(q-m) = u(s) (N (m-q)+2q)/(N (m-q)+2) 1
. Consequently, taking R = R(s) in the previous inequality, we obtain

R N u(s, x) q dx ≤ C u(s) (N (m-q)+2q)/(N (m-q)+2) 1
, which gives, together with (2.2), the positivity of N(m -q) + 2q, and the time monotonicity of s → u(s) 1 ,

u(t) 1 ≤ C Te t u(s) (N (m-q)+2q)/(N (m-q)+2) 1 ds ≤ C(T e -t) u(t) (N (m-q)+2q)/(N (m-q)+2) 1
, from which (1.10) for r = 1 readily follows.

2.2. Scaling variables and L r -estimates, r ∈ (1, ∞]. The next step is to take advantage of the just derived L 1 -upper bound to derive the corresponding ones in L r for r ∈ (1, ∞]. To this end, we introduce the scaling variables

s := ln T e T e -t , y := x(T e -t) β , (t, x) ∈ [0, T e ) × R N , (2.3) 
and the new unknown function v defined by 

u(t, x) = (T e -t) α v ln(T e ) -ln(T e -t), x(T e -t) β , (t, x) ∈ [0, T e ) × R N , (2.4 
∂ s v(s, y) = αv(s, y) + βy • ∇v(s, y) + ∆v m (s, y) -v(s, y) q , (s, y) ∈ (0, ∞) × R N , (2.6) v(0, y) = v 0 (y) := T -α e u 0 yT -β e , y ∈ R N . (2.7) Since u(t) r = (T e -t) α-(N β/r) v(s) r , t ∈ (0, T e ) , (2.8 
) for all r ∈ [1, ∞], we realize that an upper bound such as (1.10) on u(t) r for t ∈ (0, T e ) obviously follows from a uniform upper bound on v(s) r for s ≥ 0, the converse being true as well. In particular, it follows from (2.8) and Theorem 1.

1 for r = 1 that v(s) 1 ≤ C 1 , s ≥ 0 , (2.9) 
and we may assume without loss of generality that C 1 ≥ 1.

We now aim at using a bootstrap argument to deduce from (2.6) and (2.9) that v belongs to L ∞ (0, ∞; L r (R N )) for all r ∈ (1, ∞]. To this end, Moser's iteration technique is a suitable tool and the way we apply it is inspired from [2, Theorem 3.1]. But since [2, Theorem 3.1] is devoted to the slow diffusion case m > 1, some technical aspects of its proof do not seem to apply directly here and we borrow additional arguments from the proof of [3, Proposition 2]. Lemma 2.2. Let r ∈ (0, ∞]. There is C r+1 > 0 depending only on N, m, q, u 0 , and r such that

v(s) r+1 ≤ C r+1 , s ≥ 0 . Proof. Let r ∈ [2 -m, ∞). Multiplying (2.6
) by v r , integrating over R N , and using integration by parts, we obtain 1 r + 1

d ds v r+1 r+1 + rm R N v r+m-2 |∇v| 2 dy + R N v r+q dy = α - Nβ r + 1 v r+1 r+1 , d ds v r+1 r+1 + 4mr(r + 1) (m + r) 2 ∇v (m+r)/2 2 2 ≤ α(r + 1) v r+1 r+1 .
Since 4mr(r + 1) ≥ 2m(m + r) 2 , we end up with d ds v r+1 r+1 + 2m ∇v (m+r)/2 2 2 ≤ α(r + 1) v r+1 r+1 .

(2.10)

We next fix ζ ∈ (2/m, 2 * ) where 2 * := 2N/(N -2) + (with 2 * = ∞ for N = 1, 2). On the one hand, it follows from the Gagliardo-Nirenberg inequality that .

v (m+r)/2 ζ ≤ C ∇v (m+r)/2 θ 2 v (m+r)/2 1-θ 1 , (2.11 
(2.12)

We deduce from (2.11) and (2.12) that v

(m+r)/2 ζ(m+r)/2 = v (m+r)/2 ζ ≤ C ∇v (m+r)/2 θ 2 v (m+r)/2 (m+r)/2 1-θ ≤ C ∇v (m+r)/2 θ 2 v ζ(m+r)(m+r-2)/2[ζ(m+r)-2] ζ(m+r)/2 v (ζ-1)(m+r)/[ζ(m+r)-2] 1 1-θ , hence v ζ(m+r)[N (m+r)+2-N ]/N [ζ(m+r)-2] ζ(m+r)/2 ≤ C ∇v (m+r)/2 2 2 v [2N -(N -2)ζ](m+r)/N [ζ(m+r)-2] 1 . (2.13) Moreover, since ζ > 2/m and m < 1, we have 2r ≤ m[ζ(m + r) -2], hence [2N -(N -2)ζ](m + r) N[ζ(m + r) -2] ≤ [2N -(N -2)ζ] N m(m + r) 2r ≤ m[2N -(N -2)ζ] N , so that v [2N -(N -2)ζ](m+r)/N [ζ(m+r)-2] 1 ≤ C [2N -(N -2)ζ](m+r)/N [ζ(m+r)-2] 1 ≤ C m[2N -(N -2)ζ]/N 1 . (2.14) Also, 1 - N[ζ(m + r) -2] ζ[N(m + r) + 2 -N] = 2N -ζ(N -2) ζ[N(m + r) + 2 -N] > 0 ,
and we infer from (2.13), (2.14), and Young's inequality that

v m+r ζ(m+r)/2 ≤ N[ζ(m + r) -2] ζ[N(m + r) + 2 -N] v ζ(m+r)[N (m+r)+2-N ]/N [ζ(m+r)-2] ζ(m+r)/2 + 2N -ζ(N -2) ζ[N(m + r) + 2 -N] ≤ C ∇v (m+r)/2 2 2 + 1 .
Therefore, there is ν ∈ (0, 1) depending only on N, m, q, and u 0 such that

ν v m+r ζ(m+r)/2 -1 ≤ ∇v (m+r)/2 2 2 .
(2.15)

Moreover, since r + 1 ∈ [1, ζ(m + r)/2]
, it follows from (2.9) and Hölder's and Young's inequalities that

v r+1 r+1 ≤ v ζr(r+m)/[ζ(r+m)-2] ζ(m+r)/2 v [(ζ-2)r+ζm-2]/(ζr+ζm-2) 1 ≤ C [(ζ-2)r+ζm-2]/(ζr+ζm-2) 1 v ζr(r+m)/[ζ(r+m)-2] ζ(m+r)/2 ≤ C 1 v ζr(r+m)/[ζ(r+m)-2] ζ(m+r)/2 ≤ ζm -2 ζ(m + r) -2 C [ζ(m+r)-2]/(ζm-2) 1 + ζr ζ(m + r) -2 v m+r ζ(m+r)/2 ≤ C [ζ(m+r)-2]/(ζm-2) 1 + v m+r ζ(m+r)/2
(2.16)

Next, let σ > 1 to be chosen appropriately later on and set

I r (s) := R N v(s, y) ζ[r+m+σ(1-m)]/[σ(ζ-2)+2] dy , s ≥ 0 . Since σ(ζ -2) + 2 ∈ [ζ, σζ] and r + 1 = σ -1 σ (m + r) + m + r + σ(1 -m) σ ,
we deduce from (2.9) and Hölder's and Young's inequalities that, for δ > 0,

v r+1 r+1 ≤ v (σ-1)(m+r)/σ ζ(m+r)/2 I [σ(ζ-2)+2]/σζ r ≤ (σ -1)δ σ v m+r ζ(m+r)/2 + 1 σδ σ-1 I [σ(ζ-2)+2]/ζ r ≤ δ v m+r ζ(m+r)/2 + 1 δ σ-1 I [σ(ζ-2)+2]/ζ r .
(2.17)

Combining (2.10), (2.15), and (2.17) leads us to

d ds v r+1 r+1 + 2mν v m+r ζ(m+r)/2 -1 ≤ d ds v r+1 r+1 + 2m ∇v (m+r)/2 2 2 ≤ α(r + 1) v r+1 r+1 ≤ αδ(r + 1) v m+r ζ(m+r)/2 + α(r + 1) δ σ-1 I [σ(ζ-2)+2]/ζ r .
We then choose δ = mν/α(r + 1) in the above inequality to obtain

d ds v r+1 r+1 + mν v m+r ζ(m+r)/2 ≤ 2mν + α σ (r + 1) σ (mν) σ-1 I [σ(ζ-2)+2]/ζ r .
We finally use (2.16) to estimate from below the second term of the left-hand side of the previous inequality and end up with

d ds v r+1 r+1 + mν v r+1 r+1 ≤ 2mν + mνC [ζ(m+r)-2]/(ζm-2) 1 + α σ (r + 1) σ (mν) σ-1 I [σ(ζ-2)+2]/ζ r . (2.18) 
We first choose

σ = ζ(m + r) -2 ζm -2 > 1 in (2.18
) and observe that this choice guarantees that

ζ[m + r + σ(1 -m)] = σ(ζ -2) + 2 .
Consequently, I r = v 1 and we deduce from (2.9) and (2.18) that there is C(r) > 0 depending on N, m, q, u 0 , and r such that

d ds v r+1 r+1 + mν v r+1 r+1 ≤ C(r) . Integrating the previous differential inequality entails that sup s≥0 v(s) r+1 < ∞ . (2.19) 
The validity of (2.19) extends to all r ∈ (0, 2 -m) by (2.9) and Hölder's inequality.

To complete the proof of Lemma 2.2, we are left to check the boundedness of v in L ∞ (R N ). To this end, we take σ = σ 0 := 2(ζ -1)/(ζ -2) > 1 in (2.18) and obtain, after integration with respect to time,

v(s) r+1 r+1 ≤ v 0 r+1 r+1 e -mνs + 2 + C [ζ(m+r)-2]/(ζm-2) 1 + α(r + 1) mν σ 0 sup s * ∈[0,s] I r (s * ) 2 ≤ v 0 1 v 0 r ∞ + 2 + C [ζ(m+r)-2]/(ζm-2) 1 + α(r + 1) mν σ 0 sup s * ∈[0,s] I r (s * ) 2 ,
and

I r = v [(r+m)+σ 0 (1-m)]/2
[(r+m)+σ 0 (1-m)]/2 . Therefore, there are K 0 > 0 and K 1 > 0 depending only on N, m, q, and u 0 such that

sup s≥0 v(s) r+1 r+1 ≤ K 0 K r+1 1 + (1 + r) σ 0 sup s≥0 v(s) [(r+m)+σ 0 (1-m)] [(r+m)+σ 0 (1-m)]/2 . ( 2.20) 
We now define the sequence (r j ) j≥0 by

1 + r j+1 = 2(1 + r j ) -(1 -m)(σ 0 -1) , j ≥ 0 , r 0 := 2 -m ,
and set

V j := sup s≥0 v(s) r j +1 r j +1
, j ≥ 0 .

For j ≥ 0, we take r = r j+1 in (2.20) and realize that

V j+1 ≤ K 0 K 1+r j+1 1 + (1 + r j+1 ) σ 0 V 2 j ≤ K 0 (1 + r j+1 ) σ 0 max K 1+r j+1 1 , V 2 j , j ≥ 0 .
Since σ 0 -1 < 1/(1 -m) thanks to the constraint ζ > 2/m, one has 1 + r 0 -(1 -m)(σ 0 -1) > 0 and we are in a position to apply [22, Lemma A.1], which we recall in Lemma 2.3 below for completeness, to conclude that there is K 2 > 0 depending only on m, ζ, K 0 , and

K 1 such that V 1/(1+r j ) j ≤ K 2 , j ≥ 0 . Equivalently, sup s≥0 { v(s) 1+r j } ≤ K 2 , j ≥ 0 ,
and letting j → ∞ entails that v(s) ∞ ≤ K 2 for all s ≥ 0, thereby completing the proof of Lemma 2.2.

The proof of Theorem 1.1 for r ∈ (1, ∞] is now a straightforward consequence of (2.8) and Lemma 2.2.

Lemma 2.3. Let a > 1, b ≥ 0, c ∈ R, C 0 ≥ 1, C 1 ≥ 1,
and p 0 > 0 be given such that p 0 (a-1)+c > 0. We define the sequence (p k ) k≥0 of positive real numbers by p k+1 = ap k + c for k ≥ 0 and assume that (Q k ) k≥0 is a sequence of positive real numbers satisfying

Q 0 ≤ C p 0 1 , Q k+1 ≤ C 0 p b k+1 max C p k+1 1 , Q a k , k ≥ 0 .
Then the sequence Q

1/p k k k≥0
is bounded.

Lower bound near the extinction time

We now turn to the lower bound near the extinction time in L m+1 (R N ).

Proof of Theorem 1.2. For t ∈ [0, T e ], we define

X(t) := u(t) m+1 m+1 and Y (t) := R N u(t, x) m+q dx .
Let t ∈ (0, T e ). It follows from (1.1a) that

1 m + 1 dX dt (t) + ∇u m (t) 2 2 + Y (t) = 0 . (3.1) Since 1 < m + q m < m + 1 m < 2 * := 2N (N -2) +
by (1.8) we infer from the Gagliardo-Nirenberg inequality that

X(t) m/(m+1) = u(t) m (m+1)/m ≤ C ∇u m (t) θ 2 u(t) m 1-θ (m+q)/m
≤ CY (t) m(1-θ)/(m+q) ∇u m (t) θ 2 , where

θ := 2Nm(1 -q) (m + 1)[m(N + 2) -q(N -2)]
.

Consequently, since u(t) ≡ 0 as t ∈ (0, T e ), ∇u m (t) 2 2 ≥ CX(t) 2m/θ(m+1) Y (t) -2m(1-θ)/θ(m+q) , which gives, together with (3.1), dX dt

(t) + CX(t) 2m/θ(m+1) Y (t) -2m(1-θ)/θ(m+q) + (m + 1)Y (t) ≤ 0 . (3.2) Setting ξ := 1 + 2m(1 -θ) θ(m + q) > 1 and γ := 2m θξ(m + 1)
, it follows from Young's inequality that

X(t) γ = X(t) γ Y (t) -(ξ-1)/ξ Y (t) (ξ-1)/ξ ≤ 1 ξ X(t) ξγ Y (t) 1-ξ + ξ -1 ξ Y (t) ≤ X(t) 2m/θ(m+1) Y (t) -2m(1-θ)/θ(m+q) + Y (t)
Combining this inequality with (3.2) leads us to the differential inequality dX dt (t) + CX(t) γ ≤ 0 , t ∈ (0, T e ) .

Now,

γ = 2m θξ(m + 1) = 2m(m + q) (2m + θ(q -m))(m + 1) = 2m(m + q)[m(N + 2) -q(N -2)] 2m{(m + 1)[m(N + 2) -q(N -2)] + N(q -m)(1 -q)} = m(N + 2) -q(N -2) m(N + 2) -qN + 2 ∈ (0, 1) ,
and we integrate (3.3) over (t, T e ) to obtain

-X(t) 1-γ + (1 -γ)C(T e -t) ≤ 0 , t ∈ (0, T e ) .
Noticing that

(m + 1)α -Nβ = m + 1 1 -q - N(q -m) 2(1 -q) = m(N + 2) -qN + 2 2(1 -q) = 1 1 -γ ,
the lower bound (1.11) readily follows from the previous inequality.

We end up this section with the derivation of the lower bound for r ∈ (m+ 1, ∞] from Theorem 1.1 for r = 1 and Theorem 1.2.

Proof of Corollary 1.3. We first note that, owing to (1.8), there holds 2/(q -m) > N and (1.9) entails that u 0 ∈ L 1 (R N ). Since u 0 also belongs to L ∞ (R N ), we conclude that u 0 ∈ L m+1 (R N ).

Let r ∈ (m + 1, ∞] and t ∈ (0, T e ). We infer from Theorem 1.1, Theorem 1.2, and Hölder's inequality that

c m+1 m+1 (T e -t) (m+1)α-N β ≤ u(t) m+1 m+1 ≤ u(t) rm/(r-1) r u(t) (r-1-m)/(r-1) 1 ≤ C 1 (T e -t) (α-N β)(r-1-m)/(r-1) u(t) rm/(r-1)
r , from which (1.12) readily follows.

Everywhere positivity

In this section, we assume that 0 < m ≤ q < 1 and consider a non-negative initial condition u 0 ∈ BC(R N ), u 0 ≡ 0. We denote the corresponding solution to (1.1a)-(1.1b) by u and define its extinction time by (1.2). As in [START_REF] Ferreira | Extinction behaviour for fast diffusion equations with absorption[END_REF], the proof relies on an upper bound for ∂ t u which we establish now.

Lemma 4.1. For t > 0 there holds

∂ t u(t) ≤ u(t) (1 -m)t in R N .
When q = m, Lemma 4.1 is a consequence of [4, Theorem 2], the proof relying on an homogeneity argument. Though the operator -∆u m + u q is not homogeneous, we may still adapt the proof of [4, Theorem 2] when q ≥ m.

Proof. Given a non-negative initial condition u 0 ∈ BC(R N ), we denote the corresponding solution to (1.1a)-(1.1b) at time t ≥ 0 by S(t)u 0 . Recall that, if u 0 and v 0 are two non-negative functions in BC(R N ) satisfying u 0 ≥ v 0 , then the comparison principle entails S(t)u 0 ≥ S(t)v 0 for all t ≥ 0.

Step 1. We first claim that, for λ ≥ 1, S(λt)u 0 ≤ λ 1/(1-m) S(t) λ 1/(m-1) u 0 , t ≥ 0 . (4.1) Indeed, setting u(t) := S(t)u 0 for t ≥ 0, the function v defined by v(t) := λ 1/(m-1) S(λt)u 0 satisfies ∂ t v(t, x) -∆v m (t, x) + v(t, x) q = λ m/(m-1) ∂ t u(λt, x) -λ m/(m-1) ∆u m (λt, x)

+ λ q/(m-1) u(λt, x) q = λ q/(m-1) -λ m/(m-1) u(λt, x) q ≤ 0 .

Since v(0) = λ 1/(m-1) u 0 ≤ u 0 , we infer from the comparison principle that (4.1) holds true.

Step 2. Now, fix t > 0 and consider h > 0. Since λ = (1 + h/t) > 1 and m ∈ (0, 1), we infer from (4.1) and the comparison principle that S(t + h)u 0 -S(t)u 0 = S(λt)u 0 -S(t)u 0 ≤ λ 1/(1-m) S(t) λ 1/(m-1) u 0 -S(t)u 0

≤ 1 + h t 1/(1-m)
-1 S(t)u 0 .

Dividing the above inequality by h and passing to the limit as h → 0 complete the proof.

We now argue as in the proof of [9, Lemma 2.5] to complete the proof of Proposition 1.4.

Proof of Proposition 1.4. Fix t ∈ (0, T e ) and assume for contradiction that u(t, x 0 ) = 0 for some x 0 ∈ R N . By (1.1a) and Lemma 4.1, there holds -∆u m (t) + u(t) q + u(t) (1 -m)t ≥ 0 in R N , so that u(t) m is a supersolution to -∆w + dw = 0 in R N , with d(x) := u(t, x) q-m + u(t, x) 1-m /((1 -m)t) for x ∈ R N . Since t > 0 and m ≤ q < 1, the function d is non-negative and bounded and we infer from the strong maximum principle [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Theorem 8.19] that u(t) m ≡ 0 in R N , contradicting t < T e . Consequently, u(t) m is positive everywhere in R N and the proof of Proposition 1.4 is complete.

  ) or, equivalently, v(s, y) = T -α e e αs u T e (1 -e -s ), yT -β e e βs , (s, y) ∈ [0, ∞) × R N . (2.5) It readily follows from (1.1a)-(1.1b) that v solves

(m+r)/ 2 (

 2 On the other hand, since (m + r)/2 ∈ [1, ζ(m + r)/2] for r ≥ 2 -m, we infer from Hölder's inequality that v m+r)/2 ≤ v ζ(m+r)(m+r-2)/2[ζ(m+r)-2] ζ(m+r)/2 v (ζ-1)(m+r)/[ζ(m+r)-2] 1
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